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Abstract

In this paper, we analyze the transmission and reflection properties of a high order dis-

continuous Galerkin method for dispersive Maxwell’s equations, originally proposed by Lu

et al. [J. Comput. Phys. 200 (2004), pp. 549-580]. We study the reflection and transmission

properties of the numerical method for up to second-order polynomial elements for one-

and two-dimensional Maxwell’s equations with rectangular meshes. High order accuracy

has been shown for reflection and transmission coefficients near material interfaces.

Mathematics subject classification: 65N50, 65N15, 35A40, 35J05.
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1. Introduction

Wave propagation in inhomogeneous and dispersive media can be found in many scien-

tific and engineering applications such as evanescent waves in surface plasmons, and ground

penetrating radar detection, and optical devices. In those situations, the need for accurate

numerical modeling calls for continuing advances in the development of high order numeri-

cal algorithms. An important desirable feature is the capability of the numerical methods in

predicting accurately the reflection and transmission of waves across material interfaces. For

electromagnetic scattering in a dispersive media, the frequency dependent constitutive relation

between displacement field D and the electric field E entails a time domain relationship via a

time convolution. In [1, 2], the Auxilary Differential Equation (ADE) method is proposed to

address this issue in the framework of discontinuous Galerkin methods for dispersive Maxwell’s

equations, and various applications of the resulting dispersive discontinuous Galerkin method

have been conducted for the modeling of ground penetrating radar [3], resonant microcavity

waveguide [4], and plasmon coupling of nanowires [2].

In this paper, we will elaborate the transmission and reflection properties of the above

mentioned discontinuous Galerkin method for Maxwell’s equation in a dispersive media with

material interfaces. The reflection/transmssion near a material interface has a great effect on

the quality of the simulation of wave propagation in a dispersive inhomogeneous media. Many

physical phenomena involves waves near material interfaces, such as evanescent plasmon waves
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near dielectric and metals, which decay exponentially away from interfaces, and diffractive

optics with gratings, to just list a few. Numerical modeling of the waves near material inter-

faces requires high fidelity in replicating the reflection and transmission of waves near material

interfaces and the resolution power of approximating exponentially decaying field distributions.

In this paper, we are mainly concerned with the reflection/transmission property of the

discontinuous Galerkin method proposed in [1, 2] for the dispersive Maxwell’s equations. Such

an analysis is important for selecting numerical algorithms for studying electromagnetic waves

near material interface and in dispersive media such as soil and metals and even in artificial

dispersive media of PML for truncating computational domain [5]. The rest of the paper is

organized as follows. In Section 2, we give an introduction of dispersive Maxwell’s equations. In

Section 3, the analysis of reflection/transmission properties of discontinuous Galerkin method

for 1-D Maxwell’s equations is given. In Section 4, we investigate the reflection/transmission

properties of discontinuous Galerkin method for 2-D Maxwell’s equations with rectangular

meshes. Section 5 contains the conclusion.

2. Dispersive Maxwell’s Equations

Maxwell’s equations are fundamental equations of electromagnetism, which are of the form

∇× E = −
∂

∂t
B, (2.1)

∇× H =
∂

∂t
D + j, (2.2)

∇ ·D = ρ, (2.3)

∇ ·B = 0, (2.4)

where E is the electric field and B the magnetic induction, D electric displacement, H the

magnetic field, ρ the free charge density and j the free current density.

Eqs. (2.1)-(2.4) are not closed in themselves; they must be supplemented with constitutive

relations

D = ǫE, B = µH, j = σE, (2.5)

where ǫ is the permittivity, µ is the permeability, and σ is the conductivity. For dispersive

media, ǫ in (2.5) is a function of the frequency ω.

For a lossy and dispersive media, a typical single-pole Drude medium [6] has a relative

frequency dependent electric permittivity as

ǫ̂r(ω) = ǫ̂r,∞ −
ω2

p

ω2 + iγω
, (2.6)

where ωp is the plasma frequency, γ is the damping constant, ǫ̂r,∞ is the relative electric

permittivity at infinite frequency. Fourier transforms are needed to get an expression in time

domain.

In [1, 4], a discontinuous Galerkin method employs ADE for auxiliary variable J, which is

introduced to handle the time convolution resulting from the frequency dependent constitutive
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relation (2.6)

∂

∂t
E(x, y, z, t) =

1

ǫr,∞
[∇× H(x, y, z, t) − J(x, y, z, t)],

∂

∂t
H(x, y, z, t) = −∇× E(x, y, z, t), (2.7)

∂

∂t
J(x, y, z, t) = −γJ(x, y, z, t) + ω2

pE(x, y, z, t).

Here we assume j = 0, ρ = 0, and the non-dimensionalized variables are introduced in the above

equation
x

L
→ x,

y

L
→ y,

ct

L
→ t, Z0H→ H, E → E, (2.8)

where L is the reference length associated with a given problem, c is the speed of light in free

space, and Z0 =
√

µ0/ǫ0 is the free-space impedance.

3. Reflection/Transmission Properties of 1-D Maxwell’s Equations

First, we consider an one-dimensional problem where only Ey(x, t),Hz(x, t), Jy(x, t) are

sought to satisfy the following equations

∂Ey

∂t
= −

1

ǫr,∞
(
∂Hz

∂x
+ Jy), (3.1)

∂Hz

∂t
= −

∂Ey

∂x
, (3.2)

∂Jy

∂t
= −γJy + ω2

pEy. (3.3)

Assuming a time-harmonic form for the solutions

Ey = e(x) exp(−iωt), Hz = h(x) exp(−iωt), Jy = j(x) exp(−iωt). (3.4)

Using (3.1)-(3.3), an equation for e(x) is obtained

e′′(x) =
[ −iωω2

p

−iω + γ
− ω2ǫr,∞

]

e(x) = −ω2ǫr(ω)e(x). (3.5)

The plane waves exp(ikx) is a solution of (3.5) if the wave number k satisfies the following

dispersion relation

k2 = −

[ −iωω2
p

−iω + γ
− ω2ǫr,∞

]

= ω2ǫr(ω). (3.6)

Consider an interval I = [−h, h], denote xL = −h , xR = h, all solution values at these two

points will be given a subscript L or R. Let + denote the limit values taken from outside and

− from inside of I, respectively. For example,

f+
L = lim

ε→0
f(−h − ε), f−

R = lim
ε→0

f(h − ε).

The discontinuous Galerkin solution of (3.1)-(3.3) is to find Hz, Ey, Jy ∈ P k(I), such that for



350 X. JI, W. CAI AND P. ZHANG

any vh(x) ∈ P k(I) (k-th order polynomials defined on I),

∫

I

(∂Hz

∂t
vh − Eyv′h

)

dx + FHz

∣

∣

∣

xR

v(x−

R) + FHz

∣

∣

∣

xL

v(x−

L ) = 0, (3.7)

∫

I

(

ǫr,∞
∂Ey

∂t
vh + Jyvh − Hzv

′

h

)

dx + FEy

∣

∣

∣

xR

v(x−

R) + FEy

∣

∣

∣

xL

v(x−

L ) = 0, (3.8)

∫

I

(∂Jy

∂t
vh − ω2

pEyvh + γJyvh

)

dx = 0, (3.9)

where the numerical flux F has the form [1, 7]

FHz
=

(Y nxEy + Hz)
− + (Y nxEy − Hz)

+

Y + + Y −
,

FEy
= nx

(ZHz + nxEy)− + (ZHz − nxEy)+

Z+ + Z−
.

Here nx is the outward unit normal to the interval. Z± and Y ± are the local impedance and

admittance respectively, defined as

Z± = 1/Y ± = (µ±

r /ǫ±r )1/2.

For simplicity, we will assume that Z = Y ≡ 1 (ǫr,∞ = 1) for the rest of this paper.

Now we study the reflection and transmission of discontinuous Galerkin method for a 1-D

Drude media. Assuming x < 0 is the vacuum with ǫr = 1, and x ≥ 0 is the Drude media with

ǫr(ω) = 1 − ω2
p/(ω2 + iγω).

An incident plane wave Ey = exp(iωx − iωt) impinges on x = 0 from vacuum, the total

electric field can be expressed as

Ey =

{

exp(iωx − iωt) + Γ exp(−iωx − iωt), x < 0,

τ exp(ikx − iωt), x ≥ 0,

where k = ω
√

ǫr(ω). Using (3.2), we can get the magnetic field. Using the boundary conditions

of Maxwell’s equations at x = 0, the reflection coefficient is

Γ =

√

ǫr(ω) − 1
√

ǫr(ω) + 1
,

and transmission coefficient is

τ =
2

√

ǫr(ω) + 1
.

Next, we analyze the reflection and transmission coefficient of the discontinuous Galerkin

method, assuming the basic solution of the discontinuous Galerkin method has the form [8]

Uj = λju, U = E, H. (3.10)

Here λ can be obtained similarly as in the dispersion analysis in the appendix, j corresponds to

space discretization cell, neighboring cell in the same media differs by a factor of λ. Replacing

ǫr(ω) with 1, we can get the dispersion in vacuum.

The key idea of the reflection/transmission analysis is based on the assumption that the

solution has the form (3.10) in 1-D case (or (4.10) in 2-D case). We first write the total wave

in different domains with numerical wave number (these are got from dispersion analysis in the
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appendix). The numerical reflection and transmission coefficients are used in these formulas.

Then these expressions are put back into the discontinuous Galerkin scheme to get the error

of reflection and transmission coefficients. Different basis will require different form for u. For

piecewise constant elements, u is a constant while u will be a linear function for piecewise linear

elements and a quadratic function for piecewise quadratic elements, respectively.

3.1. Piecewise constant elements

In this case, u in (3.10) is constant. We consider two cells [−2h, 0) and [0, 2h) around x = 0.

Then, by (6.6) in Appendix I, λ in the Drude media satisfies

2 − (λ + λ−1) = 4
(kh)2

−2iωh + ω2
ph/(−iω + γ) + 1

, (3.11)

while, λ in the vacuum satisfies

2 − (λ + λ−1) = 4
(kh)2

−2iωh + 1
. (3.12)

Let (+), (−) indicate right travelling wave and left traveling wave, respectively, and l, r indicate

left and right side of x = 0. Eq. (3.12) has two solutions denoted as λ
(±)
l = exp(±2hkli) while

the two solutions of (3.11) can be written as λ
(±)
r = exp(±2hkri). Also the error of wave

number is O(h), as will be shown in (6.7).

From the form of the solution (3.10), we can write the numerical solution as (ignoring the

time dependence of exp(−iωt))

Ey =















expn(−2hkli)Elr + α expn(2hkli)Ell,

x ∈ [−2nh,−2(n− 1)h), n ≥ 1,

β expn(2hkri)Err,

x ∈ [2(n − 1)h, 2nh), n ≥ 1,

(3.13)

Hz =















expn(−2hkli)Hlr + α expn(2hkli)Hll,

x ∈ [−2nh,−2(n− 1)h), n ≥ 1,

β expn(2hkri)Hrr,

x ∈ [2(n − 1)h, 2nh), n ≥ 1,

(3.14)

where the subscript rr represents the right traveling wave of right side, lr is the right traveling

wave of left side, ll is the left traveling wave of left side, corresponding to λ
(+)
r , λ

(+)
l , λ

(−)
l ,

respectively.

Assuming Elr = Ell = Err = 1. The value of H can be solved as (from (6.3) or (6.4) in the

appendix)

Hll = −1 + O(h), Hlr = 1 + O(h), Hrr =
√

ǫr(ω) + O(h). (3.15)

Denote the solution on [−2h, 0) as H0, E0, on [−4h,−2h) as H−1, E−1, on [0, 2h) as H1, E1.

Using (3.7)-(3.9) (ǫr = 1 in vacuum) on [−2h, 0) gives

−2iωhH0 +
(E0 + H0) + (E1 − H1)

2
−

(E0 − H0) + (E−1 + H−1)

2
= 0, (3.16)

−2iωhE0 +
(H0 + E0) + (H1 − E1)

2
−

(H0 − E0) + (H−1 + E−1)

2
= 0. (3.17)
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We note that the following O(h) approximation expressions of (3.13) and (3.14)

E0 = Elr + αEll + O(h), H0 = Hlr + αHll + O(h), (3.18)

E−1 = Elr + αEll + O(h), H−1 = Hlr + αHll + O(h), (3.19)

E1 = βErr + O(h), H1 = βHrr + O(h). (3.20)

Plugging (3.18)-(3.20) and (3.15) into (3.16)-(3.17), we obtain an equation for α, β

−α +
1 −

√

ǫr(ω)

2
β = 0 + O(h). (3.21)

Repeating the same analysis on cell [0, 2h) and using the discontinuous Galerkin method in

the Drude media, we have the second equation of α and β

1 +
√

ǫr(ω)

2
β − 1 = 0 + O(h). (3.22)

Combining (3.21) with (3.22) yields

α =

√

ǫr(ω) − 1
√

ǫr(ω) + 1
+ O(h) = Γ + O(h), (3.23)

β =
2

√

ǫr(ω) + 1
+ O(h) = τ + O(h). (3.24)

Therefore, the reflection coefficient and transmission coefficient is first order accurate.

3.2. Piecewise linear and quadratic elements

Considering two cells [−2h, 0) and [0, 2h) around x = 0, u in (3.10) is assumed to be a linear

function. From (6.12) in the Appendices, λ satisfies

2 − (λ + λ−1) =
−4CDh2(9 + 3(C + D)h + CDh2)

9 + 3(C + D)h − 2CDh2 − 2CD(C + D)h3
. (3.25)

Let the two solutions of (3.25) be λ
(±)
r = exp(±2hkri). When ωp = 0 in (3.25), the two solutions

are written as λ
(±)
l = exp(±2hkli) (case of vacuum), (+), (−) and l, r have the same definition

as before. It can be shown in (6.14) of the appendix that the wave number error in the piecewise

linear element case is of O(h3).

In view of (3.10), we can write the solution as

Ey =















































1

h

[

expn(−2hkli)(exp(2hkli)(
x

2
+ hn) −

x + 2(n − 1)h

2
)

+α expn(2hkli)(exp(−2hkli)(
x

2
+ nh) −

x + 2(n − 1)h

2
)
]

,

x ∈ [−2nh,−2(n− 1)h), n ≥ 1,

1

h

[

β expn(2hkr)(exp(−2hkri)(
−x

2
+ nh) −

−x + 2(n − 1)h

2
)
]

,

x ∈ [2(n − 1)h, 2nh), n ≥ 1.

Similar form for Hz can be obtained. We are now ready to solve α and β. Consider the interval

[−2h, 0). Assume the solution on this interval as H0 with left value H0L and right value H0R,
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solution H1 on [0, 2h) with H1L, H1R, solution H−1 on [−4h,−2h) with H−1L, H−1R. The

definition of E is similar. From the expression above, we have

E0L = exp(−2hkli) + α exp(2hkli), E0R = 1 + α,

H0L = exp(−2hkli) − α exp(2hkli), H0R = 1 − α,

E−1L = exp(−4hkli) + α exp(4hkli), E−1R = exp(−2hkli) + α exp(2hkli),

H−1L = exp(−4hkli) − α exp(4hkli), H−1R = exp(−2hkli) − α exp(2hkli),

E1L = β, E1R = β exp(2hkri), H1L = β
√

ǫr(ω), H1R = β exp(2hkri)
√

ǫr(ω),

with terms of order O(h2) ignored. Substituting above equations into discontinuous Galerkin

equations (3.7)-(3.9), we can get a relation between α and β

−α +
1 −

√

ǫr(ω)

2
β = 0 + O(h2). (3.26)

Repeating the same procedure on [0, 2h), we get

1 +
√

ǫr(ω)

2
β − 1 = 0 + O(h2). (3.27)

Combining (3.26) with (3.27) gives

α =

√

ǫr(ω) − 1
√

ǫr(ω) + 1
+ O(h2) = Γ + O(h2), (3.28)

β =
2

√

ǫr(ω) + 1
+ O(h2) = τ + O(h2). (3.29)

So, the reflection coefficient and transmission coefficient is of second-order accurate.

The process for piecewise quadratic elements is similar though u will be a quadratic function.

For example, on the interval [−2h, 0), the value at −2h is exp(−2hkli), at −h is exp(−hkli), at

0 is 1, and the form of incidence wave is

exp(−2hkli) − 2 exp(−hkli) + 1

2h2
x2 +

exp(−2hkli) − 4 exp(−hkli) + 3

2h
x + 1.

We can handle other intervals and wave numbers in the same way, the resulting error of reflection

and transmission coefficient is found to be O(h3).

We have addressed the case of wave propagating from vacuum to metal, the cases of metal

to vacuum, vacuum to PML, metal to PML can be handled, similarly.

4. Reflection/Transmission Properties for 2-D Maxwell’s Equations

Assuming a time harmonic form, the non-dimensionalized 2-D Maxwell’s equations for the

TE wave of Drude media are given as































∂Hz

∂y
= −iωǫr(ω)Ex,

−
∂Hz

∂x
= −iωǫr(ω)Ey ,

−
∂Ey

∂x
+

∂Ex

∂y
= −iωµrHz.

(4.1)
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For plane wave solution of Hz in the form exp(iβxx + iβyy), the wave numbers βx, βy satisfy a

dispersion relation

β2
x + β2

y = ω2ǫr(ω). (4.2)

Electric fields Ex, Ey can then be obtained from the Maxwell’s equations.

The discontinuous Galerkin method has the following form































−iωǫr(ω)(Ex, v) + (Hz, v
′

y) +

∫

∂K

FEx
vdS = 0,

−iωǫr(ω)(Ey , v) − (Hz, v
′

x) +

∫

∂K

FEy
vdS = 0,

−iωµr(Hz, v) + (Ex, v′y) − (Ey , v′x) +

∫

∂K

FHz
vdS = 0,

(4.3)

where K is a cell of domain discretization. (, ) denotes inner product over K, ∂K is the boundary

of K, v is the test function, and F is the numerical flux [4] given by



































FEx
= −ny

[ZHz + (nxEy − nyEx)]
−

+ [ZHz − (nxEy − nyEx)]
+

Z− + Z+
,

FEy
= nx

[ZHz + (nxEy − nyEx)]
−

+ [ZHz − (nxEy − nyEx)]
+

Z− + Z+
,

FHz
=

[Y (nxEy − nyEx) + Hz]
− + [Y (nxEy − nyEx) − Hz]

+

Y − + Y +
,

(4.4)

where n̂K = (nx, ny) is the outward unit normal to ∂K, Z± and Y ± are the local impedance

and admittance, respectively. Similarly to 1-D case, the definition of +,− is shown in Fig. 6.2.

In the x-y plane, assuming that the half plane of x < 0 is the vacuum, and x > 0 is the

Drude media with

ǫr(ω) = 1 −
ω2

p

ω2 + iγω
.

Time harmonic wave with time-dependence exp(−iωt) is assumed.

Take TE (Transverse Electric) wave as an example. In this case, the total magnetic field

wave in x < 0 (incidence plus reflection wave) can be written as

Hz = H0(1 + Γ exp(−2iβ1xx)) exp(iβ1xx + iβ1yy). (4.5)

The transmitted magnetic field in x > 0 is

Hz = H0τ exp(iβ2xx + iβ2yy). (4.6)

Here, Γ is the reflection coefficient and τ is transmission coefficient, electric field can be gotten

by magnetic field through Maxwell’s equations. Now we let

β1x = k1 cos θ, β1y = k1 sin θ, k1 = ω, (4.7)

β2x =
√

k2
2 − β2

2y, k2 = ω
√

ǫr(ω), (4.8)

where θ is incidence angle. Using boundary conditions of Maxwell’s equations that Ey and Hz

are continuous at the interface, we get

Γ =
(β1x

ω
−

β2x

ωǫr(ω)

)/(β1x

ω
+

β2x

ωǫr(ω)

)

, τ =
(

2
β1x

ω

)/(β1x

ω
+

β2x

ωǫr(ω)

)

. (4.9)
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From the Snell’s theory [9], we have β2y = β1y = k1 sin θ.

Next, we discuss the reflection and transmission coefficients for the discontinuous Galerkin

solution. Assume the solution has the form (see [8])

Ujl = λj
xλl

yu, U = Hz , Ex, Ey, (4.10)

where λx, λy can be obtained as in the dispersion analysis in the appendix, j, l are the indices of

space discretization, neighboring cell in the same media differs a factor of λx in x-direction and

λy in y-direction. Replacing ǫr(ω) with 1, we can have the dispersion relation in the vacuum.

4.1. Piecewise constant elements

In this case u in (4.10) is assumed to be constant. We consider cells [−2h, 0) × [0, 2h) and

[0, 2h) × [0, 2h) along interface x = 0. Cell [0, 2h) × [0, 2h) lies in the Drude media, λ2x, λ2y in

(4.10) satisfy (6.16), i.e.

λ2x + λ−1
2x − 2 =

(D2h2 + 4Dh + CDh2)(λ2y + λ−1
2y − 2) − CD2h3

(8 + 2Dh + Ch)(λ2y + λ−1
2y − 2) − (D2h2 + 4Dh + CDh2)

, (4.11)

where C = −i4ωµ, D = −i4ωǫr(ω).

As [−2h, 0)× [0, 2h) lies in vacuum, λ1x, λ1y satisfy

λ1x + λ−1
1x − 2 =

(D′2h2 + 4D′h + CD′h2)(λ1y + λ−1
1y − 2) − CD′2h3

(8 + 2D′h + Ch)(λ1y + λ−1
1y − 2) − (D′2h2 + 4D′h + CD′h2)

, (4.12)

and D′ = −i4ω. Let

λ1x = exp(2ihβh1x), λ1y = exp(2ihβh1y), λ2x = exp(2ihβh2x), λ2y = exp(2ihβh2y),

where βh1x, βh1y, βh2x, βh2y are numerical wave numbers, which are given by

βh2x = k2h cos θ, βh2y = k2h sin θ, βh1x = k1h cos θ, βh1y = k1h sin θ. (4.13)

From the dispersion analysis in appendix, errors between k1h and k1, and k2h and k2 are of

the order O(h).

Assume (4.12) has two solutions

λ
(±)
xl = exp(±2hik1h cos θ), λ

(±)
yl = exp(±2hik1h sin θ),

while (4.11) has two solutions

λ(±)
xr = exp(±2hik2h cos θ), λ(±)

yr = exp(±2hik2h sin θ),

l, r present left side and right side of x = 0, respectively. As material has no discontinuity in y

direction, we only need to consider the case of λ
(−)
yl , λ

(−)
yr .

Using the form given in (4.10), solution can be written as (ignoring the time dependence



356 X. JI, W. CAI AND P. ZHANG

exp(−iωt))

Hz =























((λ
(−)
xl )nHzl(−) + α(λ

(+)
xl )nHzl(+))(λ

(−)
yl )m,

y ∈ [2mh, 2m + 2h) & x ∈ [−2nh,−2(n− 1)h), n ≥ 1,

β(λ
(−)
xr )n(λ

(−)
yr )mHzr(−) ,

y ∈ [2mh, 2m + 2h) & x ∈ [2(n − 1)h, 2nh), n ≥ 1,

(4.14)

Ex =























((λ
(−)
xl )nExl(−) + α(λ

(+)
xl )nExl(+))(λ

(−)
yl )m,

y ∈ [2mh, 2m + 2h) & x ∈ [−2nh,−2(n− 1)h), n ≥ 1,

β(λ
(−)
xr )n(λ

(−)
yr )mExr(−) ,

y ∈ [2mh, 2m + 2h) & x ∈ [2(n − 1)h, 2nh), n ≥ 1,

(4.15)

Ey =























((λ
(−)
xl )nEyl(−) + α(λ

(+)
xl )nEyl(+))(λ

(−)
yl )m,

y ∈ [2mh, 2m + 2h) & x ∈ [−2nh,−2(n− 1)h), n ≥ 1,

β(λ
(−)
xr )n(λ

(−)
yr )mEyr(−) ,

y ∈ [2mh, 2m + 2h) & x ∈ [2(n − 1)h, 2nh), n ≥ 1.

(4.16)

Assuming Hzl(+) = Hzl(+) = Hzr(−) = 1, every component of E can be solved by (6.15) with

different component using different λx, λy. In vacuum ǫr is 1, ǫr = ǫr(ω) in the Drude media.

We get

Exl(−) =
βh1y

ω
, Exl(+) =

βh1y

ω
, Exr(−) =

βh2y

ωǫr(ω)
,

Eyl(−) = −
βh1x

ω
, Eyl(+) =

βh1x

ω
, Eyr(−) = −

βh2x

ωǫr(ω)
,

(4.17)

where terms of order O(h) are ignored.

Denote solution on [−2h, 0) × [0, 2h) as H0z, E0x, E0y, on [−4h,−2h) × [0, 2h) as H−1z,

E−1x, E−1y, on [0, 2h)× [0, 2h) as H1z, E1x, E1y , on [−2h, 0)× [−2h, 0) as H−2z, E−2x, E−2y,

on [−2h, 0) × [2h, 4h) as H2z, E2x, E2y . Using the discontinuous Galerkin method (4.3) on

[−2h, 0)× [0, 2h) gives

(−i4ωh + 2)E0x − E−2x − E2x + H−2z − H2z = 0, (4.18)

(−i4ωh + 2)E0y − E−1y − E1y + H1z − H−1z = 0, (4.19)

(−i4ωµh + 4)H0z − H−2z − H2z − H1z − H−1z

+E−2x − E2x + E1y − E−1y = 0. (4.20)

Approximating Hz, Ex, Ey (4.14)−(4.16) within O(h) errors, we have the expressions for

Hkz , Ekx, Eky, k = ±1, 0,±2. Putting them and (4.17) into (4.18)-(4.20), we have an equation

for α and β

−
βh1x

ω
+ α

βh1x

ω
+ β

βh2x

ωǫr(ω)
+ β − 1 − α = 0. (4.21)

Next, repeating the same procedure as that on [0, 2h)× [0, 2h), we get the second equation for

α and β
βh1x

ω
− α

βh1x

ω
− β

βh2x

ωǫr(ω)
+ β − 1 − α = 0. (4.22)
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Combining (4.21) with (4.22), we get

α =
(βh1x

ω
−

βh2x

ωǫr(ω)

)/(βh1x

ω
+

βh2x

ωǫr(ω)

)

+ O(h),

β =
(

2
βh1x

ω

)/(βh1x

ω
+

βh2x

ωǫr(ω)

)

+ O(h).

(4.23)

Comparing with (4.9), we conclude that the reflection coefficient and transmission coefficient

are both first-order accurate.

4.2. Piecewise linear and quadratic elements

Now u in (4.10) is a linear function. We still consider cells [−2h, 0) × [0, 2h) and [0, 2h) ×

[0, 2h). λx, λy in (4.10) can be found by the dispersive/dispersion analysis. Assume λ2x =

exp(2ihβh2x),λ2y = exp(2ihβh2y) in the Drude media, λ1x = exp(2ihβh1x), λ1y = exp(2ihβh1y)

in the vacuum.

The numerical wave numbers in the Drude media, βh2x and βh2y, can be written as

βh2x = ±k2h cos θ, βh2y = ±k2h sin θ, (4.24)

while βh1x, βh1y are numerical wave numbers in the vacuum

βh1x = ±k1h cos θ, βh1y = ±k1h sin θ. (4.25)

Using the results of the last section, the error between k1h and the wave number k1 is O(h3),

between k2h and k2 is O(h3). In view of the form given in (4.10), we can write the solution as

Hz =











































































exp(2ihβh1x)n exp(−2ihβh1y)
m ·

(1 − exp(2ihβh1x)

2h
(x + 2nh)

+
exp(−2ihβh1y) − 1

2h
(y − 2mh) + 1

)

+ α exp(−2ihβh1x)n exp(−2ihβh1y)
m·

(1 − exp(−2ihβh1x)

2h
(x + 2nh) +

exp(−2ihβh1y) − 1

2h
(y − 2mh) + 1

)

,

y ∈ [2mh, 2m + 2h) & x ∈ [−2(n + 1)h,−2nh), n ≥ 0,

β exp(−2ihβh2x)n exp(−2ihβh1y)
m·

(exp(−2ihβh2x) − 1

2h
(x − 2nh) +

exp(−2ihβh2y) − 1

2h
(y − 2mh) + 1

)

,

y ∈ [2mh, 2m + 2h) & x ∈ [2nh, 2(n + 1)h), n ≥ 0.

(4.26)

Ex, Ey can be written as similarly. To solve for α, β, we assume solutions H0z, E0x, E0y on

[−2h, 0)× [0, 2h), H−1z , E−1x, E−1y on [−4h,−2h)× [0, 2h), H1z , E1x, E1y on [0, 2h) × [0, 2h),

H−2z, E−2x, E−2y on [−2h, 0) × [−2h, 0), H2z , E2x, E2y on [−2h, 0) × [2h, 4h). Using the dis-

continuous Galerkin method (4.3)-(4.4) on [−2h, 0) × [−h, h), putting Hz, Ez, Ey of the corre-

sponding cell into the discontinuous Galerkin scheme, we get the following equation of α and β

within error of O(h2)

−
βh1x

ω
+ α

βh1x

ω
+ β

βh2x

ωǫr(ω)
+ β − 1 − α = 0. (4.27)

Repeating on [0, 2h)× [0, 2h), we get another equation for α and β

βh1x

ω
− α

βh1x

ω
− β

βh2x

ωǫr(ω)
+ β − 1 − α = 0. (4.28)
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Combining (4.27) and (4.28), we get

α =
(βh1x

ω
−

βh2x

ωǫr(ω)

)/(βh1x

ω
+

βh2x

ωǫr(ω)

)

+ O(h2),

β =
(

2
βh1x

ω

)/(βh1x

ω
+

βh2x

ωǫr(ω)

)

+ O(h2).

(4.29)

Comparing with (4.9), we conclude that the reflection coefficient and transmission coefficient

are both second order accurate.

The process for piecewise quadratic elements is similar while u in (4.10) will be a quadratic

function. The resulting error of reflection and transmission coefficient can be found to be O(h3).

5. Conclusions

In this paper, we have studied reflection and transmission properties of a discontinuous

Galerkin method for Maxwell’s equations in dispersive Drude media. The reflection/transmission

error is summarized in Table 5.1. Fig. 5.1 gives the convergence plot for 2-D piecewise quadratic

elements; Fig. 5.1(a) uses ω = 1, ωp = 2, γ = 2, ǫr,∞ = 1, and Fig. 5.1(b) uses ω = 1.5, ωp =

2.5, γ = 1.5, ǫr,∞ = 1.

Table 5.1: Summary of dispersive/dissipative error and reflection/transmission error.

const elements linear elements quadratic elements

1-D reflection/transmission error O(h) O(h2) O(h3)

2-D reflection/transmission error O(h) O(h2) O(h3)

Based on the results for the piecewise constant, linear and quadratic elements, we can rea-

sonably predict that reflection and transmission coefficients error convergence order should be

O(hn+1) for n-degree polynomial elements on rectangle meshes. As the analysis is based on the

plane wave Fourier analysis, dispersion and transmission/reflection results will be difficult to

extend to general meshes. However, our numerical implementations of the concerned discontin-

uous Galerkin method are always carried out on general finite element type meshes (triangles or

quadrilaterals) — all with high accuracy in wave dispersions and accurate field solutions near

material interfaces.
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6. Appendix

In the appendix, we include the analysis of dispersion error for the discontinuous Galerkin

method. Similar results can be found in [10].
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Fig. 5.1. Error of reflection coefficient. (a) ω = 1, ωp = 2, γ = 2, ǫr,∞ = 1; and (b) ω = 1.5, ωp =

2.5, γ = 1.5, ǫr,∞ = 1.

6.1. Dispersion errors for 1-D Maxwell’s equations

Our goal is to find a similar dispersion relation for the discontinuous Galerkin method [1]

and evaluate the dispersion error. Assuming a time-harmonic form, the numerical solutions are

Ey = e(x) exp(−iωt), Hz = h(x) exp(−iωt), Jy = j(x) exp(−iωt).

As we seek plane wave solutions

U+
R = exp(i2hkh)U−

L = λU−

L , U+
L = exp(−i2hkh)U−

R = λ−1U−

R , U = e, h, j,

with kh being the numerical wave number. Combining (3.8) and (3.9), we get

−iω(h(x), vh) − (e(x), v′h) +
(eR + hR)− + λ(eL − hL)−

2
v−R

+
(−eL + hL)− + λ−1(−eR − hR)−

2
v−L = 0, (6.1)

(−iωǫr,∞ +
ω2

p

−iω + γ
)(e(x), vh) − (h(x), v′h) +

(hR + eR)− + λ(hL − eL)−

2
v−R

−
(hL − eL)− + λ−1(hR + eR)−

2
v−L = 0. (6.2)

6.1.1. Piecewise constant elements

In this case, we set vh = 1 in (6.1)-(6.2), e(x) and h(x) are constants denoted as E and H,

respectively. Consequently, all derivative terms are zero. So, (6.1) and (6.2) become

− 2iωhH +
(E + H)− + λ(E − H)−

2
+

(−E + H)− + λ−1(−E − H)−

2
= 0, (6.3)

2
(

− iωǫr,∞ +
ω2

p

−iω + γ

)

hE +
(H + E)− + λ(H − E)−

2
−

(H − E)− + λ−1(H + E)−

2
= 0.

(6.4)
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Rewritting in matrix-vector form, (6.3)-(6.4) read

AU = 0, (6.5)

where U = (H, E)T and

A =

[

−i2ωh + 1 − (λ−1 + λ)/2 (λ − λ−1)/2

(λ − λ−1)/2 2
(

− iωǫr,∞ +
ω2

p

−iω+γ

)

h + 1 − (λ−1 + λ)/2

]

.

A non-trivial solution to (6.5) requires det(A) = 0, resulting in the following characteristic

equation

(2 − (λ + λ−1)) = 4
( iωω2

p

−iω + γ
+ ω2

)

h2
/(

−2iωh +
ω2

p

−iω + γ
h + 1

)

=
4(kh)2

−2iωh +
ω2

p

−iω+γ h + 1
, (6.6)

where k is the wave number in (3.6). Let −2iω + ω2
p(−iω + γ)−1 = −C and λ = exp(i2hkh).

For small hkh , using Taylor expansion gives

kh − k =
Ck2

kh + k
h + O(h2). (6.7)

From (6.7), we conclude that the dispersive (real part of (kh − k)) and dissipative (imaginary

part of (kh − k)) are both first order accurate.

6.1.2. Piecewise linear elements

In this case, test functions are chosen as vh1 = (h−x)/2 and vh2 = (h+x)/2 while the numerical

solution is assumed to be of the form

UL(h − x)/2 + UR(h + x)/2, U = h, e.

Putting vh1 and vh2 into (6.1) and (6.2), we get

− iω
(2hL

3
+

hR

3

)

h2 +
(eL + eR)h

2
+

(−eL + hL) − λ−1(eR + hR)

2
h = 0, (6.8)

(

− iω +
ω2

p

−iω + γ

)(2eL

3
+

eR

3

)

h2 +
(hL + hR)h

2
−

(hL − eL) + λ−1(hR + eR)

2
h = 0, (6.9)

− iω
(2hR

3
+

hL

3

)

h2 −
(eL + eR)h

2
+

(eR + hR) + λ(eL − hL)

2
h = 0, (6.10)

(

− iω +
ω2

p

−iω + γ

)(2eR

3
+

eL

3

)

h2 −
(hL + hR)h

2
+

(hR + eR) + λ(hL − eL)

2
h = 0. (6.11)

Rewritten again as AU = 0, where U = (hL, hR, eL, eR). A nontrivial solution requires that

det(A) = 0, giving

2 −

(

λ +
1

λ

)

=
−4CDh2(9 + 3(C + D)h + CDh2)

9 + 3(C + D)h − 2CDh2 − 2CD(C + D)h3
, (6.12)

where

C = −iω +
ω2

p

−iω + γ
, D = −iω, CD = −k2, λ = exp(2ihkh).
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Fig. 6.1. Error of 1-D piecewise quadratic

elements, x-axis is log(h).
Fig. 6.2. Structure of 2-D cell.

Using Taylor expansion, we have

(

k2
hh2

−
3

2

)2

−

(

k2h2
−

3

2

)2

= O(h5), (6.13)

which gives that

kh − k = O(h3). (6.14)

Therefore, we have a third-order accuracy in the dispersion and dissipation for piecewise linear

element.

6.1.3. Piecewise quadratic elements

Following a similar procedure as above, we write the numerical solution as

UL(h − x)/2 + UR(h + x)/2 + UC(h2 − x2), U = h, e.

By setting test functions vh1 = (h−x)/2, vh2 = (h+x)/2 and vh3 = h2−x2 in (6.1) and (6.2),

we get six functions. A nontrivial solution requirement gets

kh − k = O(h5),

namely, a 5th-order accuracy in the dispersion and dissipation for second order elements.

Fig. 6.1 plots the error for ω = 1, ωp = 2, γ = 2, ǫr,∞ = 1, which indicates that the order of

accuracy for the real part is 4.9, and for the imaginary part is 5.0.

6.2. Dispersion errors for 2-D Maxwell’s equations

Assuming K is [−h, h] × [−h, h], as in Fig. 6.2, we define the value on four boundaries as

UL(y), UR(y), UU (x), UD(x), respectively; the limit from inside labels as −, outside as +. We

seek plane wave solutions and, hence, assume U+
L = U−

R /λx, U+
D = U−

U /λy, U+
R = U−

L λx, U+
U =

U−

Dλy.
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6.2.1. Piecewise constant elements

Assuming test function v = 1, Ex, Ey, Hz are constants and all of their derivatives are thus

zero. Under the assumption of Z = Y = 1, the discontinuous Galerkin solution (4.4) can be

simplified as










































(

− i4ωǫr(ω)h + 2 −
1

λy
− λy

)

Ex +
( 1

λy
− λy

)

Hz = 0,

(

− i4ωǫr(ω)h + 2 −
1

λx
− λx

)

Ey +
(

λx −
1

λx

)

Hz = 0,

(

− i4ωµh + 4 −
1

λy
− λy −

1

λx
− λx

)

Hz

+
( 1

λy
− λy

)

Ex +
(

λx −
1

λx

)

Ey = 0.

(6.15)

Non-trivial solution demands the determinant of coefficient matrix to be zero, resulting in

λx + λ−1
x − 2 =

(D2h2 + 4Dh + CDh2)(λy + 1
λy

− 2) − CD2h3

(8 + 2Dh + Ch)(λy + 1
λy

− 2) − (D2h2 + 4Dh + CDh2)
, (6.16)

where

C = −i4ωµ, D = −i4ωǫr(ω), λx = exp(2ihβhx), λy = exp(2ihβhy),

βhx and βhy are numerical wave numbers. Next, we will compare the errors between βhx and

βx, βhy and βy. We assume in (4.2) βx = k cos θ, βy = k sin θ, k2 = ω2ǫr(ω), and, similarly, in

(6.16)

βhx = kh cos θ, βhy = kh sin θ. (6.17)

Denoting λx = exp(2ihβhx), λy = exp(2ihβhy), and putting (6.17) into (6.16), we obtain

k2
h =

−CD

4(4 + (C + D)h)
+ O(h) = k2 + O(h).

Consequently, we have

kh − k = O(h), (6.18)

which implies that the dispersion error is first-order accurate for all incident angle θ.

6.2.2. Piecewise linear elements

Assume that the numerical solution has the form

U = ULvh1 + URvh2 + UCvh1, U = Hz, Ex, Ey. (6.19)

Set three basis functions vh1 = x, vh2 = y, vh3 = h in (4.3), respectively. This yields nine

equations. Again, we assume

βhx = kh cos θ, βhy = kh sin θ, λx = exp(2ihβhx), λy = exp(2ihβhy). (6.20)

Putting (6.20) into those nine equations, non-trivial solution demands the determinant of coeffi-

cient matrix to be zero. As the determinant is beyond analytical solution, we solve it numerically

for a few typical cases.

Fig. 6.3 is the dispersion and dissipation error convergence result of ω = 1, ωp = 2.5, γ =

1.5, ǫr,∞ = 1, incidence angle θ takes 0, π/6, π/4, π/3, respectively.

Table 6.1 gives the third-order O(h3) convergence for three cases of parameters. The first

case is ω = 1, ωp = 2, γ = 2, ǫr,∞ = 1; the second case is ω = 1, ωp = 2.5, γ = 1.5, ǫr,∞ = 1, and

the third case is ω = 1.5, ωp = 2.5, γ = 1.5, ǫr,∞ = 1.
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Fig. 6.3. Error of piecewise linear elements with ω = 1, ωp = 2.5, γ = 1.5, ǫr,∞ = 1, at various values of

the incidence angle θ.

Table 6.1: The convergence order of piecewise linear elements.

parameter θ = 0 θ = π/6 θ = π/4 θ = π/3

case 1 Real part 2.96 2.97 2.95 3.00

case 1 Imaginary part 2.92 3.13 3.13 3.13

case 2 Real part 2.74 2.99 3.05 2.99

case 2 Imaginary part 3.50 3.77 3.88 3.77

case 3 Real part 2.84 2.98 2.95 2.98

case 3 Imaginary part 3.40 3.48 3.62 3.48

6.2.3. Piecewise quadratic elements

The numerical solution has the following form

U = U1v1 + U2v2 + U3v3 + U4v4 + U5v5 + U6v6, U = Hz, Ex, Ey. (6.21)

Setting six test functions v1 = h, v2 = x, v3 = y, v4 = x2, v5 = y2, v6 = xy into (4.3), we get

eighteen equations. Following the similar numerical process for piecewise linear elements, we

can obtain the O(h5) convergence results.
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