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Abstract

In this paper, the finite element method and the boundary element method are com-
bined to solve numerically an exterior quasilinear elliptic problem. Based on an appropriate
transformation and the Fourier series expansion, the exact quasilinear artificial boundary
conditions and a series of the corresponding approximations for the given problem are
presented. Then the original problem is reduced into an equivalent problem defined in
a bounded computational domain. We provide error estimate for the Galerkin method.
Numerical results are presented to illustrate the theoretical results.
Mathematics subject classification: 65N38.
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1. Introduction

In this paper, we consider a discretization procedure for an exterior quasilinear problem
which combines the finite element method (FEM) and the boundary element method (BEM).
This technique has been used to solve many linear problems, see, e.g., [6, 10, 15-17]. It has
also been successfully generalized to nonlinear boundary value problems [4, 8, 9, 12]. In these
extensions, the error analysis is often given when the coefficients satisfy conditions that make the
nonlinear operator strongly monotone and Lipschitz continuous, see, e.g., [4, 9]. The advantage
in this case is that Céa’s lemma is satisfied. When these conditions do not hold, Xu [13] provides
a useful tool by linearizing the nonlinear partial differential equation at a given isolated solution
and considering its finite element discretization. Meddahi [11] extends this approach and gives
the error analysis. However, all the problems considered are subject to the assumptions that
they are homogeneous and linear with constant coefficients outside a bounded domain. In this
paper, we shall consider more general quasilinear problems on the exterior region and give the
error estimates.

Let g is a bounded and simple connected domain in R? with sufficiently smooth bound-
ary I'g. Q := R? /Q_o We consider continuous nonlinear functions ay; and G;: @ x R — R
(i =0,1,2;k,l = 1,2) such that the derivatives (03;/9s), (Oaxi/ds), (0%3;/0s?), (0*axi/Ds?),
(0Bi/0z;), (Oag /Ox;)(j = 1,2) are continuous in 2 x R. We need to approximate a function u
that satisfies

—div(a(x,u)Vu + B(z,u)) + fo(z,u) = f(x) in
u =0, on T, (1.1)
u(z) = O(1), when  |z| — +oo,
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where ((z,u) = (61(z, u), B2 (, u))Tv a(z,u) = (O‘kl)%,lzl'

Some existence and uniqueness results for this type of problem are given in [5] under some
conditions on the coefficients «, 5;. We will not consider such issues, but instead, we assume that
(1.1) has at least one solution. Our main purpose is to provide artificial boundary conditions
for general quasilinear problem and error estimates for an approximate solution obtained from
a FEM-BEM discretization scheme.

Assume that the given function 8y, 3 € L*(Q) and f(z) € L?(£2) has compact support, i.e.,
there is a constant Ry > 0, such that

supp fo, supp B C Qr, = {z € R?|lz] < Ro},  supp f(z) C Qr,.
Moreover, we assume that there exists constant Cy > 0, such that
la(z,u)é > Colé)?, VYueR, VE€R?, x€Qg, (1.2)
alz,u) = a&(u), when |z|> Ro (1.3)
We introduce an artificial boundary
I'r = {z € R?|z| = R} with R> R,.

I'r divides © into two regions, a bounded domain ; = {z € Q||z| < R}, and 2. which is the
unbounded region exterior to I'g. Then the problem (1.1) can be rewritten in the coupled form:

—div(a(z,u)Vu + B(x,u)) + Bo(x,u) = f(x) in Q,
{ u =0, on Ty, (1.4)
—div(a(u)Vu) =0 in Q.
{ u(z) = O(1), when |z| — 400, (15)
u(z) and &(u)du/On are continuous on I'g. (1.6)

Obviously, if a(z,u) = a when |z| > Ry, the problem (1.5) is simplified to a linear exterior
elliptic problem [11].
We introduce the so-called Kirchhoff transformation

w(z) = /0 a()ds, xe Qe (1.7)

which gives
Vw = &(u)Vu. (1.8)

From (1.5) we have that w satisfies the following problem

—Aw =0 in Qe (1.9)
w(zx) = O(1), when |z| — 4oc. '
Let W, be the standard Sobolev spaces with norm || - ||;n,p,0, and semi-norms | - | .0,

For p = 2, we denote Hm(Qz) = W2m7 ” : Hmyﬂi = ” : Hm>27Qz‘ and | ’ |m>Q'L = | ’ |m>27Qi'

The rest of this paper is organized as follows. In Section 2, we give the exact quasilinear
artificial boundary condition on the artificial boundary, and present a new version of FEM-BEM
formulation. In Section 3, the error analysis of the coupling method is given. Finally, Section
4 is devoted to numerical experiments to illustrate our theoretical results.
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2. Exact Quasilinear Artificial Boundary Condition

Suppose that w(z) is the solution of the problem (1.9). We have the Fourier expansion [16]:

_ a0 - (By -
w(r,0) = 5 +;(r) (ay, cosné + by, sinnf)

with
1 2m 1 2m
an = —/ w(R,0) cosnbdd, b, = —/ w(R,0)sinnbdd, n=1,2,---.
T Jo T Jo
It is easy to show that
a—w(r 0) ——iin/%w(}{ )cosn(p — 0)d (2.1)
or " l.=k Rrm — Jo ¥ v v '
It follows from (1.8) that
M _ sy 2 (2.2)

or ar’

We then get the exact artificial boundary condition of  on the I'g:

I'r

- _ % g /O% (/OU(RW) d(ﬁ)df)ncosn(cp —0)dp = — Koo (u(R,0)), (2.3)

where K, is the natural integer operator. Then (1.1) is equivalent to the following problem:

—div(a(z,u)Vu + Bz, u)) + Bo(z,u) = f(x) in

u =0, on Do, (2.4)
d(u)% = — K (u(R,0)), on Tg.
r

Let us introduce the space
X :={ve H (Q);v|r, =0}

We assume that the solution of problem (1.1) u satisfies

o EXNWE (), (0<e).

u

Then boundary value problem (2.4) is equivalent to the following variational problem
Find u € X, such that A(u,v)+ B(u,v) = F(v), YveX, (2.5)
where

Au,v) = / alz,u)Vu-Vude + [ B(x,u) - Vode + [ Loz, u)vde,

B(u,v):/F Koo (u)vds, F(v) = Q.f(a:)v(:zr)da:.
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In practice, we need to truncate the series in (2.3)

(@) 2

I'r
iﬁ i /0277 (/OU(R,@) d(g)dg)ncosn(%’ —0)dp = —Kn(u(R,9)), (2.6)

Then the approximate problem of (2.4) is

—div(a(z, uN)Vu + Bz, u™N)) + Bo(z,ulN) = f(x) in O
N = 0, on Fo, (27)

. oulv
a(uV) 55— = ~Kn(u(R,6)), on Tg.

Problem (2.7) is equivalent to the following variational problem
Find u" € X, such that A(u™,v) + By(u”,v) = F(v), YoveX. (2.8)

Lemma 2.1. The bilinear forms B(u,v) and By (u¥,v) are bounded, i.e., there exists a con-
stant C > 0, such that

B(uw,0)| < Cllulh g lvlia,  Vuve X,
By (¥, v) < Cllullia v, Vuve X.

Furthermore, B(u,u) > Co|v|3.

Proof. The proof may be found in [7]. O

We introduce the nonlinear form

(u,

N

:m

v) = A(u,v) + B(u,v),
(™, v) == A(u,v) + By (uN,v).

LN

Then problems (2.5) and (2.8) are reduced to
Find u € X, such that A(u,v) = F(v), Vv€ X, (2.9)

and
Find u” € X, such that Ax(u™,v) = F(v), WveX. (2.10)

Let us introduce the bilinear form A’(u;-,-) and Ay (u;-,-) defined by

A(u;v, 2)
*/ da —(z,u)vVu - Vzdx —I—/ alz,u)Vv - Vzdx + 8—6(:17,11) - Vzudz

0s Q; s

9Bo /27T /27r A 0z > cosn(p — 6)
+ o B (x,u)vzdr + R )(96‘ ,9); - dfde
2w p2m ©
82 cosn(yp — 0) '
w0 ] awgira g re Y SN i

n=1
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Al (uN;v, 2)

= (204( Movul Vzdx—i—/ oz, uN)Vo - Vzdx—i—/ N (z,u") - Vzvdz
860 2w 2w a~ ) n 0z N cosn(yp — )
+/Q -, (@u vzd:z:—l—/ / 5% (R,@M(R 9);Td9d<p
27 2 N
/ / ) 81} Zcosn v —0) d@d(p,
n=1

where

(e = () (22 )

Let X’ be the dual of X. Notice that A’(u;-,-) is bounded on X x X since the functions
(08:/0s)(-,u(+)), (i = 0,1,2) are continuous in ;. Then there exists an operator T : X — X’
such that

(Tv,2) = A'(u;v,2), Vv,ze X. (2.11)

Lemma 2.2. The bilinear form (Tv,v) defined by A’(u;v,v) satisfies the following inequality:

(Tv,v) + K(l0l§ o, + 1013 )2r,) > a1llvlig,, YveX, (2.12)
where K > 0 s a sufficiently large constant and a; > 0 is a constant.

Proof. We first observe that
(Tw,v) + K[[vl§ o,
0
= / —a(:v, w)oVu - Vodz + / a(z,u)Vu - Vodz
q, Os Q

+ %(x,u).Vvvd:c—l—/ﬂ ( aio(:zr u) + K)v?dx

o 2w 804 ou =, cosn(p —6)
d9d
/ ; 3<p( ) 89 Z o

2m 2w v = cosn(p — 6)
/ / (R.9) 5 (R.0) Y P E =D g

n=1

By Holder inequality and the continuous property of da/ds,003;/0s(i = 0,1,2), it is easy to
show that

< M,

/m g—i(x,u)UVu - Vudz

op
, 0s

™2 9a ou ov . cosn 0
[ [ St sem - > =M= Dagag) < ol
0 n=1

(@, u) - Vovdz| < Ma|v|i,o,||v]lo,,

Oy )80
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In virtue of Lemma 2.1, we obtain

2w p2m e
ov cosn(p —0)
- M 7 >
/ / ,<p)a6‘R9n§:1 - dfde > 0.

By the arithmetic-geometric mean inequality, we can obtain

(T, v) + K””H%,szi

> colvli g, — Mi|v|1q, Ma|v|1,0,

_|_/ ( 6O(x u) + K)v 2d$—M3||UH1/2FR

Js
Co M2 + M2
> _|U|%,Qi +(Cs+ K- ———= HU||(2),91» - M3HU||%,QI»7
2 Co
where
Cs :=essinf {?(x,u) tx € Ql} . (2.13)
s

Consequently, we conclude that
(Tv,v) + K(|[vllg o, + [0l 2r,) = arllvlio, YweX

provided that

Co M?+ M2
K > max O—i-g—C&Mg .
2 Co
It is noted that K does not need not be positive if C3 > 0. d

Let I: X — X' be the canonical injection. As X is compactly embedded in L?(;), we
deduce that operator J: X — X' defined by J(v) = (I(v),0) is also compact. Thus the
Fredholm alternative applies for T'. We assume here that

A(u;v,2)=0, VzeX=0v=0. (2.14)

This implies that T': X — X’ is an isomorphism.

3. Finite Element Approximation of the Coupling Method

Suppose &, is a regular and quasi-uniform triangulation on Q;, k € &, is a (curved) triangle.
Denote h the maximum side of the triangles. Let

Xy ={xp € C’O(Qi),xh|k is a linear polynomial,Vk € £} C X. (3.1)

We consider the approximation problem of (2.9) and (2.10)

Find uy € Xy, such that (3.2)

f_l(uh, ’Uh) = F(Uh), V’Uh S Xh, ’
and

Find uhN € Xp, such that

Ao (N (3.3)

AN(uh,vh):F(vh), Vvh GXh.
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Theorem 10.1.2 of [2] assures that under the conditions (2.9), (2.12) and (2.14), there exists an
ho € (0,1], such that the following inf-sup condition is satisfied:

Al(u;
p A0:2)

> v, YvE Xy (3.4)
z€Xp HZ”LQi

for some constant a; > 0 independent of h (h < hg).
We define the Galerkin projection with respect to A'(u;-,-), Pn: X — Xp

A(u, Py, z) = A'(u,v,2), Vze Xp.
It is easy to deduce that the operator P satisfies

v—Pyollip0, <C inf |[v—vn|1p.0, < Ch?, 2 <p<oo. 3.5
3Py 84 sPDs8 84
v EXp

Lemma 3.1. ulY € X}, is a solution of (3.3) if and only if the following equation is satisfied

N uN —ul v) = RuMNul v), Yo € Xy,

where

([ (G airywunt v o)
w2 [ ([ (G wi] o - nar) aas
+/Q. (/01 [(%)(m,wﬁ) - Vo + (aggo)(x,wév)v}(l —t)dt) (d¥)2dx
o p2m L 924 wN 9o
L[ G s
([ G S

N _,N N_,Ny gN _,N_,N
and wy) =u®™ +t(uy —u), dy =up —u.

cosn(p —0) (V20

M=

v }(1 - t)dt)

}(1 — )t

n

-0
M dN dfde,

Mz

nm

3
Il
s

Proof. Let n(t) := An(u + t(ul —u™),v). The desired result follows from the identity

1
n(1) = n(0) +1/(0) + / ()1 — t)dt

and the fact that Ay (u”,v) = Ay (ul),v) = F(v), Yo € X. O

Lemma 3.2. Let My, := {v € Xp;||v]l1.00,0; < 1+ [|[uM|l1.00.00,}- Then there exists a constant
C > 0 independent of h, such that

[R(u™;v,2)| < O[u = vllf g, + lu” —vllie)llzlle, Yve My, Vze X
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Theorem 3.1. Let v € X N W3 _(Q;) be a solution of (1.1) with 0 < €, and assume that
ulp, € H3?(TR) and (2.14) is satisfied. If h is sufficiently small, then the finite element
equation (3.3) has a solution ulY € Xy, satisfying

, 1 Ry
Ju=udlho, < (" + gy (G Nulajar, ) (36)

where C' is a constant independent of h and N. Furthermore, there exists a constant n > 0 such
that ul is the only solution satisfying

[ —up (11,000, < 7- (3.7)

Proof. We shall divide the proof of Theorem 3.1 into 6 steps.
Step 1. For ¥V u € X, assume that

N

w™ (r, ) = "(an cosnp + by sinny),  Vr > Ry,

0 R
2 T
Co

5 n cosnb + dp, sinnb).

Z ¢
Using (1.2), we obtain

|B(u,v) — By (u N,v)l
—»/2”/2”&” PLATY I g LTS

n=N+1

5 oty e

n=N+1

Ry = 12 &2 12
<GV 32w+ )] T 3 i+ )]

n=N+1 n=N+1
! Ro\ni[ N~ 302 2% 1 9 a2

- R +b +d
ST R [n_%:ﬂn (az, n)} [n_;+ln(cn n)}

C Ro
= (N+1) (f)NHHu||3/27FRHU||1,Qi,

where the constant C' is independent of N. It follows from (2.8) that
AN v) = a(wN,v) + Bw",v) = F(v) + Bu™,v) — By (u,v).
Let n(t) = A(u + t(u" —u),v). We obtain
1
/ Au+t(u —u);u?y —u,v)dt = AN, v) — A(u,v).
0

Using (2.9), (2.12), (2.14) and [2] gives

1
A(u+tw? —u);u —u,v)dt
Ju ¥, < Csup o AL I ) )
vex o]l
|B(uN,v) — By (u®,v)| C Ry
< (_)N+1Hu||3/2,PR-
o]l (N+1)" R

<C
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Step 2. We define the nonlinear mapping ¢ : X, — X, as follows. Given v € X}, ¢(v) is the
unique solution of

A(u, p(v),z) = A'(usu, 2) — R(u,v,2), Vz € Xp. (3.8)

Therefore,
A(u; ¢(v) — d(vn), 2) = R(u; vy, 2) — R(u; v, 2). (3.9)

Combining this with (3.4), we obtain the continuity of this operator. i.e.,

Uliglv o(vn) = o(v).
Step 3. We define the set
Bh = {1) S Xh : ||1) — PhUNHl_’OO_’Qi < hg}.

For any v € By,

Lo, U™ 11,000 (3.10)
[ = vll1,00,0: < u™ = Pou™ |1 00,0, + [Pru™ = vl 00,0, (3.11)

[u™ = PouN 100,00 < Il = mau |l100.0, + lmnu — Pou™ |1 00,0, - (3.12)

[vll1.00.00 < [lu™ = v|

Now we use the fact that &, is quasi-uniform to obtain the following inverse inequality [14]
s, < Cllog 1) 2wl e, Yo € Xa. (3.13)
Combining this with the definition of By, Lemma 2.2, and (3,5), we obtain
™ = v[l1,00,0, < 1.

This implies that v € My,
Step 4. By the definition of Py, (3.8) can be write as follows:

AW, p(v) — Pou™,2) = —R(u™,v,2), Vze Xy,
and

I(v) — Pou |10,
A/(’U,, ¢(v) - Phqu Z)

<C sup < C(l[u™ =0l o, + 4" = vll10,)

2€Xp ||Z||1;Q'L
<C{lu® = Pou|} o, + [P — 0l g, + [u” = Poul1 0, + |Pau® = o]0}
<h°.

This implies that ¢ : B, — Bjy,.
Step 5. It follows from Brouwer’s fixed point theorem that there exists u) € X}, such that
d(ud) = ul¥. Due to the Lemma 3.2, we deduce that ul' is a solution of (3.3). Furthermore,

[u™ —up|l10, < [[u” = Poul10, + [1Pau —up 1,0, < ChC.
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Table 4.1: The errors with N=10 for Example 1.

M1 | M eo(h,N) ratio ei(h,N) ratio €so(h, N)
2 8 2.4160E-01 - 1.8383 - 2.2109E-01
16 6.5019E-02 | 3.7159 | 8.9936E-01 2.0440 | 6.0875E-02
8 32 1.6909E-02 | 3.8450 | 4.4990E-01 | 1.9989 | 1.7717E-02
16 64 4.3481E-03 | 3.8888 | 2.2534E-01 | 1.9965 | 5.4231E-03
32 128 | 1.2043E-03 | 3.6102 1.1444E-01 1.9690 | 2.6581E-03

Table 4.2: The errors with N=5 for Example 2.

M1 | M eo(h, N) ratio ei(h,N) ratio €so(h, N)
2 8 1.6273E-01 - 6.1288E-01 - 9.8528E-02
4 16 | 4.6705E-02 | 3.4843 | 3.0000E-01 2.0429 | 2.9869E-02
8 32 1.2267E-02 | 3.8072 | 1.4831E-01 2.0227 | 8.4149E-03
16 64 | 3.1498E-03 | 3.8946 | 7.3899E-02 | 2.0069 | 2.4804E-03

Here we use (3.5) and the fact that u}) € By,.

lu—up 1,0, < llu—u™ 10, + [0 =g |10,
1 Ry n
<o(h" —— ()" )
< - (N+1)( 7 ) lullaszrg,

Step 6. Let ulY and @Y be two solutions of (3.3) satisfying (3.7). The same technique given
in Step 1 can be easily reproduced here to prove a local uniqueness result if we let 7(t) =
An(ud + (@) —ul),v). The proof of this theorem is complete by combining the above steps.
O

4. Numerical Examples

In this section, we present some numerical experiments to confirm our theoretical results.

Example 1. We take Qy = {(z,y) € R? : r = /22 + 42 < 1} and the artificial boundary '
is the circle centered at the origin of radius 2. We present results of numerical experiments for
problems (1.1) when 5y = 0,5 =0 and

1
4—7’2—1——2, 1<r<2,
oz, u) = ;1w (4.1)
Tr a2 r>2,
_ 2 Y\ (2 24 ) Y
fla) = (1 +tan (T2 )) (7’2 + rt tan(TQ)), lsrs2 (4.2)
0, r> 2.

The exact solution of Example 1 is u(z) = tan(y/r?). Furthermore, we let

1 2 N
Ar = ik A = i eo(h, N) = [lu —up || 20,

e1(h, N) = |lu—up g0, ool N) = [l —up || (-

The numerical results are given in Fig. 4.1(a), Fig. 4.2(a) and Table 4.1.
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Fig. 4.1. The errors on artificial boundary for with different mesh sizes. (a): Example 1 with N = 10;
(b): Example 2 with N = 5.

Example 2. We take Qo = {(z,y) € R? : r = \/22 4+ y2 < 1.5} and the artificial boundary T'r
is the circle centered at the origin of radius 3. We present results of numerical experiments for
problems (1.1) when 5y = 0,5 =0 and

1
R S 15<r<3,
a(z,u) = 1 V1—u? (4.3)
e e
9 — 22 — 92 T 2z x
i - 1.5<r<3
=1 @i MaEeE) Twep s PSSR )
0, r> 3.
The exact solution of Example 2 is u(z) = sin(x/r?). The numerical results are given in

Fig. 4.1(b), Fig. 4.2 (b) and Table 4.2.

It is observed from the numerical results that increasing the order of the artificial boundary
condition or refining the mesh can reduce the numerical errors. When a finer mesh cannot pro-
duce a much more accurate numerical solution, the error originated from the series truncating
is dominating. These observations are in agreement with the error analysis we obtain. The
numerical results above show that the coupling BEM and FEM technique can be used to deal
with the quasilinear problems effectively.
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