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Abstract. Kernel-based methods are popular in computer graphics, machine learning,
and statistics, among other fields; because they do not require meshing of the domain
under consideration, higher dimensions and complicated domains can be managed
with reasonable effort. Traditionally, the high order of accuracy associated with these
methods has been tempered by ill-conditioning, which arises when highly smooth ker-
nels are used to conduct the approximation. Recent advances in representing Gaus-
sians using eigenfunctions have proven successful at avoiding this destabilization in
scattered data approximation problems. This paper will extend these techniques to
the solution of boundary value problems using collocation. The method of particular
solutions will also be considered for elliptic problems, using Gaussian eigenfunctions
to stably produce an approximate particular solution.
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1 Introduction

Kernel-based meshfree approximation methods have gained popularity in several fields,
including scattered data interpolation [52], finance [25], statistics [49], machine learn-
ing [43] and others. One of the great benefits of using these methods is that no discretiza-
tion of the relevant domain is required; basis functions are centered at various points
throughout the domain, allowing for kernel-based methods to circumvent some of the
barriers associated with higher dimensional problems. Additionally, a variety of kernels
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exist, providing users in each application the ability to tailor the solution basis to fit that
application’s specific opportunities and constraints.

Techniques for solving boundary value problems (BVPs) with radial basis functions
(RBFs) have advanced significantly in the past two decades. The original method for
solving elliptic partial differential equations (PDEs) with RBFs came in 1990 [31] and
involved an unsymmetric collocation of basis functions at points chosen throughout the
domain. Since that initial work, further analysis has been done on the convergence of
this collocation method [46], which has encouraged its use despite its theoretic potential
for failure [26]. A symmetric collocation technique was also developed [9] which ensured
invertibility of the collocation system by using a modified set of basis functions.

Another popular method for solving BVP with radial basis functions is the method
of fundamental solutions [8]. Essentially, this method replaces the BVP with an inter-
polation problem on the boundary using functions which satisfy the PDE. The mathe-
matical formulation of this method is well-developed, but it is only applicable for homo-
geneous problems where the fundamental solution is known. The method of particular
solutions [5] is an adaptation for inhomogeneous problems involving two approxima-
tion systems: one to satisfy the inhomogeneity in the interior, and another to satisfy the
boundary conditions, assuming a now homogeneous problem. The use of radial basis
functions to approximate particular solutions was discussed in [21, 27].

One of the great shortcomings of radial basis functions is that, for some parameteriza-
tions, the resulting linear system may be irrevocably ill-conditioned [10]. Even more trou-
blesome is the fact that the most accurate parameterizations may lie in the ill-conditioned
regime [19]. This ill-conditioning is especially significant for kernels with a great deal of
smoothness, which often tempers the optimism of researchers hoping to exploit their
spectral accuracy. In [11], this problem was addressed for Gaussians in R

d by using a
truncated eigenfunction expansion of the Gaussian. Here, we will extend the approxima-
tion via eigenfunctions to the solution of boundary value problems.

Many more methods for solving boundary value problems with kernels exist beyond
what will be discussed in this paper. Multilevel methods [30, 36] have been presented,
including for higher order problems [1], to attempt to mitigate the cost associated with
solving dense systems generated by globally supported RBFs. Finite difference schemes
based on RBFs [13, 14] have proven to be an effective meshfree solver for geological and
climate based problems. Partition of unity methods [34] are being developed now to
incorporate RBF collocation with other solution schemes for applications including crack
propagation. Petrov-Galerkin techniques [2] have been developed to allow the weak
form solution of PDEs, while recent work [47] has provided analytic support for this
approach. Some work has been done incorporating RBFs into discontinuous Galerkin
schemes [44]. Kernel based PDE solvers on manifolds [20] are beginning to mature as
well.

To narrow our focus from all possible BVP solvers using kernels, we will discuss only
collocation and the method of particular solutions. In Section 2 we consider the solution
of boundary value problems by collocation with traditional Gaussian RBFs, and demon-
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strate the benefit of instead using the eigenfunction expansion. We will also consider the
use of differentiation matrices [50] to solve problems. In Section 3 the eigenfunction ex-
pansion is applied to approximate particular solutions and solve BVPs with the method
of particular solutions. We extend this particular solution approach in Section 3.3 to in-
corporate boundary data and produce a more accurate solution at less cost.

2 Collocation using Gaussian eigenfunctions

The original RBF collocation technique in [31] involved multiquadrics supplemented by
linear polynomials. These basis functions are subject to severe ill-conditioning depend-
ing on the flatness of the multiquadrics. This ill-conditioning is the result of extremely
flat basis functions looking too much alike, causing the representative columns in the
collocation matrix to become indistinguishable and making the system appear to be low
rank.

This problem is not unique to multiquadrics or to collocation techniques; indeed any
application requiring the inversion of matrices generated by very smooth RBFs will fall
victim to this as the RBFs approach their flat limit. It has been discussed for interpola-
tion problems that, despite this perceived impasse, the problem itself is not necessarily
ill-conditioned [7, 35, 42]. Rather, it is the solution approach (i.e., forming a linear sys-
tem using the RBF basis) which deals the damage [33], and if an alternate method could
handle the ill-conditioning the true solution could be found [19].

One such approach to solving this problem is to find a series expansion for the ker-
nel which allows for the removal of the ill-conditioned terms analytically. This solution
technique is called RBF-QR [18], and it has been used successfully on the circle/sphere
for both interpolation [16] and PDEs [17]. In these papers, the authors discussed the pos-
sibility that the most accurate kernel parameterizations were also too ill-conditioned to
treat directly, necessitating the series expansion approach.

In [11], a series expansion was developed to allow for stable approximation with
Gaussians in R

d; this expansion was based on the eigenfunctions of the associated Hilbert-
Schmidt operator. Because the Gaussian kernel in higher dimensions is formed through
tensor products, the higher dimensional series expansion is also formed with a tensor
product, trivially allowing the move to R

d. The approximation of derivatives using this
series expansion was discussed in [39]. Here we would like to use these derivatives to
solve boundary value problems with collocation.

2.1 Ill-conditioning in Gaussian basis collocation

Linear BVPs, without dependence on time, can generally be phrased in the form

Lu= f on the interior Ω,

Bu= g on the boundary ∂Ω,



572 M. McCourt / Adv. Appl. Math. Mech., 5 (2013), pp. 569-594

where L is the linear PDE operator, and B is the linear boundary condition operator.
Ω∈R

d is a bounded domain with Lipshitz boundary. In unsymmetric kernel collocation,
we assume that the solution takes the form

u(x)=
N

∑
k=1

akK(x,xk)+
q

∑
ℓ=1

aN+ℓpℓ(x), (2.1)

where x∈ ∂Ω∪Ω is a d-dimensional vector for a problem in R
d, {xk}N

k=1 are the kernel
centers, N is the number of kernels used, K is the kernel, {pℓ}q

ℓ=1 are polynomial terms,
and q is the number of polynomial terms. For the time being, we will assume that no
polynomial terms are necessary; later we will briefly discuss the effect this may have on
the accuracy of the solution and optimal choice of K.

Choosing q=0 will remove the polynomial terms and leave the pure kernel series

u(x)=
N

∑
k=1

akK(x,xk). (2.2)

Assuming that we have chosen NL collocation points on the interior and NB collocation
points on the boundary, we can now apply the BVP operators to (2.2); note that the PDE
operators act on the first kernel argument, as the second kernel argument defines the
center of the kernel, not where the kernel is being evaluated. This will leave us with the
continuous collocation equations

N

∑
k=1

akLK(x,xk)= f (x), x∈Ω,

N

∑
k=1

akBK(x,xk)= g(x), x∈∂Ω.

We must now choose a finite number of points, NL on the interior and NB on the bound-

ary, at which to enforce these equations. If the {xk}NL
k=1 interior points are ordered before

the {xk}NB+NL
k=1+NL

boundary points, this system of linear equations has the matrix form





















LK(x1,x1) ··· LK(x1,xN)
...

LK(xNL ,x1) ··· LK(xNL ,xN)
BK(xNL+1,x1) ··· BK(xNL+1,xN)

...
BK(xNL+NB ,x1) ··· BK(xNL+NB ,xN)









































a1

...

...

aN





















=





















f (x1)
...

f (xNL)
g(xNL+1)

...
g(xNL+NB)





















. (2.3)

By choosing NL+NB =N, the system (2.3) is square, and if it is nonsingular [46] it has a
unique solution.
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Figure 1: Solving (2.3) produces a good solution until ill-conditioning overwhelms the accuracy, preventing the
solution from reaching its polynomial limit. If we could stably solve the system, we should find the ”True Gauss
Solution” curve. Error is computed at 200 evenly spaced points in the domain.

Theoretically, there is nothing requiring the kernel centers to be the same as the col-
location points. We will consider no such instances here, although such material is pre-
sented for interpolation in [15] and PDEs [12, 48] suggesting that this may improve the
error near the boundary. By choosing the kernel centers to match the collocation points,
we trivially satisfy NL+NB=N and must solve a square linear system to find a1,··· ,aN .

To demonstrate their notoriously ill-conditioned behavior, we will consider Gaussian
kernels

K(x,z)=exp(−ε2‖x−z‖2) (2.4)

for the collocation solution. The value ε is the shape parameter, so-called because for large
ε the Gaussians become very peaked, and for small ε the Gaussians become very flat. A
well-chosen ε can allow for very accurate solutions (even more accurate than polynomials
in some cases) whereas a poorly chosen ε may provide little or no accuracy. See Fig. 1 for
a demonstration of the effect ε can have on accuracy.

Fig. 1 was generated by solving the boundary value problem

uxx(x)=
−sinh(x)

(1+cosh(x))2
, x∈ (−1,1), (2.5a)

u(x)=
sinh(x)

1+cosh(x)
, x∈{−1,1}, (2.5b)

with N=16 collocation points located at the Chebyshev nodes

xk =cos
(

π
(k−1)

N−1

)

, 1≤ k≤N.



574 M. McCourt / Adv. Appl. Math. Mech., 5 (2013), pp. 569-594

Phrased in terms of the general BVP language from earlier, this problem has components

L=
d2

dx2
, f (x)=

−sinh(x)

(1+cosh(x))2
,

B=I , g(x)=
sinh(x)

1+cosh(x)
,

where I is the identity operator, Iu=u. The solution named ”Direct Gauss Collocation”
was computed by solving the system (2.3) using (2.4). The poor behavior as ε → 0 is a
result of the ill-conditioning in the collocation matrix: for ε= 1 the condition number is
O(1013), even though the matrix is only size N=16.

It has been proven [16] that this ill-conditioning is a symptom only of the choice
of basis, and not fundamental to the approximation problem. For interpolation prob-
lems we have seen that the limit of Gaussian as ε → 0 is well-defined, and is in fact
equal to the polynomial interpolant [11]. We therefore expect that, in the absence of
ill-conditioning, the Gaussian collocation solution would approach the ”Polynomial Col-
location” result; this polynomial solution was computed using the differentiation matrix
approach from [50]. The ”True Gauss Solution” displayed above shows this desired be-
havior; we will now explain how this solution is computed without the ill-conditioning
inherent in solving (2.3).

2.2 Collocation using the stable basis

We need to replace the kernel K(x,z)=e−ε2|x−z|2 with its truncated eigenfunction expan-
sion

e−ε2|x−z|2 =
M

∑
k=1

λk ϕk(x)ϕk(z),

where λk and ϕk are

λk =

√

α2

α2+δ2+ε2

(

ε2

α2+δ2+ε2

)k−1

, (2.6a)

ϕk(x)=γke−δ2x2
Hk−1(βαx), (2.6b)

with Hk−1 the degree k−1 Hermite polynomial. The value α is the global scale parameter
as defined in [11], and the auxiliary parameters

β=
(

1+
(2ε

α

)2) 1
4
, γk=

√

β

2k−1Γ(k)
, δ2=

α2

2
(β2−1),

are defined in terms of ε and α. The truncation value is assumed to satisfy M > N, al-
though this assumption will be reconsidered later. The value M is chosen large enough
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to satisfy a bound on the ratio λM/λN ; this choice is described in [11], and will not be
discussed here. Regardless of the value of M, the eigenfunction series will be the optimal
M-term approximation to the Gaussian in the L2(R,ρ) sense, where

ρ(x)=
α√
π

e−α2x2

is a weight function which localizes the L2 inner product [43].
In matrix form, this M-term series expansion can be written as

e−ε2|x−z|2 =
(

ϕ1(x) ··· ϕM(x)
)







λ1

. . .

λM













ϕ1(z)
...

ϕM(z)






.

Substituting this into the matrix from (2.3), and noting that the operators L and B apply
to the first kernel argument, converts that matrix to





















Lϕ1(x1) ··· LϕM(x1)
...

Lϕ1(xNL) ··· LϕM(xNL)
Bϕ1(xNL+1) ··· BϕM(xNL+1)

...
Bϕ1(xNL+NB ) ··· BϕM(xNL+NB )



























λ1

. . .

λM













ϕ1(x1) ··· ϕ1(xN)
...

ϕM(x1) ··· ϕM(xN)






. (2.7)

This allows (2.3) to be written in block form as

(

LΦL,1 LΦL,2

BΦB,1 BΦB,2

)(

Λ1

Λ2

)

(

ΦT
L,1 ΦT

B,1

ΦT
L,2 ΦT

B,2

)

a=

(

fL
gB

)

, (2.8)

where

(ΦL,1)j,k = ϕk(xj), for 1≤ k≤N, xj ∈Ω,

(ΦL,2)j,k = ϕk(xj), for N+1≤ k≤M, xj ∈Ω,

(ΦB,1)j,k = ϕk(xj), for 1≤ k≤N, xj ∈∂Ω,

(ΦB,2)j,k = ϕk(xj), for N+1≤ k≤M, xj ∈∂Ω,

(Λ1)k,k =λk, for 1≤ k≤N,

(Λ2)k,k =λk+N , for 1≤ k≤M−N,

( fL)j = f (xj), for xj ∈Ω,

(gB)j= g(xj), for xj ∈∂Ω.

For terms such as LΦL,1 which appear in (2.8), the operator passes through naturally
using the matrix definitions above: (LΦL,1)j,k =Lϕk(xj).
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As discussed in [18], the ill-conditioning in this system exists primarily in the diago-
nal matrix containing Λ1 and Λ2. The RBF-QR approach to alleviating this ill-conditioning
is described in [39] and converts the symmetric positive definite system (2.8) to the un-
symmetric (but still nonsingular) system

(

LΦL,1 LΦL,2

BΦB,1 BΦB,2

)

(

IN

Λ2(ΦT
L,2 Φ

T
B,2)(Φ

T
L,1 Φ

T
B,1)

−1Λ−1
1

)

â=

(

fL
gB

)

. (2.9)

The Λ2 and Λ−1
1 terms can be applied simultaneously, preventing overflow or underflow

issues. Because the Λ2 terms are exponentially smaller than the Λ1 terms (refer to (2.6a))
there are no fears about this new formulation undergoing dangerous growth. The term
(ΦT

L,2Φ
T
B,2)(Φ

T
L,1Φ

T
B,1)

−1 is generally computed using the QR factorization (thus the name
RBF-QR) to avoid mixing different orders of the eigenfunctions during the decomposi-
tion. We will refer to this eigenfunction approach, joint with RBF-QR, as GaussQR.

The new coefficients â can be related to the standard Gaussian basis coefficients a by

Λ1(Φ
T
L,1 Φ

T
B,1)a= â,

but computing a is not recommended; the Λ1 matrix is severely ill-conditioned because
of the exponentially decreasing eigenvalues. Because of this, we solve for and evaluate
the interpolant only in terms of the stable basis {ψk}N

k=1:

u(x)=ψ(x)T â=
(

ψ1(x)···ψN(x)
)

â

=
(

ϕ1(x)···ϕM(x)
)

(

IN

Λ2(ΦT
L,2 Φ

T
B,2)(Φ

T
L,1 Φ

T
B,1)

−1Λ−1
1

)

â. (2.10)

By applying the specific BVP operators and functions described above, solving the sys-
tem (2.9), and evaluating the solution with (2.10), we can generate the ”True Gauss So-
lution” curve presented in Fig. 1. That solution matches the standard basis solution for
larger values of ε, and achieves the expected polynomial limit as ε→0. The global scale
parameter α was set to 1 for these experiments.

2.3 Low-rank series approximate collocation

In order to produce the stable collocation solution in Section 2.2, the eigenfunction series
must be chosen with M> N. As discussed in [11], it may be possible to choose M< N
when N is large or for ε≪ 1. This is especially important in higher dimensions, where
satisfying λM/λN < ǫmach for ǫmach ≈10−16 requires more eigenfunctions depending on
the dimension of the problem.

This shift to an early truncation point M<N has a significant change on the colloca-
tion problem, because it converts the full-rank system (2.8) into a rank M system. The
transition follows the same pattern as before, except using a low-rank approximation
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to the Gaussian. Starting from (2.7), and imposing the restriction M < N produces the
rank-M collocation system

(

LΦL
BΦB

)

Λ
(

ΦT
L ΦT

B
)

a=

(

fL
gB

)

.

We use similar block definitions as before, with

(ΦL)j,k = ϕk(xj), for 1≤ k≤M, xj ∈Ω,

(ΦB)j,k = ϕk(xj), for 1≤ k≤M, xj ∈∂Ω,

(Λ)k,k=λk, for 1≤ k≤M,

( fL)j = f (xj), for xj ∈Ω,

(gB)j= g(xj), for xj ∈∂Ω.

This system is still as ill-conditioned as the Λ matrix, so we redefine the system as

(

LΦL
BΦB

)

ã=

(

fL
gB

)

, (2.11)

with

Λ
(

ΦT
L ΦT

B
)

a= ã.

This allows us to avoid inverting Λ, as long as we work in the new basis {ϕk}M
k=1, which

is just the first M eigenfunctions.
Because (2.11) is a system of N equations in M < N unknowns, there is likely no

consistent solution. Instead, ã must be determined in a least squares sense. We have
named this low-rank solution method GaussQRr because a regression system is solved
instead of a square system. This method is tested on the BVP

uxx(x)=−9π2 sin(3πx)−π2cos(πx), x∈ (−1,1), (2.12a)

u(x)=sin(3πx)+cos(πx)+1, x∈{−1,1}, (2.12b)

using N = 80 collocation points. See Fig. 2 to compare this method to the other meth-
ods ”Polynomial Collocation” and ”Direct Gauss Collocation” which we have previously
used.

In Fig. 2(a), we can see again that the Gaussian collocation solution computed in the
Gaussian basis becomes ill-conditioned very quickly, preventing it from reaching its op-
timal accuracy. The GaussQRr method, performed here with M= 40, can find solutions
with many orders of magnitude more accuracy than any directly computed solution. The
”Polynomial Collocation” solution is displayed only for reference; because M<N, we no
longer expect the limit of the GaussQRr solution to match the degree N polynomial re-
sult. Additionally, we cannot trust solutions of GaussQRr for large values of ε because
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(a) Using GaussQRr, for some ε values, we can
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−1 −0.5 0 0.5 1
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

po
in

tw
is

e 
so

lu
tio

n 
er

ro
r

x

 

 
Polynomial collocation
GaussQRr (M=40,ε=1)

(b) As is often the case, the polynomial solution
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trasts with the evenly spread error for GaussQRr.

Figure 2: The GaussQRr method is an effective approach to solving the BVP (2.12a) for small ε. Parameter
values α=1 and M= .5N=40 were used for these experiments. Error is computed at 200 evenly spaced points
in the domain.

the eigenvalues (2.6b) decay less quickly and our truncation assumption becomes less
valid.

One of the positive outcomes of the GaussQRr solution is that the error is more evenly
distributed throughout the domain. Fig. 2 shows that the ε=1 GaussQRr pointwise error
at all x∈[−1,1] is roughly O(10−14), in contrast to the ”Polynomial collocation” pointwise
error which is significantly greater near the boundaries. The effect of point distribution
will not be discussed here as that is a much too complicated topic; studies on this in-
clude [15] for interpolation and [38, 45] for PDEs. We note only that the points chosen
here tend to be clustered near the boundary, as suggested in [50] for the polynomial col-
location technique.

2.4 A nonlinear time stepping example

Thus far we have presented only linear examples, but the Gaussian eigenfunction expan-
sion can also be exploited for nonlinear problems. When choosing M> N, this yields a
nonlinear system of N equations, and when M<N, this yields a nonlinear least squares
problem in M unknowns. We will consider an example using GaussQRr in this section.

The linear critical gradient equation [29] is a simplified model of the transport process
within a magnetic confinement reactor. It can be written in 1D as

ut−(κ(ux)ux)x = f , x∈ (−1,1), t>0, (2.13a)

u= g, x∈{−1,1}, (2.13b)

u=u0, t=0, (2.13c)
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where the diffusivity κ is a function of the derivative ux

κ(ux)=
µ

2τ
log(cosh(2τux)+cosh(2τC))−µC+

µ−2

2τ
log(2)+κ0−B.

The parameters appearing in the diffusivity κ determine the nonlinearity in the problem:

• µ–The steepness of the nonlinearity,

• τ–The severity of the change between constant and nonlinear diffusivity,

• C–For |ux|≪ zC the diffusivity is basically constant,

• κ0–The minimum diffusivity, and

• B–An integration constant to assure κ(0)=κ0.

All experiments here will use the parameter values

µ=10, τ=1, C= .5, κ0=1.

In a plasma physics setting, the source term f (x) = e−x would be used to cause a
pedestal to form at the magnetic separatrix. While this problem is useful for modeling
magnetic confinement fusion, it is less useful for studying the accuracy of the numerical
scheme because there is no analytic solution for that source. Instead, we will a solution
which has a pedestal-like shape,

u(x,t)=erf(4(1−e−t)x)+1,

which also defines the functions

g(x,t)=erf(4(1−e−t)x)+1, u0(x)=1.

For the GaussQRr approximation, we will require our solution to take the form

û(x,t)=
M

∑
k=1

ak(t)ϕk(x)=(ϕ1(x)···ϕM(x))







a1(t)
...

aM(t)






=φ(x)Ta(t).

We choose N−2 collocation points are on the interior, and require xN−1=−1 and xN =1
to satisfy the boundary conditions. This can now be substituted back into (2.13a) to yield
the system of nonlinear ODEs

φ(xj)
Tat(t)−φxx(xj)

Ta(t)
[

κ′
(

φx(xj)
Ta(t)

)

φx(xj)
Ta(t)+κ

(

φx(xj)
Ta(t)

)]

= f (xj,t),

for 1≤ j≤ N−2. At this point, we are no longer writing the problem in its conservative
form; this is hardly a problem though, since by using Gaussians we have already as-
sumed that the solution is in the Gaussian native space, and thus has enough smoothness
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to justify the second derivative. Adding in the 2 equations from the boundary conditions
(2.13c),

φ(xj)
Ta(t)−g(xj,t)=0,

for j=N−1,N gives a system of N differential algebraic equations.
We choose here to discretize in time using the backwards Euler formula, although

this choice is made more for simplicity than for any computational benefit. This leaves
us with the nonlinear system of equations

φ(xj)
T
[an−an−1

∆t

]

−φxx(xj)
Tan

[

κ′
(

φx(xj)
Tan

)

φx(xj)
Tan

+κ
(

φx(xj)
Tan

)]

− f (xj,tn)=0, (2.14a)

φ(xj)
Tan−g(xj,t)=0, (2.14b)

where, at each time step tn, the solution is an. The initial condition a0 is computed by
solving the GaussQRr approximation problem







φ(x1)
T

...
φ(xN)

T






a0=







u0(x1,0)
...

u0(xN ,0)






.

At each time step tk we need to solve a nonlinear least squares problem with N equations
and M unknowns, the a(tk). For the initial guess at each time step, we solve the system
(2.14b) with κ ≡ 1, which reduces the problem to a linear least squares system. Error
results are displayed in Fig. 3.

These experiments confirm that, at least for this example, the separation of spatial
and temporal discretizations is appropriate. This so-called method of lines approach
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Figure 3: The error in the time stepping is bounded either by the O(∆t) error of the Euler discretization, or the
GaussQRr accuracy. When the solution levels off the collocation error has become the dominant term. For all
experiments, GaussQRr used the parameters M= .5N, ε=10−2, α=1. Collocation points are evenly spaced in
the domain, and the error is computed at the collocation points at t= .5.
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has not affected the accuracy of the backward Euler method, which converges with its
standard order O(∆t). The convergence terminates when the error introduced by the
spatial discretization dominates, which occurs for increasingly accurate solutions as N is
increased. Moreover, the GaussQRr solver appears to maintain its spectral convergence,
subject to the accuracy bound imposed by the time stepping. Obviously, we have only
tested it here for relatively small N, so further study will be needed for more complicated
time dependent problems. It will also be useful to consider problems involving M> N,
where the GaussQR collocation technique results in square nonlinear systems at each
time step.

2.5 Solving problems with a differentiation matrix

The examples up until now have only solved problems in one spatial dimension, but
with only minor notational corrections these techniques are valid in arbitrary dimensions.
Various technical considerations for moving to higher dimensions are discussed in [11].
In this paper, the only significant change is the change in the definition of eigenfunctions
from their 1D form to their tensor product form. This means that the kernel in R

d would
now take the form

e−ε2‖x−z‖2
=

M

∑
k=1

λmk
ϕmk

(x)ϕmk
(z),

where x, z are d dimensional vectors and mk is a d-term multiindex stating the order of the
eigenfunctions in each dimension. The R

d eigenfunctions and eigenvalues are defined as

ϕmk
(x)=

d

∏
j=1

ϕ(mk)j
((x)j).

Given this small change in notation, all the previous definitions carry over naturally
to higher dimensions; examples using this solution approach will be discussed in Sec-
tion 3. This flexibility in higher dimensions is one of the great benefits of working with
meshfree kernel-based methods, but it does not necessarily mean that this is the opti-
mal way of solving BVP in multiple spatial dimensions using Gaussian eigenfunctions.
When presented with a suitably simple domain, it may be computationally efficient to
choose points on a structured grid. This will allow for 1D differentiation matrices to be
combined to approximate higher dimensional differentiation matrices.

This idea was discussed in [50] for polynomial collocation, where it is especially use-
ful because polynomial interpolation in 1D is better defined than in higher dimensions.
In [10] this approach was extended to RBF-based collocation methods. The use of differ-
entiation matrices for GaussQR approximation was developed in [39].

Two representative structured grids in 2D are displayed in Fig. 4, although for this
paper we will consider only the Chebyshev tensor product grid in (x,y). These grids use
N2 points, with each ”strip” of points containing N points. We can take advantage of
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Figure 4: These 2D grids are actually structured copies of 1D grids. For any fixed x (or y) the distribution of
y (or x) points is identical.

the structure of these grids by noting that each vertical strip of points contains the same
ordering of y values with the x value constant; this allows the same differentiation matrix
to apply on each vertical strip. A similar statement can be made for each horizontal strip
of points.

Assume that we have a differentiation matrix D which applies the differential opera-
tor D to a vector of values evaluated at x1,··· ,xN . By ordering the function values u(x,y)
in the vector

uT =
(

u(x1,y1)···u(x1,yN)u(x2,y1)···u(x2,yN)······u(xN ,y1)···u(xN ,yN)
)

,

the differentiation matrix D can be applied in the x direction on the 2D grid with the
matrix vector product

(IN⊗D)u.

Here ⊗ represents the Kronecker tensor product [51]. We can obtain a similar result in
the y direction with the product

(D⊗IN)u.

If we were to construct a second derivative operator D on N 1D Chebyshev nodes, the
Laplacian on the N2 2D Chebyshev tensor grid would take the form

IN⊗D+D⊗IN .

By replacing rows associated with boundary values of (x,y) with the associated bound-
ary operator, we may solve boundary value problems with this differentiation matrix
approach. As an example, we solve the Helmholtz problem

∇2u(x,y)+ν2u(x,y)= f (x,y), −1< x<1, −1<y<1, (2.15a)

u(x,y)= g(x,y), |x|=1∪|y|=1, (2.15b)

using ν=7. The true solution is chosen to be u(x,y)= J0(6
√

x2+y2), which necessitates
that f (x,y) = 13J0(6

√

x2+y2). Results are compared with N = 20 between tensor grid
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Figure 5: Polynomial (Trefethen), direct Gaussian (Fasshauer) and GaussQR differentiation matrices are tested
for solving (2.15a). As was true for the 1D problems, the standard Gaussian collocation method fails in 2D for
small ε, while the GaussQR method allows the solution to reach its ε→0 polynomial limit. N2=400 collocation
points are placed in the domain. For GaussQR, α=1 was used. The error is computed at the collocation points.

differentiation matrix solutions computed using polynomials (labeled ”Trefethen”), the
standard Gaussian basis (labeled ”Fasshauer”) and the stable basis (labeled ”GaussQR”).
The error is plotted as a function of the shape parameter in Fig. 5.

We can see here that, by using the Kronecker product on tensor style grids in multiple
space dimensions, we can effectively implement the GaussQR method for BVP without
being required to use GaussQRr, as was necessary for the interpolation examples in [11].
The ill-conditioning which would otherwise prevent this solution technique from its op-
timal accuracy is no longer a problem, and the computational cost is comparable to the
polynomial collocation method. Because the differentiation matrix is only of size N, but
the BVP linear system is of size N2, there is significantly less cost in using RBF-QR to
compute the differentiation matrix than in solving the full system.

3 The method of particular solutions using Gaussian

eigenfunctions

When solving boundary value problems, it is often advantageous to transfer the problem
to the boundary; the boundary is of lower dimension and requires less work to discretize,
and irregularly shaped domains are less of a problem. The actual mechanism by which
this is done can take multiple forms. Boundary element methods [23] (also called bound-
ary integral methods [3,37]) involve solving a related integral equation on the boundary,
rather than a PDE on the domain.

Another approach, called the method of particular solutions (MPS), finds a function
which satisfies the interior condition and then solves a simpler approximation problem
only on the boundary. The solution on the interior is often called a particular solution,
and it can be used in conjunction with the boundary element method to form the dual
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reciprocity method [41]. This section will consider the applicability of the Gaussian eigen-
function expansion, and their associated stability for small ε, in finding particular solu-
tions to boundary value problems.

3.1 The method of fundamental solutions

The method of fundamental solutions (MFS) is a powerful technique for solving homoge-
neous problems (i.e., with f (x)=0) with a linear operator L whose fundamental solution
G(x,z) is known. Its development is detailed in [8,22]. We will briefly cover some of that
material here.

Essentially, MFS converts a boundary value problem to an interpolation problem. We
assume that the problem of interest fits the form

Lu(x)=0, x∈Ω, (3.1a)

Bu(x)= g, x∈∂Ω. (3.1b)

The fundamental solution is a kernel which satisfies

LG(x,z)=δ(x,z),

where δ(x,z) is the Dirac delta function. We know that LG(x,z) = 0 for x ∈ Ω if z 6∈ Ω,
because δ(x,z)=0 for x 6=z. The assumption is therefore made that the solution u is of the
form

u(x)=
N

∑
k=1

akG(x,zk), (3.2)

where the N kernel centers {zk}N
k=1 are placed outside Ω∪∂Ω.

Automatically, the condition (3.1a) is satisfied, meaning the coefficients {ak}N
k=1 must

be determined by satisfying (3.1b). This is often accomplished by choosing N collocation
points {xk}N

k=1 on the boundary, and then solving the linear system







BG(x1,z1) ··· BG(x1,zN)
...

BG(xN ,z1) ··· BG(xN ,zN)













a1
...

aN






=







g(x1)
...

g(xN)






.

It should be noted that the choice of N source terms is not required; often it is preferable
to choose many fewer source terms than collocation points and solve an overdetermined
system. Furthermore, the actual choice of source locations is sometimes also considered
a variable in the problem. For simplicity, we will only study problems with a fixed set of
N sources.

In the simplest case, when B = I (the Dirichlet boundary condition case), this is
a kernel-based interpolation problem, using the basis {G(·,zk)}N

k=1. More complicated
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Figure 6: For the Laplace BVP, with Dirichlet boundary conditions, the MFS is vastly superior to finite differ-
ences, and even outperforms GaussQRr significantly.

boundary conditions are handled just as easily, and greater accuracy is expected than
with a collocation method because of the absence of L. Since L is a differential operator
of higher degree than B, more accuracy is lost when approximating it [52], making any
solution involving both operators lower order than a solution involving only B.

To demonstrate the impressive potential of the MFS, we apply it to the BVP

∇2u(x,y)=0, 0≤ x≤1, 0≤y≤π/2,

u(x,y)=ex cos(y), x=0∪x=1∪y=0∪y=π/2.

For comparison, we also solve this problem with the GaussQRr technique derived in
Section 2.3, and a fourth order finite difference (FD) scheme [28]. The N MFS collocation
points were chosen equally spaced on the boundary, and the source centers were equally
spaced on the circle with radius 2 and center x= .5, y=π/4. The GaussQRr solution used
parameters M= .8N, ε=10−8 and α=1, and placed half its collocation points on the 2D
tensor product Chebyshev nodes and half on the Halton points [24]. This choice of points
allows scattered data throughout the interior of the domain, and well-structured points
on the boundary. The results are displayed in Fig. 6.

It is clear that both the MFS and GaussQRr solutions are converging exponentially
quickly, in contrast to the FD solution which is converging at its expected algebraic order.
The MFS solution is much more accurate than the GaussQRr solution for fewer points.
Part of this is the fact that GaussQRr places points on the interior and the boundary, and
MFS only places points on the boundary because (3.1a) is satisfied analytically. Another
factor contributing to the slightly worse behavior of GaussQRr is the presence of L in
the system, requiring higher order derivatives which are approximated with less accu-
racy. These factors combined suggest that for sufficiently simple problems, the method
of fundamental solutions is still the king.

3.2 Finding particular solutions with GaussQRr

It is unsurprising that the method of fundamental solutions is more efficient than
GaussQRr collocation, because it has the advantage of considering a solution only on
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the boundary. Unfortunately, the method of fundamental solutions is only applicable on
homogeneous problems. To counteract this shortcoming, the method of particular so-
lutions (MPS) was developed to allow for an inhomogeneous differential equation [40].
Recently, the method of particular solutions has been reconsidered and improved for
solving eigenvalue problems on polygonal domains [4]; here we will only consider MPS
for boundary value problems.

In the MPS setting, the general BVP will take the general form

Lu(x)= f (x), x∈Ω,

Bu(x)= g(x), x∈∂Ω,

as was the case in Section 2; we will assume, as we did in Section 3.1 that the operator
L has the Green’s function G(x,z). For the MFS setting, f ≡0, meaning that the solution

could be built with the basis {G(x,zk)}NF
k=1, but now that f 6= 0, we assume the solution

takes the form

u(x)=uF(x)+uP(x).

The two components now solve different problems:

• uP(x) solves the ill-posed BVP LuP(x) = f (x). If collocation with the basis

{K(x,zk)}NP
k=1 is used to solve this problem, this can be thought of as an approximation

problem on the interior, using the basis {LK(x,zk)}NP

k=1.

• uF(x) requires the particular solution, and solves the BVP

LuF(x)=0, x∈Ω,

BuF(x)= g(x)−BuP(x), x∈∂Ω,

using MFS. This too is an approximation problem, only on the boundary, using the basis

{G(x,zk)}NF

k=1.

Because of the generally exceptional performance of the method of fundamental so-
lutions, the main source of error for MPS is the approximation of the particular solution.
This is a problem which may be remedied somewhat by the use of GaussQRr to find
a particular solution, because one major source of error (the ill-conditioning for many
values of ε) can be countered effectively. If we approximate the particular solution with
Gaussian eigenfunctions,

uP(x)=
M

∑
k=1

bk ϕmk
(x),

we can find the coefficients {bk}M
k=1 by choosing NP points {xk}NP

k=1 ∈Ω and solving the
approximation problem







Lϕm1
(x1) ··· LϕmM(x1)

...
Lϕm1(xNP

) ··· LϕmM(xNP
)













b1
...

bM






=







f (x1)
...

f (xNP
)






. (3.3)
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We can then determine the fundamental solution (of the form (3.2)) by choosing NF col-

location points {x̂k}NF

k=1 ∈ ∂Ω, NF source points {zk}NF

k=1 6∈Ω∪∂Ω, and solving the linear
system







BG(x̂1,z1) ··· BG(x̂1,zNF
)

...
BG(x̂NF

,z1) ··· BG(x̂NF
,zNF

)













a1
...

aNF







=







g(x̂1)
...

g(x̂NF
)






−







Bϕm1(x̂1) ··· BϕmM(x̂1)
...

Bϕm1(x̂NF
) ··· BϕmM(x̂NF

)













b1
...

bM






(3.4)

given the previously determined {bk}M
k=1.

To demonstrate the viability of this method, we will demonstrate it on the modified
Helmholtz problem

∇2u(x,y)−ν2u(x,y)= f (x,y), −1< x<1, −1<y<1, (3.5a)

u(x,y)= g(x,y), |x|=1∪|y|=1, (3.5b)

using ν= 3 and true solution u(x,y) = ex+y. The fundamental solution for the operator
L=∇2−ν2I in R

2 is

G(x,z)=
1

2π
K0(ν‖x−z‖),

where K0 is the modified Bessel function of the second kind of order 0. For this example,
we will use ν=3, and compare the solution using GaussQRr approximate collocation to
MPS using a GaussQRr generated particular solution.

The MPS solution will use NF uniformly distributed points on the boundary for the
MFS component, and NP ≈NF Halton points on the interior for the GaussQRr particular
solution. Source points will be placed quasi-uniformly at a distance ∼1/ν2 orthogonally
away from the boundary. The GaussQRr collocation solution will use the same NP points
on the interior, and NB≈.25NF points uniformly on the boundary. GaussQRr, for both the
particular solution approximation and the collocation, will use the parameters M= .5NP,
ε=10−5 and α=1. For both methods, the error will be computed at 352 points uniformly
distributed throughout the domain. The results are displayed in Fig. 7.

As we can see here, for NB<140 MPS is at least 10 times more accurate than GaussQRr,
although the collocation technique does catch up soon after. Because NB≈.25NF, NP≈NF,
and M= .5NP, both methods have about the same cost:

• MPS has two costs: O(4/3NP(.5NP)
2) for the least squares solve of the particular

solution, and O(1/3N3
F). This total cost is roughly O(1/3(N3

P+N3
F)), or O(2/3N3

P).

• GaussQRr collocation requires a least squares solve of a system with NP+NB rows and M
columns. The cost of this is O(4/3(NP+.25NF)(.5NP)

2) which is roughly O(5/12N3
P).

This suggests that Gaussian eigenfunctions can be used to effectively approximate par-
ticular solutions, at least for problem as relatively simple as the one we have considered.
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Figure 7: For the problem (3.5a), MPS using GaussQRr particular solution can be more effective than GaussQRr
collocation. The x-axis is meant to represent the cost of the solve, because the cost in both settings is dominated
by the interior solution.

3.3 Incorporating collocation into the method of particular solutions

It was discussed in [52] that the accuracy of derivatives computed with an RBF inter-
polant are of a lower order than the interpolant itself; roughly one order of accuracy is
lost per derivative taken. This was observed for GaussQRr approximations in [39], and
suggests that approximations generated with the basis {Lϕmk

}M
k=1 will be less accurate

that those generated with the eigenfunction basis. Because of this, more complicated
problems which require more accurate particular solutions may find MPS ineffective.

Collocation remains a viable option here, but it would be shameful to ignore the exis-
tence of the Green’s functions given the excellent behavior of the method of fundamen-
tal solutions on homogeneous problems. Fortunately, it is not necessary to discard the
MPS framework, because we can compute particular solutions using collocation. By in-
corporating boundary conditions into our particular solution, terms involving Bϕmk

are
included in the linear system, which benefits the accuracy because B is of lower order
than L.

This method will differ slightly from the MPS described in Section 3.2.

• uP(x) solves the BVP

LuP(x)= f (x), x∈Ω,

BuP(x)= g(x), x∈∂Ω,

using {xk}NP

k=1∈Ω to handle the PDE and {x̂k}NB

k=1∈∂Ω to handle the BC.

• uF(x) requires the particular solution, and solves the BVP

LuF(x)=0, x∈Ω,

BuF(x)= g(x)−BuP(x), x∈∂Ω,

using MFS. This is still an approximation problem on the boundary using the basis

{G(x,zk)}NF

k=1 and the collocation points {x̃k
NF

k=1}∈∂Ω.



M. McCourt / Adv. Appl. Math. Mech., 5 (2013), pp. 569-594 589

The difference with the earlier MPS is that the points x̃k must be chosen differently than
the points x̂k, i.e., x̃k 6= x̂j for 1≤k≤NF and 1≤ j≤NB . If the boundary points were chosen
the same for both the collocation and MFS, then the MFS would be tricked into believing
g(x)−uP(x)=0 everywhere because the collocation would have already satisfied g(x̂)=
uP(x̂).

To test this method, we’ll consider a more difficult problem than our previous MPS
test. The BVP will now have mixed boundary conditions

∇2u(x,y)−ν2u(x,y)= f (x,y), (x,y)∈Ω, (3.6a)

u(x,y)= gD(x,y), (x,y)∈ΓD , (3.6b)

∂

∂n
u(x,y)= gN(x,y), (x,y)∈ΓN , (3.6c)

on the L-shaped geometry

Ω=
{

x∈ (−1,1),y∈ (−1,1)| x<0∪y<0
}

,

ΓD =
{

x∈ [−1,1],y∈ [−1,1]| x=−1∪(x=0∩y>0)∪(x>0∩y=0)
}

,

ΓN =
{

x∈ [−1,1],y∈ [−1,1]| y=−1
}

.

The setup of the problem, and the solution results are found in Fig. 8.

Fig. 8(a) explains the distribution of collocation and source points chosen for the var-
ious solution methods. Three solution techniques are compared in Fig. 8(b): ”MPS” uses
GaussQRr interpolation on the interior to generate particular solutions and MFS to en-
force the boundary; ”GaussQRr” uses GaussQRr collocation from Section 2.3 to solve
the full boundary value problem; ”MPS+GaussQRr” uses the GaussQRr collocation so-
lution as the particular solution and the MFS to enforce for the boundary terms. The
”MPS+GaussQRr” solution is the most effective, and perhaps most noteworthy is that
the quality of the particular solution is so much more accurate after incorporating only a
small number of boundary terms. It can safely be assumed that the improvement comes
in the particular solution because that is the only difference between the ”MPS” and
”MPS+GaussQRr” curves.

In some sense, by computing the particular solutions with collocation, we have now
shifted the burden of the solution from primarily on the boundary to primarily on the
interior. For the traditional MPS, the particular solution is not unique, and the actual
solution itself is governed by the MFS component. In this slightly different setting, the
solution is first computed with collocation, and then MFS is used as a refinement tech-
nique to more effectively incorporate the boundary. Research is needed to determine if
the MFS refinement could have a detrimental effect on the final solution, but in this one
example, it only helps.

The choice of boundary points seems especially relevant for this setup. Because the
GaussQRr method is performing approximate collocation (because M < NP+NB), it is
unlikely that g(x̂k)=uP(x̂k) and therefore even more unlikely that g(x̃k)=uP(x̃k). Even
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earlier example. The introduction of a small
number of boundary terms to the particular so-
lution allows for the ”MPS+GaussQRr” solution
to converge much better than the ”MPS”, and
even better than ”GaussQRr”.

Figure 8: We have chosen the true solution u(x,y)=sin(x2+y), and modified Helmholtz parameter ν=3. For
this example, the refinement step of performing MFS on the GaussQRr collocation solution provides as much
as an extra order of accuracy. GaussQRr techniques used the parameters M= .5NP, ε=10−6 and α=1.

so, if the MFS is tricked into thinking that the particular solution is doing a very good job,
when in fact it is only doing a good job on a select set of points, then the MFS will not be
improving the solution as much as it could. No specific actions were taken here to ensure
that the GaussQRr collocation and MFS shared no boundary points, although Fig. 8(a)
suggests that at least some of the points did not overlap. In the future, it may be possible

to fix the source points {zk}NS

k=1 and adaptively choose the MFS points {x̃k}NF

k=1 to account
for the locations which collocation least accurately solved by solving an overdetermined
system.

4 Conclusions and future work

We have presented methods, based on the GaussQR interpolation scheme, for solving
boundary value problems. Collocation techniques, drawn from standard kernel-based
collocation, proved useful for overcoming the traditional ill-conditioning associated with
the flat RBF limit. The GaussQRr interpolation technique was also considered as a
method for generating particular solutions within the Method of Particular Solutions.
GaussQRr collocation proved even more useful for generating particular solutions, al-
lowing for an accurate solution with a reasonable amount of work.

Looking ahead, we are interested in determining, for the collocation setting, the ef-
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fect of adding a polynomial basis on the optimal ε value for the solution. In Section 2.1
we introduced the idea, but dropped it to focus on the GaussQR replacement of direct
Gaussian collocation. Given that the ε→0 limit produces polynomials, it is not necessary
to include a polynomial term in the approximation to reproduce a truly polynomial so-
lution. Even so, if a polynomial term were present, it might change the optimal ε curve,
and potentially also the optimal error that can be achieved.

The same uncertainties which stymie the GaussQR technique in the interpolation set-
ting are present in the solution of boundary value problems. Specifically, the free param-
eters ε, α and M need to be chosen correctly to take advantage of the potentially optimal
accuracy available to kernel methods. Thus far, this work serves only as a proof of con-
cept, and significant research will need to be done to provide good parameter values for
general applications. Possible avenues for making informed parameter choices include
extending existing statistical methods for determining ε (such as cross-validation and
maximum likelihood estimation) to include α and M. It may also be possible to study the
parameter choices as N increases, and to run many experiments for smaller N to make a
smarter decision for larger N.

Computational cost is also of great significance to any practical application, and much
work needs to be done to make these methods useful in a high performance environment.
The presence of dense matrices, as is often the case in kernel-based methods, is magni-
fied by the need to perform a QR factorization for both GaussQR and GaussQRr. This
is mitigated somewhat in the tensor grid setting discussed in Section 2.5, but for those
sparse systems, appropriate iterative solvers [6] and preconditioning schemes need to
be developed. Work has been done for general RBFs to incorporate tree-code [32] and
FMM methods to allow for faster kernel evaluations, and it is likely that applying these
methods to the GaussQR framework will improve the computational prospects.
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