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Abstract

We present the Crouzeix-Raviart linear nonconforming finite element approximation of

the variational inequality resulting from Signorini problem. We show if the displacement

field is of H2 regularity, then the convergence rate can be improved from O(h3/4) to

quasi-optimal O(h| log h|1/4) with respect to the energy norm as that of the continuous

linear finite element approximation. If stronger but reasonable regularity is available,

the convergence rate can be improved to the optimal O(h) as expected by the linear

approximation.
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1. Introduction

Signorini problem is one of the model problems considered in the theory of variational
inequality [9, 13]. The continuous linear finite element approximations of this problem have
been studied in many works, see, e.g., [2, 3, 10, 14]. As far as we have known that Scarpini and
Vivaldi[14] first gave the O(h3/4) convergence rate under the condition that the displacement
field u is of H2 regularity. Then, Brezzi, Hager and Raviart[2] presented O(h) convergence
rate by detailed analysis under the additional assumptions that u|∂Ω ∈ W 1,∞(∂Ω) and that
the number of points in the free boundary set where the constraint changes from binding
to non-binding is finite. For simplicity, we call these points “the critical points”. Later, Ben
Belgacem [3] proved that under a weaker assumption, i.e., u ∈ H2(Ω) and the number of critical
points is finite, O(h| log h|1/2) convergence order can be obtained. Recently, Ben Belgacem and
Renard [5] established an improved result of O(h| log h|1/4) convergence rate under the same
assumptions as in [3]. However, the convergence rate is not optimal if stronger regularity and
finite number of the critical points are not assumed. In this paper, we apply the Crouzeix-
Raviart linear finite element[8] to approximate Signorini problem and achieve same results as
those of the continuous linear finite element approximation. The whole process of the theoretical
analysis is found more complicated and requires more technical treatments.
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The paper is organized as follows. In the next section, we describe the continuous setting
of Signorini problem and its Crouzeix-Raviart linear finite element discretization. In section
3, we give some notations and lemmas for latter use. The main results and the corresponding
proofs are provided in section 4. Finally, in the last section, numerical experiments are carried
out to verify our theoretical results. Throughout this paper all the notations about Sobolev
spaces can be found in [1]. We often use norm ‖ · ‖0,p,Ω to represent ‖ · ‖Lp(Ω) and use ‖ · ‖α,Ω to
represent ‖ · ‖Hα(Ω). The semi-norm is used similarly. In addition, the frequently used constant
C is a generic positive constant whose value may be different under different contexts.

2. Signorini Problem and its Finite Element Discretization

First, we state the continuous framework of Signorini problem. For the sake of simplicity,
we only consider Signorini problem for the Poisson equation. The general continuous setting of
this problem in R2 can be illustrated (a mathematical model) as follows.
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Fig. 2.1. Signorini problem.

Suppose Ω ⊂ R2 is a Lipschitz bounded domain, which consists of three non-overlapping parts
ΓD, ΓC and Γg. Here ΓD is the fixed boundary (Dirichlet condition) with the end points d1 and
d2, ΓC is the contact region subjected to a rigid foundation with c1 and c2 as its endpoints,
and Γg is the ”glacis” with Neumann condition.

Now Signorini problem can be restated as the following mathematical model: Find

u ∈ K = {u ∈ H1
ΓD

(Ω) : u ≥ 0 a.e. on ΓC}, such that

a(u, v − u) ≥ χ(v − u), ∀ v ∈ K, (2.1)

where

a(u, v) =
∫

Ω

∇u · ∇v dx, χ(v) =
∫

Ω

f v dx +
∫

Γg

g v ds.

The notation H1
ΓD

=: V stands for the set {v ∈ H1(Ω) : v = 0 a.e. on ΓD}. Moreover,
∂Ω = ΓD ∪ ΓC ∪ Γg, and int (ΓD) ∩ int (Γg) = Ø, int (ΓC) ∩ int (Γg) = Ø (see Fig 2.1). Here
we only consider u ≥ 0 a.e. on ΓC instead of u ≥ α a.e. on ΓC in the closed convex set K,
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since our analysis can be extended to the non-zero case α easily. It is easy to check that an
equivalent differential form of (2.1) is the following⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−	u = f, in Ω,

u = 0, on ΓD,

∂νu = g, on Γg,

u ≥ 0, ∂νu ≥ 0, ∂νu · u = 0, on ΓC = Γ0
C ∪ Γ+

C ,

(2.2)

where ∂νu = ∂u
∂ν with ν as the unit outward normal to ∂Ω, Γ0

C = {x ∈ ΓC : u(x) = 0}, and
Γ+

C = {x ∈ ΓC : u(x) > 0}. Here the differential form is in the sense of “almost everywhere”
shortened for “a.e.”. The existence and uniqueness of the solution to the above problem can
be easily verified by the ellipticity of a(·, ·) and the continuity of χ on H1

ΓD
.

Suppose Jh is the regular triangulation of Ω, and T ∈ Jh is the triangular element. In
the following sections, we often use the subscript h to denote something related to the finite
element discretization. Here for concision, suppose the domain Ω is polygonal in R2, so it
can be exactly covered by triangular elements. It is also assumed that the triangulation Jh

is built in such a way that the end points of ΓD and ΓC are always chosen as the vertices of
triangular elements. Let Vh be the Crouzeix-Raviart linear finite element space corresponding
to Jh, (which is nonconforming, i.e., Vh � H1

ΓD
(Ω) = V ), that is to say,

Vh =

{
vh : vh|T ∈ P1(T ), vh is continuous at the midpoints of the edges of T ,
∀ T ∈ Jh, and vh(aij) = 0, where aij is the midpoint of aiaj ⊂ ΓD

}
.

(2.3)

Define

‖vh‖h = (
∑
T

|vh|21,T )1/2, ∀ vh ∈ Vh, (2.4)

which can be easily verified as ‖ · ‖h is a norm on Vh. Moreover, assume Kh is the following
closed convex subset of Vh,

Kh = {vh ∈ Vh : vh(aij) ≥ 0, where aij is the midpoint of aiaj ⊂ ΓC}. (2.5)

Then the finite element approximation of problem (2.1) leads to : to find uh ∈ Kh, such that

ah(uh, vh − uh) ≥ χ(vh − uh), ∀ vh ∈ Kh, (2.6)

where
ah(uh, vh) =

∑
T∈Jh

∫
T

∇uh · ∇vhdx,

χ(vh) =
∫

Ω

fvhdx +
∫

Γg

gvhds.

As ‖ · ‖h in (2.4) is a norm in Vh, the solution of the discrete problem (2.6) uniquely exists.
Moreover, it can be verified that the following abstract error estimate holds:

Lemma 2.1. Suppose u ∈ K is the solution of the variational Signorini problem (2.1) and
uh ∈ Kh the solution of the discrete one (2.6) respectively. Then

‖u − uh‖h ≤ C inf
vh∈Kh

{
‖u − vh‖2

h + ah(u, vh − uh) − χ(vh − uh)
}1/2

. (2.7)
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The proof is similar to that of the second Strang lemma[7], so we omit it here.

3. Notations and Lemmas

In this section, we introduce some notations and lemmas, which will be used in the next
section. Let F ⊂ ∂Ω be the line element with respect to the triangulation Jh, and let

ΓCh = {F : F ⊂ ΓC}. (3.1)

Then ΓCh can be divided into the following three non-overlapping sets:⎧⎪⎨
⎪⎩

Γ0
Ch = {F ∈ ΓCh : F ⊂ Γ0

C},
Γ+

Ch = {F ∈ ΓCh : F ⊂ Γ+
C},

Γ−
Ch =

{
F ∈ ΓCh : F ∩ Γ0

C �= Ø, F ∩ Γ+
C �= Ø

}
,

(3.2)

namely,

ΓCh = Γ0
Ch ∪ Γ+

Ch ∪ Γ−
Ch. (3.3)

Lemma 3.1. For 1 < p < ∞, the following discrete trace inequality holds:

‖v‖0,p,∂T ≤ C
{
h−1‖v‖p

0,p,T + hp−1|v|p1,p,T

}1/p
, ∀ v ∈ W 1,p(T ), ∀ T ∈ Jh, (3.4)

where C is a constant independent of v and the mesh size h.

This lemma can be established by using the same technique used by Stummel [16].

Lemma 3.2. Suppose F ⊂ ∂T is an edge of the triangular element T ∈ Jh, and v ∈ H1(F ).
If, there exists some QF ∈ F such that v(QF ) = 0, then

‖v‖0,F ≤ Ch‖dv

ds
‖0,F ≤ Ch|v|1,F , (3.5)

‖v‖0,F ≤ Ch1/2‖v‖1/2,F , (3.6)

where C is a positive constant independent of h and v, and dv
ds denotes the derivative of v along

F .
Proof. Firstly, we have

‖v‖2
0,F =

∫
F

∣∣v2(s) − v2(QF )
∣∣ds

=
∫

F

∣∣∣∣
∫ s

QF

dv2(t)
dt

dt

∣∣∣∣ds ≤ 2
∫

F

{∫ s

QF

|v(t)|∣∣dv(t)
dt

∣∣dt

}
ds

≤ 2|F |
∫

F

|v(t)|∣∣dv(t)
dt

∣∣dt ≤ 2h‖v‖0,F

∥∥dv

ds

∥∥
0,F

≤ 2h‖v‖0,F |v|1,F

from which the estimate (3.5) is proved. Moreover

‖v‖2
0,F ≤ 2

∫
F

∣∣∣∣
∫ s

QF

v(t)
dv(t)
dt

dt

∣∣∣∣ds ≤ 2|F |
∫

F

|v(t)|
∣∣∣∣dv(t)

dt

∣∣∣∣dt

≤ 2h‖v‖1/2,F

∥∥dv

dt

∥∥
−1/2,F

≤ Ch‖v‖2
1/2,F
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which verifies the estimate (3.6).

Lemma 3.3. Let u and uh be the solutions of the problems (2.1) and (2.6), respectively. If
u ∈ H2(Ω), then

−
∑

F∈Γ−
Ch

∫
F

∂νu · uhds ≤ Ch|u|2,Ω‖u − uh‖h + Ch3/2‖u‖2
2,Ω, (3.7)

where C is a positive constant independent of h.
Proof. For given F ∈ Γ−

Ch, if uh ≥ 0 identically on F , then − ∫
F

∂νu · uhds ≤ 0, since
∂νu ≥ 0 a.e. on ΓC . Thus we only need to consider the case that F ∈ Γ−

Ch but uh ≥ 0 does
not identically hold on F . Then, for those F , because uh ∈ Kh we have uh(mF ) ≥ 0, with mF

being the midpoint of F , and by the linearity of uh on F , there must be some QF ∈ F , such
that uh(QF ) = 0. Set

PF
0 (v) =

1
|F |

∫
F

v ds, RF
0 (v) = v − PF

0 (v). (3.8)

Then,

−
∫

F

∂νu · uhds = −
∫

F

RF
0 (∂νu)uhds − PF

0 (∂νu)
∫

F

uhds

≤ −
∫

F

RF
0 (∂νu)uhds ≤ ‖RF

0 (∂νu)‖0,F ‖uh‖0,F (3.9)

since ∂νu ≥ 0 a.e. on F , PF
0 (∂νu) ≥ 0 and

∫
F

uhds = |F |uh(mF ) ≥ 0. By the interpolation
error estimates in [7] and (3.4) for p = 2, we have for F ⊂ ∂T ,

‖RF
0 (∂νu)‖2

0,F ≤ 2
{∫

F

|RF
0 (∂1u)|2ds +

∫
F

|RF
0 (∂2u)|2ds

}
≤ 2

{∫
F

|RT
0 (∂1u)|2ds +

∫
F

|RT
0 (∂2u)|2ds

} ≤ Ch|u|22,T , (3.10)

where RT
0 (v) = v −PT

0 (v) = v − 1
|T |

∫
T

vdx. Thus, using the fact uh(QF ) = 0, (3.5), (3.10) and
Lemma 3.1 for p = 2, one yields

−
∫

F

∂νu · uhds ≤ Ch3/2|u|2,T |uh|1,F

≤ Ch3/2|u|2,T (|u − uh|1,F + |u|1,F )

≤ Ch3/2|u|2,T (h−1|u − uh|21,T + h|u|22,T )1/2 + Ch3/2|u|2,T |u|1,F

≤ Ch|u|2,T |u − uh|1,T + Ch2|u|22,T + Ch3/2|u|2,T |u|1,F

where F ⊂ ∂T . Consequently,

−
∑

F∈Γ−
Ch

∫
F

∂νu · uhds ≤ Ch|u|2,Ω‖u − uh‖h + Ch2|u|22,Ω + Ch3/2|u|2,Ω‖u‖1,∂Ω,

from which the proof is completed by trace theorem.
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Lemma 3.4. Let u and uh be the solutions of the problems (2.1) and (2.6), respectively. If
u ∈ H2(Ω) and the number of the critical points on ΓC is finite, then

−
∑

F∈Γ−
Ch

∫
F

∂νu · uhds ≤ Ch|u|2,Ω‖u − uh‖h + Ch2| log h|1/2‖u‖2
2,Ω, (3.11)

where C is a positive constant independent of h.
Proof. To begin with, following the same analysis used in the proof of Lemma 3.3, we only

need to consider those F such that uh has at least one zero point QF on F . Then, for these F ,
by (3.5) we have

‖uh‖0,F ≤ Ch‖duh

ds
‖0,F . (3.12)

It is easy to see that (3.9) and (3.10) are still valid. Therefore, from (3.9),(3.10) and (3.12) we
have

−
∫

F

∂νu · uhds ≤ Ch3/2|u|2,T

∥∥duh

ds

∥∥
0,F

≤ Ch3/2|u|2,T (
∥∥duh

ds
− du

ds

∥∥
0,F

+
∥∥du

ds

∥∥
0,F

)

≤ Ch3/2|u|2,T (|u − uh|1,F +
∥∥du

ds

∥∥
0,F

)

≤ Ch3/2|u|2,T (h−1|u − uh|21,T + h|u|22,T )1/2 + Ch3/2|u|2,T

∥∥du

ds

∥∥
0,F

≤ Ch|u|2,T |u − uh|1,T + Ch2|u|22,T + Ch3/2|u|2,T

∥∥du

ds

∥∥
0,F

. (3.13)

Notice that Du|ΓC ∈ H1/2(ΓC) ↪→ Lp(ΓC) with ‖v‖0,p,ΓC ≤ C
√

p ‖v‖1/2,ΓC
for any v ∈

H1/2(ΓC) and 1 ≤ p < ∞ (see [3, Lemma 5.1]). Therefore,

∥∥ du
ds

∥∥2

0,F
≤

( ∫
F

1ds

)1−2/p( ∫
F

∣∣du

ds

∣∣pds

)2/p

≤ Ch1−2/p
∥∥du

ds

∥∥2

0,p,F
≤ Ch1−2/p

∥∥du

ds

∥∥2

0,p,ΓC

≤ Ch1−2/p p ‖Du‖2
1/2,ΓC

≤ Ch1−2/p p ‖u‖2
2,Ω, (3.14)

which implies

∥∥du

ds

∥∥
0,F

≤ Ch1/2−1/p√p ‖u‖2,Ω. (3.15)

From (3.13),(3.15), choosing p = | log h| and summing over all F ∈ Γ−
Ch, we have

−
∑

F∈Γ−
Ch

∂νu · uhds

≤ Ch|u|2,Ω‖u − uh‖h + Ch2|u|22,Ω + Ch2 h−1/p√p ‖u‖2,Ω

∑
F∈Γ−

Ch
F⊂∂T

|u|2,T

≤ Ch|u|2,Ω‖u − uh‖h + Ch2| log h|1/2‖u‖2
2,Ω.

since the number of the critical points is finite. The proof of this lemma is complete.
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4. Main Results and Proofs

In this section, we present the main results of the error estimate for the Crouzeix-Raviart
linear element approximation to Signorini problem stated in (2.1). In fact, Slimane [15] inves-
tigated the Crouzeix-Raviart approximation to the Signorini problem and obtained a conver-
gence rate of O(h3/4). In this paper we first provide a quasi-optimal error of the nonconforming
method under some reasonable assumption (Theorem 4.1). Furthermore, if additional regular-
ity is assumed, optimality can be achieved (Theorem 4.2). Finally, if u ∈ W 2,p(Ω) with p > 2
we have optimal convergence rate even without the assumption that the number of the critical
points is finite (Theorem 4.3).

Theorem 4.1. Let u, uh be the solutions of (2.1) and (2.6), respectively. If u ∈ H2(Ω), and
the number of the critical points on ΓC is finite, then we have

‖u − uh‖h ≤ Ch| log h|1/4‖u‖2,Ω. (4.1)

Theorem 4.2. Let u, uh be the solutions of (2.1) and (2.6), respectively. If u ∈ H2(Ω), and
the number of the critical points on ΓC is finite and u|∂Ω ∈ W 1,∞(∂Ω), then

‖u − uh‖h ≤ Ch

{
|u|2,Ω

(‖u‖2,Ω + |u|1,∞,∂Ω

)}1/2

. (4.2)

Theorem 4.3. Let u, uh be the solutions of (2.1) and (2.6), respectively. If u ∈ W 2,p(Ω) with
p > 2, then

‖u − uh‖h ≤ Ch‖u‖2,p,Ω. (4.3)

We point out that for the continuous linear element approximation to Signorini problem
the above results (2.1)-(2.2) have been obtained in [14, 5, 2]. However, for the nonconform-
ing Crouzeix-Raviart finite element approximation we will see later that the analysis of error
estimates are more difficult.

Before verifying the main results, we present the following lemmas.
Lemma 4.1. Let u, uh be the solutions of (2.1) and (2.6), respectively. If u ∈ H2(Ω), then we
have

‖u − uh‖2
h ≤ C

{
h2|u|22,Ω +

∑
F∈ΓCh

∫
F

∂νu(Πhu − uh)ds
}
, (4.4)

where Πh is the linear interpolator operator of Crouzeix-Raviart finite element.
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Proof. By the abstract error estimate (2.7) as well as (2.2), we get

Eh(u, vh − uh) := ah(u, vh − uh) − χ(vh − uh)

=
∑
T

∫
T

∇u · ∇(vh − uh)dx −
∫

Ω

f(vh − uh)dx −
∫

Γg

g(vh − uh)ds

= −
∫

Ω

(	u + f)(vh − uh)dx +
∑
T

∫
∂T

∂νu(vh − uh)ds −
∫

Γg

g(vh − uh)ds

=
∑
T

∑
F⊂∂T
F �∂Ω

∫
F

∂νu(vh − uh)ds +
∑

F∈ΓDh

∫
F

∂νu(vh − uh)ds +
∑

F∈ΓCh

∫
F

∂νu(vh − uh)ds

=: I1 + I2 + I3. (4.5)

Let wh = vh − uh. By the standard interpolation error estimates of Crouzeix-Raviart finite
element[8], we have

I1 =
∑
T

∑
F⊂∂T

F �∂Ω

∫
F

∂νu · whds ≤ Ch|u|2,Ω‖wh‖h, (4.6)

I2 =
∑

F∈ΓDh

∫
F

∂νu · whds ≤ Ch|u|2,Ω‖wh‖h. (4.7)

Combining (4.5)-(4.7) gives

Eh(u, vh − uh) ≤ Ch|u|2,Ω‖vh − uh‖h + I3. (4.8)

Thus, by (4.7), the definition of Eh(u, vh − uh), (4.8) together with the triangular inequality, it
is easy to see

‖u − uh‖2
h ≤ C inf

vh∈Kh

{
‖u − vh‖2

h + Ch|u|2,Ω

(‖u − vh‖h + ‖u − uh‖h

)
+ I3

}
.

Using Young’s inequality

ab ≤ ε

2
a2 +

1
2ε

b2, ∀ ε > 0,

we obtain

‖u − uh‖2
h ≤ C inf

vh∈Kh

{
‖u − vh‖2

h + I3

}
+ Ch2|u|22,Ω.

Notice also that Πhv ∈ Kh for all v ∈ K. Choosing vh = Πhu in the above inequality and
using the standard interpolation error estimates of Crouzeix-Raviart linear finite element[8], we
derive

‖u − uh‖2
h ≤ C

(
h2|u|22,Ω + I3

)
= C

{
h2|u|22,Ω +

∑
F∈ΓCh

∫
F

∂νu(Πhu − uh)ds
}
, (4.9)

which completes our proof.
With Lemma 4.1 at hand, in order to prove the above theorems, we only need to handle the

last term of the right-hand side of (4.9), i.e., I3 =
∑

F∈ΓCh

∫
F ∂νu(Πhu − uh) ds.
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4.1. Proof of Theorem 4.1

Note from (2.2) that ∂νu = 0 on Γ+
Ch and ∂νu · u = 0 on ΓC ,

I3 =
∑

F∈ΓCh

∫
F

∂νu(Πhu − uh)ds

=
∑

F∈Γ0
Ch

∫
F

∂νu(Πhu − uh)ds +
∑

F∈Γ−
Ch

∫
F

∂νu(Πhu − uh)ds

=
∑

F∈Γ0
Ch

∫
F

∂νu(Πhu − uh)ds +
∑

F∈Γ−
Ch

∫
F

∂νu(Πhu − u)ds −
∑

F∈Γ−
Ch

∫
F

∂νu · uhds

=: D1 + D2 + A. (4.10)

Moreover, for any F ∈ Γ0
Ch,∫

F

(Πhu − uh)ds = |F |(Πhu − uh)(mF ) = −uh(mF )|F | ≤ 0,

where mF is the midpoint of F. Then by Lemma 3.1 for p = 2, it follows easily that∫
F

∂νu(Πhu − uh)ds ≤
∫

F

RF
0 (∂νu)(Πhu − uh)ds

=
∫

F

RF
0 (∂νu)(Πhu − u)ds +

∫
F

RF
0 (∂νu)RF

0 (u − uh)ds

≤ ‖RF
0 (∂νu)‖0,F (‖Πhu − u‖0,F + ‖RF

0 (u − uh)‖0,F )

≤ Ch1/2|u|2,T (h3/2|u|2,T + h1/2|u − uh|1,T ) ≤ Ch2|u|22,T + Ch|u|2,T |u − uh|1,T .

Hence,

D1 ≤ Ch2|u|22,Ω + Ch|u|2,Ω‖u − uh‖h. (4.11)

Now we turn to estimate D2. Notice that for the interpolation error estimates of the Crouzeix-
Raviart element, we have

‖Πhu − u‖0,T ≤ Ch2|u|2,T , ‖Πhu − u‖1,T ≤ Ch|u|2,T ,

‖Πhu − u‖2,T ≤ C|u|2,T .

Then using the theory of interpolation spaces [6] yields

‖Πhu − u‖0,p,T ≤ Ch1+2/p|u|2,T , |Πhu − u|1,p,T ≤ Ch2/p|u|2,T . (4.12)

Consequently, by Lemma 3.1, for any F ∈ Γ−
Ch,∫

F

∂νu(Πhu − u)ds ≤ ‖∂νu‖0,p′,F ‖Πhu − u‖0,p,F

≤ C‖∂νu‖0,p′,F (h−1‖Πhu − u‖p
0,p,T + hp−1|Πhu − u|p1,p,T )1/p

≤ C‖∂νu‖0,p′,F (hp+1|u|p2,T )1/p

≤ Ch1+1/p|u|2,T ‖∂νu‖0,p′,F ≤ Ch1+1/p|u|2,T ‖∂νu‖0,p′,ΓC .
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Note that H1/2(ΓC) ↪→ Lp′
(ΓC), (1 ≤ p′ < +∞) and ‖∂νu‖0,p′,ΓC ≤ C

√
p′ ‖∂νu‖1/2,ΓC

(see [3]).
Then under the assumption of finite number of critical points on ΓC , we obtain

D2 =
∑

F∈Γ−
Ch

∫
F

∂νu(Πhu − u)ds ≤ Ch1+1/p‖∂νu‖0,p′,ΓC

∑
F∈Γ−

Ch

|u|2,T

≤ Ch1+1/p
√

p′‖u‖2
2,Ω ≤ C

√
p′h−1/p′

h2‖u‖2
2,Ω,

where 1/p + 1/p′ = 1. Choosing p′ = | log h|, we obtain

D2 ≤ Ch2| log h|1/2‖u‖2
2,Ω. (4.13)

Finally, using Lemma 3.4, we can estimate the last term in (4.10)

A ≤ Ch|u|2,Ω‖u − uh‖h + Ch2| log h|1/2‖u‖2
2,Ω. (4.14)

We can finish the proof of Theorem 4.1 by using (4.10), (4.11), (4.13), (4.14) together with
(4.9) and Young’s inequality.

4.2. Proof of Theorem 4.2

Following the proof of Theorem 4.1, to improve the convergence rate from O(h| log h|1/4) to
O(h), it is sufficient to re-estimate the term D2 and A in I3 since the estimate of D1 in (4.11) is
optimal and still valid. For all F ∈ Γ−

Ch, by Lemma 3.1 with p = 2 and the interpolation error,∫
F

∂νu(Πhu − u)ds ≤ ‖∂νu‖0,∞,F

∫
F

|Πhu − u|ds

≤ Ch1/2‖∂νu‖0,∞,F‖u − Πhu‖0,F

≤ Ch2|u|1,∞,F |u|2,T ,

from which we deduce that

D2 =
∑

F∈Γ−
Ch

∫
F

∂νu(Πhu − u)ds

≤ Ch2|u|1,∞,ΓC

∑
F∈Γ−

Ch

|u|2,T ≤ Ch2|u|1,∞,ΓC |u|2,Ω. (4.15)

Here we have used the assumption that the number of the critical points is finite. Furthermore,
following the same line of the proof of Lemma 3.4, (3.13) is still valid in this case. Namely,

−
∫

F

∂νu · uhds ≤ Ch|u|2,T |u − uh|1,T + Ch2|u|22,T + Ch3/2|u|2,T

∥∥du

ds

∥∥
0,F

. (4.16)

Now

∥∥du

ds

∥∥2

0,F
≤ Ch

∥∥du

ds

∥∥2

0,∞,F
≤ Ch|u|21,∞,ΓC

. (4.17)

Thus, by (4.16)(4.17) and summing over all F ∈ Γ−
Ch yields

A ≤ Ch|u|2,Ω‖u − uh‖h + Ch2|u|22,Ω + Ch2|u|2,Ω|u|1,∞,ΓC . (4.18)
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Therefore, the estimate (4.2) follows from (4.9)-(4.11), (4.15), (4.18) and Young’s inequality.
Hence, the proof is complete.

4.3. Proof of Theorem 4.3

We still denote

I3 = D1 + D2 + A. (4.19)

The bound of D1 given by (4.11) is still valid. Observe that now u ∈ W 2,p(Ω), p > 2, so
u|∂Ω ∈ W 2−1/p,p(∂Ω). By Sobolev imbedding theorem[1], we know ∂νu|∂Ω ∈ W 1−1/p,p(∂Ω) ↪→
C0(∂Ω). For any F ∈ Γ−

Ch, by (2.2) we deduce that there exists some xF ∈ F such that
∂νu(xF ) = 0. Moreover, D2 can be re-estimated as

D2 =
∑

F∈Γ−
Ch

∫
F

∂νu (Πhu − u)ds =
∑

F∈Γ−
Ch

∫
F

(∂νu − ∂νu(xF )) (Πhu − u)ds

≤
∑

F∈Γ−
Ch

‖∂νu − ∂νu(xF )‖0,F ‖Πhu − u‖0,F

≤
∑

F∈Γ−
Ch

Ch1−1/p|∂νu|1−1/p,F Ch3/2|u|2,T

≤ Ch5/2−1/p|∂νu|1−1/p,ΓC
‖u‖2 ≤ Ch2‖u‖2

2,p, (4.20)

where we have used Lemma 8.1 in [4], the discrete trace inequality (3.4) and the standard
interpolation error estimates. Next, we turn to bound A. As discussed above, we only need to
consider those F such that uh has at least one zero point on it. Thus, by (3.5) one yields

‖uh‖0,F ≤ Ch
∥∥duh

ds

∥∥
0,F

. (4.21)

For F ∈ Γ−
Ch, u also has at least one zero point which we may denote by QF , i.e., u(QF ) = 0.

If there exists some neighborhood W ⊂ F of QF such that u(x)|W = 0, then there must be
du
ds (QF ) = 0. Otherwise, there exists some neighborhood W ⊂ F of QF such that u(x) > 0 in
W except QF itself. Under the latter case, it is easy to check QF is the minimum point in W

which implies du
ds (QF ) = 0 since du

ds ∈ C0(∂Ω). In short, there exists some QF ∈ F such that
du
ds (QF ) = 0. In addition, following the proof of Lemma 3.4 we know (3.13) still holds. Thus,
it follows from (3.6) that

∥∥du

ds

∥∥
0,F

≤ Ch1/2
∥∥du

ds

∥∥
1/2,F

≤ Ch1/2|u|3/2,F .
(4.22)

Combining (3.13) and (4.22) and summing over all F ∈ Γ−
Ch, it follows that

A = −
∑

F∈Γ−
Ch

∫
F

∂νu · uhds ≤ Ch|u|2,Ω‖u − uh‖h + Ch2‖u‖2
2,Ω. (4.23)

Finally, using (4.9),(4.11),(4.19),(4.20),(4.23) and Young’s inequality we complete the proof of
Theorem 4.3.
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5. Numerical Experiments

In this section, we will show by numerical experiments the convergence of the nonconforming
Crouzeix-Raviart finite element approximation of Signorini problem. We make a comparison
between our Crouzeix-Raviart approximation and the continuous linear approximation.

We consider Signorini problem in Ω = [0, 1] × [0, 1] where the Dirichlet boundary ΓD is
[0, 1]×{1}, the contact boundary ΓC is [0, 1]×{0}, while the rest of ∂Ω, that is Γg, is subjected
to Neumman boundary condition. To be more specific,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−	u = 2π sin(2πx), in Ω,

u = 0, on ΓD,

∂νu = 0, in Γg,

u ≥ 0, ∂νu ≥ 0, ∂νu · u = 0, on ΓC .

(5.1)

Since an explicit solution of Signorini problem is not available, we use the discrete solution by
the continuous linear elements (h = 1/512) as the reference solution. Then on the coarser mesh
size of h = 1/2, 1/4, · · · , 1/64, we compute the approximation solution uh using the Crouzeix-
Raviart and continuous linear elements, respectively. Fig 5.1 is the continuous linear element
reference solution on uniform mesh size h = 1/512. It is plotted by the interpolation of the
reference solution on mesh size h = 1/32.
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Fig. 5.1. The reference solution for problem (5.1).

From Fig 5.1 we can see that there is only one point that changes from binding to non-
binding, i.e., the number of the critical points is one. Next, we compare the errors comparison
between Crouzeix-Raviart approximation and the continuous linear approximation. The nota-
tion CF stands for conforming solution while NCF the nonconforming one.

To consider the convergence rate of Crouzeix-Raviart approximation, we plot the errors
using the logarithm scales (see Fig 5.2 and 5.3). It can be checked that the slope of the curve
represents the convergence rate.

Finally, we can see that the average slope of the continuous linear element approxima-
tion is about 1.89 in Fig 5.2 and 0.98 in Fig 5.3, while the corresponding average slopes of
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L2 error H1 error

N CF NCF CF NCF
2 0.10075495 0.14182150 0.69048776 0.72540780
4 0.02822581 0.02318398 0.34568311 0.31868764
8 0.00858278 0.00637450 0.18152995 0.16304303
16 0.00199802 0.00163432 0.09264809 0.08286176
32 0.00053274 0.00042440 0.04649183 0.04174806
64 0.00014134 0.00009866 0.02317579 0.02100774

Table 5.1: Numerical errors in L2 and H1 norm error. CF, stands for conforming solution, and NCF

is the nonconforming solution.

Fig. 5.2. L2−norm error. Fig. 5.3. H1−norm error.

Crouzeix-Raviart linear element approximation are about 2.10 and 1.02, respectively. There-
fore, numerical experiments show that the convergence rates of the two methods are of O(h2)
in L2 norm and O(h) in H1 norm, respectively.
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