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Abstract

For a photonic crystal (PhC) of finite size, it is important to calculate its transmission

and reflection spectra. For two-dimensional (2-D) PhCs composed of a square lattice of

circular cylinders, the problem can be solved by an efficient method based on the Dirichlet-

to-Neumann (DtN) map of the unit cell and a marching scheme using a pair of operators.

In this paper, the DtN operator marching method is extended to handle 2-D PhCs with

complex unit cells and arbitrary lattice structures.

Mathematics subject classification: 78A45, 65Z05.

Key words: Photonic crystal, Periodic structure, Diffractive grating, Dirichlet-to-Neumann
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1. Introduction

In recent years, photonic crystals (PhCs) have attracted much attention due to their unusual

ability to manipulate light [1]. Many applications of PhCs have been proposed and realized in

experiments. Numerical simulations are essential to understand the basic properties of PhCs

and to design and optimize related components and devices. PhCs give rise to a number of

interesting and challenging mathematical problems. For an infinite PhC, it is important to

calculate its band structure. For PhCs with point defects and line defects, it is necessary to

calculate the defect modes. If the PhC is finite in one direction, we need to solve a scattering

problem for each given incident wave. The more general PhC structures, such as waveguide

bends and branches, give rise to challenging boundary value problems.

One important problem is to analyze the transmission and reflection of a given plane wave

incident upon a PhC of finite size. This problem is usually studied for many frequencies to

produce the transmission and reflection spectra. Existing numerical methods developed for

diffraction gratings, such as the Fourier modal method [2-7] and the finite element method

[8], can be used to solve this problem. Special methods that take advantage of the geometric

simplicity of PhCs are often more efficient. The multipole method [9-14] is a semi-analytic

method suitable for PhCs composed of a lattice of circular cylinders. The boundary integral

equation method [15] also has some advantages, since it only solves the wave field on surfaces

of the cylinders. To take advantage of the partial periodicity in the direction where the PhC

is finite, the scattering matrix formalism [10] and Floquet mode expansions [12, 13] can be

used. In a recent paper [16], we developed a Dirichlet-to-Neumann (DtN) operator marching

method for two-dimensional (2-D) PhCs composed of a square (or rectangular) lattice of circular
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cylinders. The method takes full advantage of the geometric simplicity of a typical PhC. It uses

a cylindrical wave expansion to construct the DtN map of the unit cell and to march two

operators from one side of the PhC to another. A discretization in the unit cell is completely

avoided. Compared with the multipole and the boundary integral equation methods, the DtN

marching method is simpler, since it does not need sophisticated lattice sums techniques.

In this paper, we extend the DtN operator marching method to 2-D PhCs with general lattice

structures and complex unit cells. By a complex unit cell, we refer to a unit cell containing

more than one possibly different cylinders. While a complex unit cell can be divided into a few

sub-cells each containing only one cylinder, the PhC is not periodic on the scale of the sub-cells.

The additional freedom associated with different types of sub-cells can be used to design new

devices, such as the photonic crystal resonator arrays in [17]. For PhCs with complex unit cells,

we develop a merging technique that computes the DtN map of the complex unit cell from the

DtN maps of its sub-cells. We also develop a shifting strategy for arbitrary 2-D lattices. The

method works particularly well for the important case of triangular lattices. The efficiency and

accuracy of our method are illustrated by a number of numerical examples.

2. The DtN Operator Marching Method

We consider a two-dimensional (2-D) photonic crystal (PhC) that is infinite in the x-direction

and finite in the y-direction. The structure is periodic in x with period L and limited in y for

0 < y < D, where D is the width of the PhC. For y < 0 (the bottom) and y > D (the top), we

assume that the medium is homogeneous with constant refractive index nb and n0, respectively.

For an incident wave given in y > D, the scattering problem is to calculate the reflected wave

in y > D and the transmitted wave in y < 0.

For the E-polarization, the z-component of the time-harmonic electric field, denoted by u

in this paper, satisfies the following Helmholtz equation

∂2u

∂x2
+

∂2u

∂y2
+ k2

0n
2 u = 0, (2.1)

where n = n(x, y) is the refractive index function and k0 is the free space wavenumber. For a

plane incident wave, the scattering problem can be formulated as a boundary value problem of

Eq. (2.1) in the rectangular domain given by 0 < x < L and 0 < y < D. For y > D, we have

u = u(r) + u(i), where u(i) and u(r) are the incident and reflected waves given by

u(i)(x, y) = ei[α0x−β0(y−D)], u(r)(x, y) =
∞
∑

j=−∞

Rje
i[αjx+βj(y−D)], y > D, (2.2)

where β0 is positive and Rj is an unknown reflection coefficient. If we denote θ0 the angle

between the wave vector (α0,−β0) and the y-axis, then

α0 = k0n0 sin θ0, β0 = k0n0 cos θ0, αj = α0 +
2jπ

L
, βj =

√

k2
0n

2
0 − α2

j .

For y < 0, we have only a transmitted wave given by

u = u(t)(x, y) =

∞
∑

j=−∞

Tje
i[αjx−γjy], for y < 0 and γj =

√

k2
0n

2
b − α2

j ,
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where Tj is an unknown transmission coefficient. The periodicity of the structure in the x

direction gives rise to the following quasi-periodic conditions:

u(L, y) = ρ u(0, y),
∂u

∂x
(L, y) = ρ

∂u

∂x
(0, y), (2.3)

where ρ = eiα0L. With a proper definition of two operators S̃0 and S̃b [18, 16], the boundary

conditions at y = 0 and y = D can be written down as:

∂u

∂y
= −iS̃b u, y = 0, (2.4)

∂u

∂y
= iS̃0 u − 2iβ0e

iα0x, y = D. (2.5)

As a standard diffractive optics problem, the boundary value problem (2.1)-(2.5) can be solved

by many existing numerical methods [2-8]. However, most of these methods fail to take ad-

vantage of the geometric simplicity of photonic crystals, since they are not specially designed

for these PhCs. The DtN operator marching method was originally developed for waveguide

problems [19]. It relies on two operators Q and Y defined at any fixed y∗ as

Q(y∗)u(x, y∗) =
∂u

∂y
(x, y∗), Y (y∗)u(x, y∗) = u(x, 0), (2.6)

where u is an arbitrary solution of (2.1) satisfying (2.3) and (2.4). Condition (2.5) is excluded

in the above definition. Thus, Q and Y are defined for the infinitely many solutions of (2.1)

together with (2.3) and (2.4). The operator Q is the global DtN map which maps the Dirichlet

data u to the Neumann data ∂yu. The operator Y is the fundamental solution (FS) operator.

The main idea is to march these two operators (which are approximated by matrices) from

y = 0 to y = D. At y = 0, the boundary condition (2.4) gives rise to Q(0) = −iS̃b. The

definition of Y implies that Y (0) = I, where I is the identity operator. If we know Q(D), then

the condition (2.5) gives rise to the following equation for solving the total field at y = D:

[Q(D) − iS̃0] u(x, D) = −2iβ0e
iα0x. (2.7)

The reflected wave is obtained from subtracting the incident wave from the total wave field,

that is

u(r)(x, D+) = u(x, D) − u(i)(x, D+) = u(x, D) − eiα0x. (2.8)

To find the transmitted wave, we need the operator Y (D). We have

u(t)(x, 0−) = u(x, 0) = Y (0)u(x, D). (2.9)

To present the marching scheme, we divide y as

0 = y0 < y1 < · · · < ym = D.

For a photonic crystal, the rectangular region Ωj = {(x, y) | 0 < x < L, yj < y < yj+1} usually

corresponds to a unit cell. To march the operator Q and Y from yj to yj+1, the reduced DtN

map M is required. The operator M is defined by

M

[

uj

uj+1

]

=

[

M11 M12

M21 M22

] [

uj

uj+1

]

=

[

∂yuj

∂yuj+1

]

,
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where u is any solution of (2.1) and (2.3), uj = u(x, yj), ∂yuj = ∂yu(x, yj), etc. In the above,

we have a 2× 2 partition of the matrix operator M . Each block of M , i.e., Mij , is an operator

acting on functions of x (for 0 < x < L). From the definitions of Q, Y and M , the following

marching formulas can be easily derived [16]:

Q(yj+1) = M22 + M21[Q(yj) − M11]
−1M12, (2.10)

Y (yj+1) = Y (yj)[Q(yj) − M11]
−1M12. (2.11)

The operator M can be constructed from another DtN map Λ which is the DtN map of the unit

cell Ωj . Let Γj be the boundary of Ωj . The operator Λ maps u on Γj to the normal derivative

of u on Γj , where u is any solution of the Helmholtz equation (2.1). More precisely, we have

Λ









uj

v0j

v1j

uj+1









=









∂yuj

∂xv0j

∂xv1j

∂yuj+1









,

where v0j = u(0, y), v1j = u(L, y) for yj < y < yj+1, ∂xv0j = ∂xu(0, y), etc. For rectangular

unit cells, the normal derivative on the boundary is simply taken to be the partial derivative

with respect to x or y. If we partition Λ as 4 × 4 blocks and use the quasi-periodic conditions

(2.3) to eliminate v0j and v1j , we obtain [16]

M =

[

Λ11 Λ14

Λ41 Λ44

]

+

[

C1D1 C1D2

C2D1 C2D2

]

, (2.12)

where C1, C2, D1 and D2 are operators given by

C1 = Λ12 + ρΛ13, C2 = Λ42 + ρΛ43,

D0 = ρΛ22 + ρ2Λ23 − Λ32 − ρΛ33,

D1 = D−1
0 (Λ31 − ρΛ21), D2 = D−1

0 (Λ34 − ρΛ24).

For unit cells containing a single circular cylinder, a matrix approximation to Λ can be con-

structed from the cylindrical wave expansion for solutions of the Helmholtz equation [16]. If N

collocation points are used for 0 < x < L, the operators Q, Y and Mij are all approximated by

N × N matrices. Typically, accurate results can be obtained with N < 10.

3. DtN Map for Complex Unit Cells

In many situations, the basic period of a PhC is a combination of more than one circular

cylinders. To distinguish from a unit cell containing only one cylinder, the basic period of such

a PhC will be called a complex unit cell. We assume that there are no overlaps between the

cylinders in the photonic crystal. A complex unit cell may comprise a number of sub-cells each

containing one cylinder. The cylinders in a complex unit cell may have different radii, different

refractive indices and different locations in the sub-cells.

The DtN map for such a complex unit cell can be obtained by merging the DtN maps of

sub-cells. In the following, we first consider a complex unit cell containing two sub-cells S1 and

S2 as shown in Fig. 3.1. Let Θ and ∆ be the DtN maps of the sub-cells S1 and S2, respectively,
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v1 v3v2
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y

Fig. 3.1. A complex unit cell containing two sub-cells.

i.e.,

Θ









u1

v1

v2

u2









=









∂yu1

∂xv1

∂xv2

∂yu2









, ∆









u3

v3

v4

u4









=









∂yu3

∂xv3

∂xv4

∂yu4









, (3.1)

where uj and vj , for 1 ≤ j ≤ 4, are the wave field u evaluated on the edges of the sub-cells. For

the E polarization, both the field and its derivative are continuous. Therefore,

v2 = v3, ∂xv2 = ∂xv3. (3.2)

Using these conditions, v2 or v3 can be solved from the third equation of Θ and the second

equation of ∆ in (3.1). Inserting them into the remaining equations of (3.1), we obtain the

following DtN map Λ for the complex unit cell:

Λ =



















Θ11 0 Θ12 0 Θ14 0

0 ∆11 0 ∆13 0 ∆14

Θ21 0 Θ22 0 Θ24 0

0 ∆31 0 ∆33 0 ∆34

Θ41 0 Θ42 0 Θ44 0

0 ∆41 0 ∆43 0 ∆44



















+



















Θ13

∆12

Θ23

∆32

Θ43

∆42



















H−1G,

where

H = ∆22 − Θ33, G = [Θ31,−∆21, Θ32,−∆23, Θ34,−∆24] .

The DtN map Λ acts on the column vector (u1, u3, v1, v4, u2, u4)
T . In the discrete case, the

matrix H−1G above can be obtained by solving a linear system with the coefficient matrix H .

Since the size of the matrices is typically quite small, the merging of two DtN maps can be

done efficiently.

The DtN map for a complex unit cell containing more than two cylinders can be calculated

by using the above algorithm repeatedly. For the H polarization and when the media outside

the cylinders in the two sub-cells are different, the above merging step must be modified to take

care of a different interface condition.

4. General Lattice Structures

In our previous work [16], the transmission and reflection spectra are calculated for PhCs

composed of a square or a rectangular lattice. In that case, the rectangular domain Ωj given
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x

y

O L

Fig. 4.1. The vertical strip Ω of a four layered triangular lattice.

by 0 < x < L and yj < y < yj+1 corresponds to a unit cell containing a cylinder at its center.

A general infinite PhC has two translation vectors ~a1 and ~a2, such that

n(~x) = n(~x + p1~a1 + p2~a2), (4.1)

where ~x = (x, y), p1 and p2 are arbitrary integers. In this paper, we assume ~a1 = (L, 0) so

that the structure is periodic in x with period L. For a non-rectangular lattice, the vector ~a2

is not parallel to the y-axis. One possible approach is to work on the parallelogram domain

whose edges are parallel to ~a1 and ~a2, respectively. In that case, the domains Ω0, Ω1, · · · , are

identical parallelogram unit cells. However, an accurate DtN map of such a unit cell is difficult

to obtain due to the loss of a symmetry. Besides, the x-derivative, rather than the true normal

derivative, must be used on the oblique edges, since we need to make use of the quasi-periodic

conditions.

We choose to work on the vertical strip Ω given by 0 < x < L and 0 < y < D even for

a non-rectangular lattice. In this case, the rectangular unit cell Ωj (for yj < y < yj+1) may

contain separated partial cylinders as shown in Fig. 4.1. For the important special case of

a triangular lattice with ~a2 = (L/2,
√

3L/2), there are only two different types of cells: the

standard one with a cylinder at the center and the other one with two half-cylinders attached

to the vertical edges. If we approximate the DtN map Λ of Ω1 (the second unit cell from

bottom in Fig. 4.1), the result may not be satisfactory, since the vertical edges intersect with

the cylinders. However, we notice that Ω1 is just a horizontal translation of a standard unit cell

containing the cylinder at its center. Furthermore, the DtN map Λ is not directly used in the

operator marching scheme. In fact, it is only used (together with the quasi-periodic conditions)

to obtain the reduced DtN map M . In the following, we show that the operator M for Ω1 can

be obtained from the corresponding operator of a standard unit cell directly.

Consider a general lattice vector ~a2 and the unit cell Ω1 given by 0 < x < L and y1 <

y < y2 as shown in Fig. 4.2. We look for the reduced DtN operator M that maps [u1, u2]
T
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0 b L L+b
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Fig. 4.2. The unit cell Ω1 and its shifted cell Ω̃1.

to the y-derivative of u at y1 and y2, where uj = u(x, yj) for j = 1, 2 and 0 < x < L. Let

x = b ∈ (0, L) be the midpoint between two nearby cylinders, a standard unit cell Ω̃1 is obtained

if we shift Ω1 horizontally by a distance of b. More precisely, Ω̃1 is given by b < x < L + b

and y1 < y < y2. Using a column vector notation, we let u1 = [u11, u12]
T and u2 = [u21, u22]

T ,

where uj1 = u(x, yj) for 0 < x < b, uj2 = u(x, yj) for b ≤ x < L and j = 1, 2. We also consider

L < x < L + b and let uj3 = u(x, yj) for L < x < L + b and j = 1, 2. From the quasi-periodic

conditions, we have

uj3 = ρuj1, for ρ = eiα0L.

Let M̃ be the reduced DtN map of the standard unit cell Ω̃1 satisfying

M̃









u12

u13

u22

u23









=
∂

∂y









u12

u13

u22

u23









, (4.2)

where ∂yujk denotes ∂yu evaluated at yj in the corresponding interval of x. If we define an

operator T such that

T

[

uj1

uj2

]

=

[

uj2

ρuj1

]

=

[

uj2

uj3

]

, j = 1, 2,

and insert the above into Eq. (4.2), we obtain

M =

[

T

T

]−1

M̃

[

T

T

]

,

where M satisfies

M

[

u1

u2

]

=
∂

∂y

[

u1

u2

]

.

If we write down the operators M and M̃ in 2 × 2 blocks, we have

Mij = T−1M̃ijT, for i, j = 1, 2. (4.3)

In the discrete case, if N sampling points are used for 0 < x < L, the functions u1 and u2

are approximated by column vectors of length N , the operators Mij , M̃ij and T become N ×N

matrices. Furthermore, if the intervals (0, b) and (L, L+b) each contain N1 sample points, then

for each j, uj1 and uj3 are column vectors of length N1 and uj2 is a column vector of length

N2 = N − N1. The matrices T and T−1 correspond to simple permutations with scalings and

their multiplications require O(N2) operations.
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5. Numerical Examples

To validate our method, we calculate the transmission and reflection spectra for a number of

examples and compare our results with those published by other authors. We first consider an

example studied by Kushta and Yasumoto in [20]. The structure consists of an array of dielectric

cylinders, but there are two different kinds of cylinders and they are arranged periodically in

the x direction as shown in Fig. 5.1. The radii of the large and smaller cylinders are ra = 0.3L

and rb = 0.15L, respectively, where L is the period in the x direction. A small and a large

cylinders are grouped together as a pair with no distance between them. The gap between two

nearby pairs is 0.1L. The refractive indices of the larger and small cylinders are n1a =
√

2 and

n1b, respectively. The background medium is air with a refractive index n0 = 1.

n
0

n1a n1b

Fig. 5.1. An array of two different dielectric cylinders.

As indicated by the dashed lines in Fig. 5.1, we choose a complex unit cell containing two

sub-cells with width 0.7L and 0.3L, respectively. The sub-cells are separated by vertical lines

which are tangent to the surfaces of the cylinders. The height of the unit cell is chosen to

be 0.7L. For this structure, we first calculate the DtN maps Λa and Λb for the two sub-cells

following the cylindrical wave expansion technique described in [16], then combine Λa and Λb to

obtain the DtN map Λ for the complex unit cell. After that, we calculate the reduced DtN map

M and follow the operator marching scheme to find the transmission and reflection coefficients.

In order to avoid the contact point of the two cylinders in a pair, we choose an even number of

sampling points on the vertical edges. For the E polarization, we obtain the reflectivity curves

of the structure for n1b =
√

2 and n1b =
√

2.5 as shown in Fig. 5.2. In these calculations, we

have used 8 points on the vertical edges and N = 12 points on the horizontal edges of the

complex unit cell. On the horizontal edges of the two sub-cells, the numbers of sampling points

are 8 and 4, respectively. Our results are in good agreement with those obtained by Kashta

and Yasumoto based on a sophisticated lattice sums technique [20]. Since the wave field near

the contact points of the cylinders is quite complicated, a finite element method may require

many elements to resolve the details.

For a general non-rectangular lattice, a shifting strategy for constructing the reduced DtN

map M is presented in Section 4. To demonstrate the capability of this scheme, we consider

an example first studied by Sakoda in [21]. The structure consists of a triangular lattice of

air holes in a dielectric medium with the refractive index n2 =
√

2.72. In the y direction, the

dielectric medium is finite and there are 14 layers of air holes as shown in Fig. 5.3. The radius

of the circular air holes is 0.431L. The distance from the boundary of the background medium

to the surface of the out-most layer of air holes is 0.778L. For this problem, we use rectangular

unit cells of size L×
(√

3/2
)

L as shown in Fig. 5.3. Notice that the horizontal lines separating

different layers do not intersect with the air holes. In addition to the 14 layers containing

the air holes, two more layers are needed to account for the extra dielectric medium beyond
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Fig. 5.2. Reflectivity of an array of two different dielectric cylinders.

L 0.862L

14
Layers

n =2.722
2

0.778L

0.778L

n =1.0
b

2

n =1.0
0

2

n =1.0
1

2

Fig. 5.3. A triangular lattice of air holes in a dielectric medium.

the out-most layers of air holes. Using our method with N = 8 and N = 10, we obtain the

transmission spectrum of a plane incident wave shown Fig. 5.4. Our results agree with those of

Sakoda [21], who used a plane wave expansion method with 1530 plane waves.

Finally, we consider a triangular lattice with two different types of cylinders. The structure

was first analyzed by Amemiya and Ohtaka [22] using a cylindrical wave expansion method.

As shown in Fig. 5.5, it consists of 24 layers of dielectric cylinders arranged in a triangular

lattice of lattice constant L. The structure is periodic in the x direction with a period of 3L.

A complex unit cell of the structure is shown in Fig. 5.5 as the diamond region containing nine

cylinders. The cylinders in the complex unit cell include eight small ones with radius 0.2L and

one large cylinder with radius 0.3L at the center. The 24 layers of cylinders comprise 8 layers

of the complex unit cells. The background medium is air (n2 = 1.0). We denote the refractive

indices of the smaller and lager cylinders by n1 and n1c, respectively.



346 Y.X. HUANG AND Y.Y. LU

0.35 0.4 0.45 0.5 0.55 0.6
0

0.2

0.4

0.6

0.8

1

ωL/(2πc)

|T
|2

 

 

N=10
N=8

Fig. 5.4. Transmittance of a dielectric medium with 14 layers of air holes.

L0.4L

0.6L

24
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n
1c

n
1

2 =13.0

n2
2 =1.0

Fig. 5.5. A stack of two different dielectric cylinders in a triangular lattice.

In our implementation, we use the vertical strip Ω that covers one period in the x direction

and all 24 layers in the y direction. Therefore, Ω is a rectangle of size (3L)×(12
√

3L). Although

the structure has a complex unit cell containing three layers, it is easier to work with one layer

a time. Let the 24 layers be separated by yj = j
√

3L/2 for j = 0, 1, 2, · · · , 24. To march the

operators Q and Y from yj to yj+1, we need the reduced DtN map M for this layer. As shown

in Fig. 5.5, the one-layer cell Ωj given by 0 < x < 3L and yj < y < yj+1 contains either three

small cylinders or one large and two small cylinders. Furthermore, a small cylinder may be

replaced by two small half-cylinders. Using the merging technique described in Section 3, we

can calculate the DtN map Λ for a one-layer cell containing three cylinders from the DtN maps

of the sub-cells containing only one cylinder at its center. From the DtN map Λ, we can obtain

the reduced DtN map M using the quasi-periodicity of the solution. Notice that ρ in Eq. (2.3)

is now given by ρ = ei3α0L, since the period in x is 3L. For the cells with half-cylinders attached

to the vertical edges, we can construct the reduced DtN map M using the shifting technique

described in Section 4. Since there are four different types of one-layer cells, the reduced DtN

map M has four different cases.
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Fig. 5.6. Transmittance of 24 layers of two different dielectric cylinders in a triangular lattice with
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Fig. 5.7. Same as Fig. 5.6, except with n
2
1c

= 13 + 0.02i (top) and n
2
1c

= 13 + 0.05i (bottom).



348 Y.X. HUANG AND Y.Y. LU

For n2
1 = n2

1c = 13, we calculate the transmission spectrum of this structure with N = 8 and

N = 12, where N is the number of sampling points for a horizontal distance of L. The operators

Q and Y are approximated by (3N) × (3N) matrices. Our results are shown in Fig. 5.6 and

they agree well with those given in [22]. Next, we consider the effect of material loss in the

large cylinders. The refractive index of the small cylinders is unchanged, but a small imaginary

part is added to the dielectric constant n2
1c of the large cylinders. In Fig. 5.7, we show the

transmission spectra for n2
1c = 13 + 0.02i and n2

1c = 13 + 0.05i. Our results are consistent with

those of Amemiya and Ohtaka [22].

6. Conclusion

Due to the periodicity of photonic crystals, it is possible to develop efficient algorithms that

utilize the information of a unit cell to avoid repeated calculations on different cells. For two

dimensional photonic crystals which are finite in one direction, we have previously developed

such a method based on the Dirichlet-to-Neumann (DtN) map of a unit cell for computation of

the transmission and reflection spectra [16]. The DtN map of the unit cell is also useful for band

structure calculations [23]. The method in [16] deals with photonic crystals composed of a square

or rectangular lattice of cylinders. In this paper, the method is extended to more complicated

photonic crystals with a unit cell containing a number of possibly different cylinders (such a

cell is referred to as a complex unit cell in this paper). We also present a practical method for

handling general lattice structures. For a simple unit cell containing a circular cylinder, the

DtN map can be constructed by a cylindrical wave expansion [16]. For non-circular cylinders,

the DtN map can be calculated by a boundary integral equation method [24]. In Section 3,

a merging technique is developed to find the DtN map of a complex unit cell. For a non-

rectangular lattice, a simple shifting technique is developed for computing the reduced DtN

map M . This allows us to solve the scattering problem in a rectangular domain covering one

period of the structure in the infinite periodic direction.

The DtN map Λ of a unit cell can be used to derive the reduced DtN map M through

an elimination process based on the quasi-periodicity of the wave field. The operator M is

used to march the global DtN map Q and the fundamental solution operator Y from one side

of the structure to another. The reflected and transmitted waves are then constructed from

the final Q and Y . Due to the semi-analytic nature of these operators, they can be accurately

approximated by small matrices. The size of these matrices is related to the number of sampling

points on edges of the unit cells. Fast convergence as the number of sampling points increases

was observed in [16]. In this paper, we obtain transmission and reflection curves that are in

good agreement with those obtained by other authors using only a small number of sampling

points.
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