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Abstract

We consider the numerical solution of the free boundary Bernoulli problem by em-

ploying level set formulations. Using a perturbation technique, we derive a second order

method that leads to a fast iteration solver. The iteration procedure is adapted in order to

work in the case of topology changes. Various numerical experiments confirm the efficiency

of the derived numerical method.
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1. Introduction

The Bernoulli problem stands for a prototype of a large class of stationary free boundary

problems involved in fluid dynamics and electromagnetic shaping (see [5, 6, 8] and the references

therein). This problem roughly consists in a Laplace equation with an additional boundary

condition that enables determining the solution of the equation as well as the unknown domain.

In order to obtain a reliable numerical approximation for this problem, a wide variety of

works have been produced. For instance, in Flucher and Rumpf [7], some numerical schemes

based on a local parametrization are developed. The authors prove in this work convergence

results and present some numerical examples. Nevertheless, due to the local parametrization,

the constructed methods cannot handle topological changes. In [3], we propose an extension of

the Flucher-Rumpf technique introducing a level set formulation to characterize the free bound-

ary. This approach enjoys the property of allowing topology changes as level sets generally do.

However, the scheme developed in [3] has the drawback to slowly converge and produces some

local oscillation of the computed boundary when the numerical solution approaches the steady

state. This drawback is removed in [11] where the authors consider an integral formulation of

the Bernoulli problem and where the level set equation is solved via the Fast Marching strategy.

The integral representation is however specific to partial differential equations for which this is

available.
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In order to improve the solver performances, we propose in this paper a second-order scheme

that can be viewed as a Newton-like method. The method is based on a perturbation of the

parametrization of the initial guess of the free boundary. It has, as will be shown, the advantage

of accelerating the convergence to the steady state solution, but as high-order methods require

additional regularity properties, the presented method fails to converge when a topology change

occurs during the iteration process. We then resort to switching to the first-order method while

a domain splits up or two subdomains collapse. Numerical experiments show that convergence

properties are dramatically improved when compared to the algorithm developed in [3].

The outline of the paper is as follows: In Section 2, we present a perturbation method

to derive a second-order formulation. Section 3 is devoted to the derivation of a numerical

scheme based on level sets and inspired by this perturbation technique. Section 4 presents

some numerical results for both a radial case for which the analytical solution is known and a

case with changing topology. Finally, a conclusion is drawn.

Let us mention that only the interior Bernoulli problem (see [3] for instance) is considered in

the present study. An analog analysis of the exterior problem can be deduced straightforwardly.

2. The Perturbed Problem

Let Ω be a bounded domain of R
2 with a C2-boundary ∂Ω. We seek a (not necessarily

connected) domain A with Ā ⊂ Ω and a function u defined on Ω \ A such that:

∆u = 0 in Ω \ Ā, (2.1)

u = 0 on ∂Ω, (2.2)

u = 1 on ∂A, (2.3)

∂u

∂n
= λ on ∂A, (2.4)

where λ is a positive real number and n is the unit normal to the boundary ∂(Ω \ Ā) of Ω \ Ā

pointing inward A.

We propose, in this section, an alternative to the result obtained in by Flucher and Rumpf

(see [7], Theorem 2).

Proposition 2.1. Let ∂Ã = ∂A + ρn be a set close to A (in the sense that ρ ≪ 1). Then the

function u — extended to Ω \ Ã if necessary — is solution to the following problem:

∆u = 0 in Ω \ ¯̃A, (2.5)

u = 0 on ∂Ω, (2.6)

∂u

∂ñ
− κ̃u = λ − κ̃ + O(ρ2) on ∂Ã, (2.7)

where κ̃ is the curvature of ∂Ã.

To prove this result, we first need to consider some preliminary results.

2.1. Some technical results

Let γ : [0, L] → R
2 denote a parametric representation of the curve ∂A. We choose the

parametrization such that the unit normal vector n to ∂A points inward A. The tangent vector
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Fig. 2.1. Geometry of the domain.

t is chosen according to Fig. 2.1. We recall that if κ = κ(s) is the curvature of ∂A at γ(s), then

we have the Serret-Frénet formulae:

dγ

ds
= t,

dt

ds
= κ n,

dn

ds
= −κ t.

To describe the perturbed boundary ∂Ã by the parametric function γ̃(s) on [0, L], we assume

that there exists a smooth function ρ defined on [0, L] such that

γ̃(s) = γ(s) + ρ(s)n(s) 0 ≤ s < L. (2.8)

We assume furthermore that

dρ

ds
= O(ρ), (2.9)

κ̃ = κ + O(ρ), (2.10)

which means that highly oscillating boundary perturbations are excluded. Let us prove a useful

technical result.

Lemma 2.1. We have the following identities:

t̃ =
1

D

(

(1 − ρκ) t +
dρ

ds
n
)

,

ñ =
1

D

(

(1 − ρκ)n −
dρ

ds
t
)

,

with

D =
(

(1 − ρ κ)2 +
(dρ

ds

)2
)

1

2

.

Proof. The first identity is obtained by differentiation of (2.8) and normalization. The

second identity is easily deduced from the first one.

Lemma 2.2. Let u be a smooth function defined on A and satisfying Eqs. (2.1)-(2.4). Then

we have

nT H(u)n = κ
∂u

∂n
,

where H(u) is the Hessian matrix of u.
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Proof. From equation (2.3), we have u(γ(s)) = 1. By differentiating, we obtain

∇u(γ(s)) · t(s) = 0.

A second differentiation implies

tT H(u(γ(s))) t + κ(s)∇u(γ(s)) · n(s) = 0.

From the identity

∆u = tT H(u) t + nT H(u)n = 0,

we get

−nT H(u)n + κ(s)∇u(γ(s)) · n(s) = 0.

2.2. Proof of Proposition 2.1

For the sake of simplicity, we omit to mention the variable s.

Lemma 2.3. Let u denote a solution of problem (2.1)-(2.4), admitting a harmonic extension

in a neighborhood of ∂A. Then we have

∂u

∂ñ
= λ + ρ κ λ + O(ρ2) on ∂Ã. (2.11)

Proof. Using Lemma 2.1, we write

∂u

∂ñ
(γ̃) =

1

D
∇u(γ + ρ n) ·

(

(1 − ρ κ)n −
dρ

ds
t
)

. (2.12)

Differentiating (2.3) in the tangential direction, we get ∇u(γ) · t = 0, which gives thanks to the

Taylor expansion,

∇u(γ + ρ n) · t = O(ρ). (2.13)

Assumption (2.9) implies

D =
(

(1 − ρ κ)2 + (
dρ

ds
)2

)
1

2

=
(

1 − 2ρ κ + O(ρ2)
)

1

2

= 1 − ρ κ + O(ρ2), (2.14)

Furthermore, we have by using Lemma (2.2)

∂u

∂n
(γ + ρ n) =

∂u

∂n
(γ) + ρ nT H(u(γ))n + O(ρ2)

= (1 + ρκ)
∂u

∂n
(γ) + O(ρ2). (2.15)

Combining (2.13)-(2.15), and Assumption (2.9) again, (2.12) yields

∂u

∂ñ
(γ̃) =

(1 − ρ κ)

D

∂u

∂n
(γ + ρ n) + O(ρ2).
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We then obtain from Lemma 2.2, and Assumption (2.9)

∂u

∂ñ
(γ̃) =

1 − ρκ

1 − ρ κ + O(ρ2)

∂u

∂n
(γ)(1 + ρ κ) + O(ρ2)

= (1 + ρ κ)
∂u

∂n
(γ) + O(ρ2).

We conclude by using (2.4).

From Lemma 2.3 and Hypothesis (2.10), we deduce

∂u

∂ñ
(γ̃) = (1 + ρκ̃)λ + O(ρ2).

The Taylor expansion

u(γ̃) = u(γ) + ρ
∂u

∂n
(γ) + O(ρ2) = 1 + ρ λ + O(ρ2) (2.16)

yields then
∂u

∂ñ
(γ̃) = λ + (u(γ̃) − 1) κ̃ + O(ρ2).

Whence
∂u

∂ñ
(γ̃) − κ̃ u(γ̃) = λ − κ̃ + O(ρ2).

This completes the proof of Proposition 2.1.

Let us now use this material to derive an iterative process to solve problem (2.1)-(2.4): If

Ak is a known approximation of the set A, we compute uk solution of

∆uk = 0 in Ω \ Āk, (2.17)

uk = 0 on ∂Ω, (2.18)

∂uk

∂nk

− κkuk = λ − κk on ∂Ak, (2.19)

where nk, κk are respectively the inward unit normal to ∂Ak and the curvature of ∂Ak. We

aim at computing an approximation of ρ such that ∂A = ∂Ak + ρnk.

Let us set u′ = uk − u. Combining (2.5)-(2.7) with (2.17)-(2.19) shows that u′ is solution

of:
∆u′ = 0 in Ω \ Āk, (2.20)

u′ = 0 on ∂Ω, (2.21)

∂u′

∂nk

− κku′ = O(ρ2) on ∂Ak, (2.22)

which shows, at least in the case where κk ≥ 0, that u′ = O(ρ2) on Ω \ Āk, and then on ∂Ak.

Hence uk = u + O(ρ2). From (2.16), we have

ρ =
u(γ̃) − 1

λ
+ O(ρ2) =

uk(γ̃) − 1

λ
+ O(ρ2).

We deduce that the setting

Ak+1 := Ak − ρknk, (2.23)

with

ρk =
uk(γ̃) − 1

λ
(2.24)

gives a “good” approximation to A.

In the following section, we present the numerical algorithm in the context of level set

methods.
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3. Numerical Scheme

Let (A, u) be a smooth solution of the Bernoulli problem (A is C3 and u is C2, say). Our

aim is to build a sequence (Ak, uk)k of solutions of an approximate Bernoulli problem which

converges towards (A, u).

We first present the level set method, and then we derive from the previous analysis an

iterative scheme which converges provided that the initial guess is not too far from the solution.

Finally, we introduce what we will refer to as a mixed scheme.

3.1. The level set formulation

As we emphasized in the previous section, the scheme we have constructed is based on a

local description of Ak given by the function ρk. If a topology change occurs, such a formulation

breaks down and this motivates the introduction of the level set formulation to characterize

the free boundary. To obtain a level set formulation, we use the principle that the level set

description and the local description with ρk must coincide whenever this last one has a sense.

3.1.1. The level set definition

The level set formulation consists in characterizing the boundary of the domain Ak as the zero

level set of a function φk. More precisely, we seek a function φk such that

γk ={x ∈ Ω; φk(x) = 0},

Ak ={x ∈ Ω; φk(x) > 0},

Ω \ Āk ={x ∈ Ω; φk(x) < 0}.

Since we state that φk is positive inside Ak and negative outside, we get that the inward normal

vector on ∂Ak is given by

nk =
∇φk

|∇φk|
.

3.1.2. The level set equation

Let φk and φk+1 be two level set functions associated to the domains Ak and Ak+1 respectively

and assume that we have a local description of the boundary for both Ak and Ak+1. By

definition, the level set functions satisfy

φk+1(γk+1) = φk(γk) = 0, (3.1)

and the function γk+1 is given by relation (2.22),

γk+1 = γk − ρk nk+1.

The Taylor expansion gives

φk+1(γk+1) = φk+1(γk − ρknk+1)

= φk+1(γk) − ρk ∇φk+1(γk) · nk+1 + O(ρ2
k).

We can write using identity (3.1),

φk+1(γk) = ρk ∇φk+1(γk) · nk+1 + O(ρ2
k).
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Using the expression of the inward normal

φk+1(γk) = ρk ∇φk+1(γk) ·
∇φk+1(γk+1)

|∇φk+1(γk+1)|
+ O(ρ2

k).

Another Taylor expansion shows that

∇φk+1(γk+1)

|∇φk+1(γk+1)|
=

∇φk+1(γk)

|∇φk+1(γk)|
+ O(ρk).

We finally obtain

φk+1(γk) = ρk |∇φk+1(γk)| + O(ρ2
k).

Since the domain Ak moves to the domain Ak+1 thanks to the relation (2.24)

ρk =
uk − 1

λ
on ∂Ak,

and recalling that φk(γk) = 0, we obtain the level set equation for the function φk+1

φk+1(γk) = φk(γk) +
uk − 1

λ
|∇φk+1(γk)| + O(ρ2

k). (3.2)

The function (1 − uk)/λ behaves like a speed of propagation to move the boundary but

equation (3.2) is only defined on the domain boundary ∂Ak. To complete the scheme we need

an extension of the normal velocity to obtain a level set equation on the whole domain Ω.

3.1.3. Extension of the normal velocity

Following [1], we construct a velocity vk by the Fast Marching method such that vk ·nk coincides

with the normal velocity (1− uk)/λ on ∂Ak. To this end, for a given level set function φk such

that |∇φk| = 1, we solve the equation

∇vk · ∇φk = 0,

with the condition

vk =
1 − uk

κk

on ∂Ak.

We define φk+1 by

φk+1 = φk − vk|∇φk+1|

= φk − vk|∇φk + O(ρk)| = φk − vk + O(ρ2
k),

where we have used the property vk = O(ρk). Now, we have by differentiation

∇φk+1 = ∇φk −∇vk + O(|∇ρ2
k|).

Since we have assumed |∇ρk| = O(ρk), then

|∇φk+1|
2 = ∇φk · ∇φk+1 −∇vk · ∇φk+1 + O(ρ2

k)

= ∇φk · (∇φk −∇vk) −∇vk · (∇φk −∇vk + O(ρ2
k)) + O(ρ2

k)

= 1 + O(ρ2
k).

The function φk+1 is then updated in order to satisfy |∇φk+1| = 1 by using a Fast Marching

Method. Note that this correction does not modify the position of the free boundary. To

initialize the iterative process, we choose φ0 as the signed distance function associated to the

initial guess A0.

We now design two numerical schemes based on the level set formulation.



30 F. BOUCHON, S. CLAIN AND R. TOUZANI

3.2. The “perturbation-method scheme”

Let us describe now the algorithm deduced from the analysis of the previous section. Assume

that we know the domain Ak and a level set function φk associated to Ak satisfying |∇φk| = 1.

(1) We compute uk on Ω \ Āk solving the elliptic problem with mixed condition on the

boundary
∆uk = 0 in Ω \ Āk,

uk = 0 on ∂Ω,

∂uk

∂nk

− κkuk = λ − κk on ∂Ak,

(3.3)

where

κk(x) = ∇ ·
( ∇φk(x)

|∇φk(x)|

)

.

(2) We compute the extended normal velocity vk on Ω by

∇vk · ∇φk = 0 in Ω,

vk =
1 − uk

λ
on ∂Ak,

using the Fast Marching method described in [1].

(3) We obtain the new level set function φk+1 by setting

φ∗

k+1(x) = φk(x) − vk(x),

which defines ∂Ak+1 = {x ∈ Ω; φ∗

k+1(x) > 0}.

(4) We perform a correction step to compute φk+1:

|∇φk+1| = 1 in Ω,

φk+1 = 0 on ∂Ak,

φk+1φ
∗

k+1 ≥ 0 in Ω.

(3.4)

Note that the last equation imposes that the sign of φk+1 remains the same as the sign

of φ∗

k+1. This step is performed using again the Fast Marching method ([1]).

3.3. The Neumann scheme

Since the previous scheme converges locally (if the initial guess is close enough to the solution

A), our aim is to improve it in order to extend its domain of convergence. For this end, we use

a scheme close to the Neumann scheme described in [3]: Let Ak be given and φk be a level set

function associated to Ak. We consider the following algorithm.

(1) We compute uk on Ω \ Āk by solving the elliptic problem

∆uk = 0 in Ω \ Āk,

uk = 0 on ∂Ω,

∂uk

∂nk

= λ on ∂Ak.
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(2) We compute the extended normal velocity vk on Ω by

∇vk · ∇φk = 0 in Ω,

vk =
1 − uk

λ
on ∂Ak,

using the Fast Marching method described in [1].

(3) We obtain the new level set function φk+1 by setting

φ∗

k+1(x) = φk(x) − vk(x),

which defines ∂Ak+1 = {x ∈ Ω; φ∗

k+1(x) > 0}.

The correction step (3.4) enables computing φk+1.

The main advantage of this scheme is that we do not have to introduce the curvature. Its

drawback resides in its limitation to the context of elliptic solutions (see [7] and [3] for further

details).

3.4. The mixed scheme

As many “Newton-like” schemes, the perturbation-method scheme experiences a high rate

of convergence provided the initial guess is close enough to the solution. If the starting point is

too far (for example, if a topology change is necessary to reach the solution), then the Neumann

scheme shall be used.

Since the curvature of the set exhibits some singularity when facing a topology change, we

have chosen as criterion the maximum value of the curvature to determine which scheme to

use. Namely, at each iteration k, if the maximum value of the curvature κk is too large, then

we choose the second scheme (“Neumann Scheme”) and if it is small enough, then we choose

the “perturbation-method scheme”. In practice, the chosen criterion is given by

1

κ
≤ Ch

where h is the grid size and C is a given constant that ensures convergence of the numerical

scheme (see [4]).

4. Numerical Results

In order to solve the numerical problem, we resort to the classical five-point finite difference

scheme for the Laplace equation. We have implemented the obtained discrete problem in four

configurations. The first one aims to evaluate the convergence rate of the scheme. The second

one aims at showing that the scheme can converge in the both cases of elliptic and hyperbolic

solutions (depending on the initial guess). The notion of hyperbolic solution is the one defined

in [7].

In the two last configurations, we observe topology changes.
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4.1. Convergence tests

In this series of tests we consider first the adaptation of the described scheme to the exterior

Bernoulli problem. We next consider an interior Bernoulli problem.

We have chosen Ω = {x ∈ R
2; |x − c| < ρ0}, ρ0 = 0.2, c = (0.5, 0.5). In this case, the only

solution is the circle centered in c of radius ρ such that

λ =
1

ρ (log ρ − log ρ0)
.

We have chosen λ = 7, for which the solution is the circle of radius ρ1 ≈ 0.3148 · · · .

Table 4.1 shows the Hausdorff distance to this solution (denoted by A∞) when we take as

initial guess the circle centered in c of radius 0.30. Recall that the Hausdorff distance is defined

by (see [3])

D(A, B) := max
(

sup
a∈A

(a, B), sup
b∈B

(b, A)
)

A, B ⊂ R
2,

where d(a, B) := infb∈B |a − b|. To calculate this distance we use the signed distance function

φk.

The stop criterion has been defined using the Hausdorff distance between two consecutive

sets Ak, Ak+1. Since we expect a second order scheme, the stop criterion must be finer than

the grid size h2. In our numerical tests, we have fixed the criterion

D(Akf−1
, Akf

) < h3.

Note that an erratic convergence behavior is observed for a coarse grid.

Table 4.1 also shows that the CPU time increases significantly within the grid size. This is

natural since each iteration requires the solution of the elliptic problem (3.3) with an increasing

number of unknowns.

Table 4.1: Convergence test for the elliptic solution.

Grid D(Ak, A∞) Rate Nb. Iter. Time (sec.)

40 × 40 4.17 × 10−4 12 30.6

60 × 60 1.73 × 10−4 2.2 13 52.4

80 × 80 1.63 × 10−4 0.2 4 23.7

120 × 120 6.10 × 10−5 2.4 5 49.2

160 × 160 3.50 × 10−5 1.9 5 80.0

240 × 240 1.82 × 10−5 1.6 5 190.8

320 × 320 9.47 × 10−6 2.3 6 510.5

480 × 480 4.39 × 10−6 1.9 6 2711.9

640 × 640 2.43 × 10−6 2.0 6 5743.4

We observe the convergence history for two particular grid sizes: 60 × 60 (solid line) and

80 × 80 (dotted line). The condition linking the curvature and the grid size is satisfied in this

the test for the grid 80×80, the algorithm converges then faster. For the 60×60 grid, the mesh

size h = 1/60 is too coarse and the first algorithm is used, this is the reason why we need more

iterations to reach convergence. Table 4.1 shows a second-order convergence rate behavior.

To consider an interior Bernoulli problem example, we choose Ω = {x ∈ R
2; |x − c| <

ρ0}, ρ0 = 0.42, c = (0.5, 0.5). In this case, any circle centered in c of radius ρ such that

λ =
1

ρ (log ρ − log ρ0)
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Fig. 4.1. Convergence history for the 60× 60 grid (solid line) and 80× 80 grid (dotted line).

is a solution of the problem. We have chosen λ = 7, the circle of radius ρ1 ≈ 0.218285 · · · is the

elliptic solution, and the circle of radius ρ2 ≈ 0.098528 · · · is the hyperbolic solution.

Table 4.2: Convergence test for the elliptic solution.

Grid D(Ak, A∞) Rate Nb. Iter. Time (sec.)

40 × 40 1.63 × 10−3 17 45

60 × 60 1.01 × 10−3 1.2 19 73

80 × 80 7.63 × 10−4 1.0 23 127

120 × 120 1.61 × 10−4 3.8 7 82

160 × 160 1.04 × 10−4 1.5 7 160

240 × 240 5.77 × 10−5 1.4 7 581

320 × 320 3.36 × 10−5 1.9 7 2253

480 × 480 1.33 × 10−5 2.3 8 17167

640 × 640 7.73 × 10−6 1.9 8 51783

Table 4.3: Convergence test for the hyperbolic solution.

Grid D(Ak, A∞) Rate Nb. Iter. Time (sec.)
40 × 40 (no convergence)
60 × 60 (no convergence)
80 × 80 (no convergence)

120 × 120 (no convergence)
160 × 160 (no convergence)
240 × 240 1.02 × 10−4 6 626
320 × 320 4.99 × 10−5 2.5 6 2262
480 × 480 4.01 × 10−5 0.5 5 19397
640 × 640 1.38 × 10−5 3.7 5 59394

Table 4.2 shows the Hausdorff distance to the solution when we take as initial guess the

circle centered in c of radius 0.32. Note that, in this case, the algorithm converges to the

elliptic solution (which has been taken as reference solution A∞). Here also, a second-order

convergence rate is observed.

Table 4.3 shows the Hausdorff distance to the solution when we take as initial guess the circle
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centered in c of radius 0.1. Note that, in this case, the algorithm converges to the hyperbolic

solution (which has been taken as reference solution A∞). No convergence rate can however be

deduced from numerical experiments.
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Fig. 4.2. Domains A0 to A30.

For the coarse grids, the criterion on the curvature is not satisfied. Then, the first (Neumann)

scheme is used, and since it works only in the elliptic context, then we have no convergence of

our algorithm (namely, the set Ak is empty for some k).

4.2. Topology change tests

In this test, Ω is the union of four disks of radius 0.11 centered at P1 = (0.3125, 0.3125),

P2 = (0.6875, 0.3125), P3 = (0.3125, 0.6875) and P4 = (0.6875, 0.6875) respectively. The value

of λ has been taken equal to 25, and the initial guess is a disk centered at (0.5, 0.5) of radius

0.42 (containing Ω). The exact solution is given by the union of four disjointed disks centered

at P1, P2, P3 and P4.

We have run this test on a 240×240 grid, with an initial guess consisting in a disk containing

Ω̄. Convergence has been reached after 32 iterations (1272 sec.).

Fig. 4.2 shows the evolution of the boundary A0, A5, A10, A15, A20, A23, A24, A25 and A30.
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Fig. 4.3. Domains A0 to A55.

To consider an interior topology change test, Ω is a set similar to the set used by Flucher

and Rumpf [7]. λ has been taken equal to −18, and the initial guess is the union of two disks

centered at (0.25, 0.5) and (0.75, 0.5) of radius 0.12 (included in Ω).

We have run this test on a 240× 240 grid; convergence has been reached after 55 iterations

(1374.1 sec).

Fig. 4.3 shows the evolution of the boundary A0, A10, A20, A30, A40, A46, A47, A50 and

A55.

5. Conclusion

In this paper we have presented various extensions of the Flucher and Rumpf numerical

method to allow topological change. The method is based on a level set formulation coupled

with an elliptic equation derived by asymptotic analysis. Two schemes have been proposed:

The first one is devoted to the computation of an accurate solution but requires regularity and

does not allow topological changes. The second one is designed to overcome this difficulty but

is less accurate. A hybrid technique based on both schemes yields a good convergence speed

and a robust solver for the Bernoulli problem.
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