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Abstract

We construct a modified Bernoulli iteration method for solving the quadratic matrix

equation AX
2 + BX + C = 0, where A, B and C are square matrices. This method is

motivated from the Gauss-Seidel iteration for solving linear systems and the Sherman-

Morrison-Woodbury formula for updating matrices. Under suitable conditions, we prove

the local linear convergence of the new method. An algorithm is presented to find the

solution of the quadratic matrix equation and some numerical results are given to show

the feasibility and the effectiveness of the algorithm. In addition, we also describe and

analyze the block version of the modified Bernoulli iteration method.
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1. Introduction

Quadratic matrix equations (QME) appear in many areas of scientific computing and en-

gineering applications. Besides the famous algebraic Riccati equation (ARE) in control the-

ory [5, 12, 18], the quadratic matrix equation

Q(X) = AX2 + BX + C = 0, with A, B, C ∈ R
n×n, (1.1)

occurs in a variety of problems. For example, the quadratic eigenvalue problem (QEP) arising

in the analysis of damped structural systems and vibration problems [6, 7, 15, 17, 26, 27], the

Quasi-Birth-Death (QBD) problem used as stochastic models in telecommunication computer

performance and inventory control [4, 19], and the noisy Wiener-Hopf problems coming from

Markov chains [10, 16, 24, 25].

A lot of work has been done for computing the numerical solution of the QME (1.1). Davis

[6] considered Newton’s method, Higham and Kim [15] studied Newton’s method with exact

line search, and He, Beini and Rhee [13] discussed a cyclic reduction algorithm for the QBD

problem; see also [3]. Besides, as special cases of the quadratic matrix equation (1.1), several

linear matrix equations have been studied in [20, 21, 22, 8] where existence conditions and

direct algorithms about the solutions were presented. Other different techniques for analyzing

and computing the solutions of some general matrix equations can be found in [1, 11].

From the discussion in [14] we know that the Bernoulli iteration (BI) method is more

efficient for over-damped quadratic eigenvalue problems and the QBD problem. This motivates
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us to further study this iteration method for the QME (1.1). By making use of techniques

of Gauss-Seidel relaxation sweep [9] for solving linear systems and the Sherman-Morrison-

Woodbury formula [2, 9] for updating matrix, we establish a new iteration method and its

block version for solving the QME (1.1). These methods are technical modifications of the

Bernoulli iteration method in [14], and are of lower computing costs in actual applications.

Convergence analyses show that these new methods have local linear convergence rates, and

numerical implementations show that they are feasible and effective solvers for the QME (1.1).

The organization of the paper is as follows. After introducing some basic notations and

concepts in Section 2, we establish the general modified Bernoulli iteration (MBI) method in

Section 3. In Section 4, we derive a block version of the MBI method, which is called as block

modified Bernoulli iteration (BMBI) method. In Section 5, we study the local convergence

properties of both MBI and BMBI methods under suitable conditions. In Section 6, some

numerical results are given to show the feasibility and effectiveness of our new methods. Finally,

in Section 7, we use some remarks to end this paper.

2. Notations and Concepts

We introduce some notations and concepts, which are necessary for our subsequent state-

ments.

A solution of the QME (1.1) is also called a solvent. The QEP corresponding to the QME

(1.1) is defined as

Q(λ)x = (λ2A + λB + C)x = 0. (2.1)

As is known, if A is nonsingular, then Q(λ) has exactly 2n eigenvalues λj (j = 1, 2, · · · , 2n),

which can be ordered with respect to their absolute values in the following form:

|λ1| > |λ2| > · · · > |λ2n|. (2.2)

We use λ(A) to denote the eigenvalue set of the matrix A.

Definition 2.1. ([14]) Let the eigenvalues λj (j = 1, 2, . . . , 2n) of the QEP (2.1) be ordered

in the form of (2.2). Then a solvent S1 of Q(X) is called a dominant solvent if λ(S1) =

{λ1, λ2, . . . , λn} and |λn| > |λn+1|; and a solvent S2 of Q(X) is called a minimal solvent if

λ(S2) = {λn+1, λn+2, . . . , λ2n} and |λn| > |λn+1|.

One type of Bernoulli iteration methods for finding the dominant and the minimal solvents

are as follows:

A + (B + CWk−1)Wk = 0, W0 = 0, k = 1, 2, . . . (2.3)

and

(AXk−1 + B)Xk + C = 0, X0 = 0, k = 1, 2, . . . . (2.4)

From [14, Theorem 10], we see that

lim
k→∞

Wk = S−1
1 and lim

k→∞
Xk = S2

hold under the condition that the QME (1.1) has a dominant solvent S1 and a minimal solvent

S2. Moreover, the asymptotic convergence rates of these two iterations are linear, with the

convergence factor σ = |λn+1|/|λn|.
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3. The MBI Method

Without loss of generality, throughout the paper we will only focus on the MBI method

based on the iteration scheme (2.4), as discussions with respect to the iteration scheme (2.3)

can proceed in an analogous fashion.

To this end, we rewrite (2.4) as:

(AXk + B)Xk+1 + C = 0, X0 = 0, k = 0, 1, 2, . . . . (3.1)

Let the matrices Xk and C be decomposed according to their columns, i.e.,

Xk = (Xk,1, Xk,2, . . . , Xk,n) and C = (C1, C2, . . . , Cn), (3.2)

where Xk,i, Ci ∈ R
n, i = 1, 2, . . . , n, are the columns of Xk and C, respectively. Let X

(i)
k be

the updated matrix of Xk, whose first i columns are replaced correspondingly by the already

computed columns of Xk+1, i.e.,

X
(i)
k = (Xk+1,1, Xk+1,2, . . . , Xk+1,i, Xk,i+1, . . . , Xk,n).

If the columns of Xk+1 are computed successively by solving (3.1), and each time the currently

obtained information is used promptly like the Gauss-Seidel iteration employed to a linear

system, we can establish the following modified Bernoulli iteration (MBI) method for solving

the QME (1.1):

The MBI method.

1. Given a starting guess X0.

2. For k = 0, 1, 2, . . . until {Xk} is convergent.

• Set X
(0)
k := Xk.

• Successively solve

(AX
(i)
k + B)Xk+1,i+1 + Ci+1 = 0, i = 0, 1, . . . , n − 1. (3.3)

• Set Xk+1 := (Xk+1,1, Xk+1,2, . . . , Xk+1,n).

In order to avoid to solve n different linear systems at each iteration step of the MBI method,

we need to consider and utilize the special structures and the internal relationships among the

matrices AX
(i)
k , i = 0, 1, . . . , n − 1, in the iteration scheme (3.3). As X

(i+1)
k and X

(i)
k only

differ at one column, or in other words, X
(i+1)
k is a rank-one correction of X

(i)
k , we can use the

Sherman-Morrison formula for updating matrix to further reduce the computing cost of the

MBI method.

Assume that A ∈ R
n×n is a nonsingular matrix, and u, v ∈ R

n are two vectors. If 1 +

vT A−1u 6= 0, then the matrix A + uvT is nonsingular and its inverse is given by

(A + uvT )−1 = A−1 −
A−1uvT A−1

1 + vT A−1u
.

This is the well-known Sherman-Morrison formula, see [2, 9].
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Because

AX
(i)
k + B = AX

(i−1)
k + B + A(X

(i)
k − X

(i−1)
k )

= AX
(i−1)
k + B + A(Xk+1,i − Xk,i)e

T
i ,

where ei denotes the i-th column of the n-by-n identity matrix, by using the above Sherman-

Morrison formula, we can obtain

(AX
(i)
k + B)−1 = (AX

(i−1)
k + B)−1

−
(AX

(i−1)
k + B)−1A(Xk+1,i − Xk,i)e

T
i (AX

(i−1)
k + B)−1

1 + eT
i (AX

(i−1)
k + B)−1A(Xk+1,i − Xk,i)

.

Here, we have assumed that

1 + eT
i (AX

(i−1)
k + B)−1A(Xk+1,i − Xk,i) 6= 0

holds; see Theorem 5.2 for conditions that guarantee the validity of this assumption. Hence,

from (3.3) we can explicitly express Xk+1,i+1 as

Xk+1,i+1 = −(AX
(i)
k + B)−1Ci+1

= −(AX
(i−1)
k + B)−1Ci+1

+
(AX

(i−1)
k + B)−1A(Xk+1,i − Xk,i)e

T
i (AX

(i−1)
k + B)−1Ci+1

1 + eT
i (AX

(i−1)
k + B)−1A(Xk+1,i − Xk,i)

. (3.4)

Denote by











uk,i = A(Xk+1,i − Xk,i),

pk,i = (AX
(i−1)
k + B)−1uk,i,

qk,i = (AX
(i−1)
k + B)−1Ci+1.

(3.5)

Then, it follows from (3.4) that

Xk+1,i+1 = −(AX
(i−1)
k + B)−1Ci+1 +

eT
i qk,i

1 + eT
i pk,i

pk,i.

By recursively operating this equality we have

Xk+1,i+1 = −(AX
(i−1)
k + B)−1Ci+1 +

eT
i qk,i

1 + eT
i pk,i

pk,i

= −(AX
(i−2)
k + B)−1Ci+1 +

eT
i−1qk,i−1

1 + eT
i−1pk,i−1

pk,i−1 +
eT

i qk,i

1 + eT
i pk,i

pk,i

= · · ·

= −(AXk + B)−1Ci+1 +

i
∑

l=1

eT
l qk,l

1 + eT
l pk,l

pk,l. (3.6)

From (3.6), we see that the MBI method can be considered as a modification of the Bernoulli

iteration method. Evidently, the extra cost introduced by such a modification is involved in the
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computations of uk,i, pk,i and qk,i. Hence, to reduce the computing cost, in actual applications

we can replace (3.5) by the following approximated formulas:

{

pk,i = (AXk + B)−1uk,i,

qk,i = (AXk + B)−1Ci+1.
(3.7)

Consequently, the resulting method for finding the minimal solvent of QME (1.1) can be de-

scribed as follows.

Method 3.1. (The MBI method).

1. Input matrices A, B, C and a tolerance ǫ. Set X0 := 0 and k := 0.

2. For i = 1 : n, compute Xk+1,i by solving

(AXk + B)Xk+1,i = −Ci.

3. For i = 1 : n − 1,

3.1 compute uk,i = A(Xk+1,i − Xk,i),

3.2 compute pk,i by solving (AXk + B)pk,i = uk,i,

3.3 set qk,i := Xk+1,i+1,

3.4 for j = i + 1 : n, compute

Xk+1,j := Xk+1,j +
eT

i qk,i

1+eT
i

pk,i
pk,i.

4. Compute ρ = ‖Xk+1−Xk‖1

‖Xk‖1
.

5. If ρ 6 ǫ, then stop and set X := Xk+1.

6. Otherwise, set k := k + 1 and return to Step 2.

We observe that in the execution of Method 3.1, at each iteration step we need to solve

2n−1 systems of linear equations with the same coefficient matrix AXk +B and compute n−1

matrix-vector products with the matrix A. This is the main cost in the implementation of the

MBI method.

4. The BMBI Method

To derive a block version of the MBI method, we first review the Sherman-Morrison-

Woodbury formula for updating a matrix corrected by a low-rank matrix; see [9, 2].

Assume that A ∈ R
n×n is a nonsingular matrix, and U, V ∈ R

n×m are two matrices. If

I + V T A−1U is nonsingular, then the matrix A + UV T is nonsingular and it holds that

(A + UV T )−1 = A−1 − A−1U(I + V T A−1U)−1V T A−1.

This formula is known as the Sherman-Morrison-Woodbury formula, and is a block version of

the above-described Sherman-Morrison formula.

Analogous to (3.2), we decompose Xk and C into column blocks as

Xk = (Xk,1, Xk,2, . . . , Xk,m) and C = (C1, C2, . . . , Cm), (4.1)
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where Xk,i, Ci ∈ R
n×ni , i = 1, 2, . . . , m, are the column blocks of Xk and C, respectively, with

ni (i = 1, 2, . . . , m) being m positive integers satisfying
∑m

i=1 ni = n.

Similarly to the MBI method, we can describe the following blockwise modified Bernoulli

iteration (BMBI) method for solving the QME (1.1):

The BMBI method.

1. Given a starting guess X0.

2. For k = 0, 1, 2, . . . until {Xk} is convergent,

• Set X
(0)
k := Xk.

• Successively solve

(AX
(i)
k + B)Xk+1,i+1 + Ci+1 = 0, i = 0, 1, . . . , m − 1. (4.2)

• Set Xk+1 := (Xk+1,1, Xk+1,2, . . . , Xk+1,m).

In order to avoid to solve m different linear systems at each iteration step of the BMBI

method, we need to consider and utilize the special structures and the internal relationships

among the matrices AX
(i)
k , i = 0, 1, . . . , m − 1, in the iteration scheme (4.2). As X

(i+1)
k and

X
(i)
k only differ at one column block, or in other words, X

(i+1)
k is a low-rank correction of X

(i)
k ,

we can use the Sherman-Morrison-Woodbury formula for updating the matrix to further reduce

the computing cost of the BMBI method. We have

AX
(i)
k + B = AX

(i−1)
k + B + A(X

(i)
k − X

(i−1)
k )

= AX
(i−1)
k + B + A(Xk+1,i − Xk,i)Ei,

where

Ei = (0, . . . , 0, Ini
, 0, . . . , 0) ∈ R

ni×n

and Ini
∈ R

ni×ni is the ni-by-ni identity matrix. By making use of the Sherman-Morrison-

Woodbury formula, we obtain

(AX
(i)
k + B)−1 = (AX

(i−1)
k + B)−1 − (AX

(i−1)
k + B)−1A(Xk+1,i − Xk,i)

·[I + Ei(AX
(i−1)
k + B)−1A(Xk+1,i − Xk,i)]

−1Ei(AX
(i−1)
k + B)−1.

Here, we have assumed that the matrix

I + Ei(AX
(i−1)
k + B)−1A(Xk+1,i − Xk,i)

is nonsingular; see Theorem 5.2 for conditions that guarantee the validity of this assumption.

Hence, from (4.2) we can explicitly express Xk+1,i+1 as

Xk+1,i+1 = −(AX
(i)
k + B)−1Ci+1

= −(AX
(i−1)
k + B)−1Ci+1 + (AX

(i−1)
k + B)−1A(Xk+1,i − Xk,i)

·[I + Ei(AX
(i−1)
k + B)−1A(Xk+1,i − Xk,i)]

−1Ei(AX
(i−1)
k + B)−1Ci+1. (4.3)
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Denote by











Uk,i = A(Xk+1,i − Xk,i),

Pk,i = (AX
(i−1)
k + B)−1Uk,i,

Qk,i = (AX
(i−1)
k + B)−1Ci+1.

(4.4)

Then (4.3) can be rewritten as

Xk+1,i+1 = −(AX
(i−1)
k + B)−1Ci+1 + Pk,i(I + EiPk,i)

−1EiQk,i.

By recursively employing this equality, we have

Xk+1,i+1 = −(AX
(i−1)
k + B)−1Ci+1 + Pk,i(I + EiPk,i)

−1EiQk,i

= −(AX
(i−1)
k + B)−1Ci+1 + Pk,i−1(I + Ei−1Pk,i−1)

−1Ei−1Qk,i−1

+ Pk,i(I + EiPk,i)
−1EiQk,i

= · · ·

= −(AXk + B)−1Ci+1 +

i
∑

l=1

Pk,l(I + ElPk,l)
−1ElQk,l.

Similar to (3.7), in actual applications we adopt the following approximations to replace the

items in (4.4):

{

Pk,i = (AXk + B)−1Uk,i,

Qk,i = (AXk + B)−1Ci+1.

Then, we can construct the BMBI method for finding the minimal solvent of the quadratic

matrix equation (1.1).

Method 4.1. (The BMBI method).

1. Input matrices A, B, C and a tolerance ǫ. Set X0 := 0 and k:=0.

2. For i = 1 : m, compute Xk+1,i by solving

(AXk + B)Xk+1,i = −Ci.

3. For i = 1 : m − 1,

3.1 compute Uk,i = A(Xk+1,i − Xk,i),

3.2 compute Pk,i by solving (AXk + B)Pk,i = Uk,i,

3.3 set Qk,i := Xk+1,i+1,

3.4 compute Vk,i by solving (I + EiPk,i)Vk,i = Ei,

3.5 for j = i + 1 : m, compute

Xk+1,j := Xk+1,j + Pk,iVk,iQk,i.

4. Compute ρ = ‖Xk+1−Xk‖1

‖Xk‖1
.

5. If ρ 6 ǫ, then stop and set X := Xk+1.

6. Otherwise, set k =: k + 1 and return to Step 2.
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We observe that in the execution of Method 4.1, at each iteration step we need to solve

2m − 1 systems of linear equations with the same coefficient matrix AXk + B and compute

m− 1 matrix-matrix products with the matrix A. This is the main cost in the implementation

of the BMBI method.

As a special case, we consider the BMBI method when m = 2. Now,

Xk = (Xk,1, Xk,2) and C = (C1, C2),

where Xk,i, Ci ∈ R
n×ni , i = 1, 2, are the two column blocks of Xk and C, respectively, with

ni(i = 1, 2) being two positive integers satisfying n1+n2 = n. The BMBI method then becomes

to the following:

The BMBI method.

1. Given a starting guess X0.

2. For k = 0, 1, 2, . . . until {Xk} is convergent.

• Set X
(0)
k := Xk.

• Successively solve

(AX
(i)
k + B)Xk+1,i+1 + Ci+1 = 0, i = 0, 1.

• Set Xk+1 := (Xk+1,1, Xk+1,2).

By applying the Sherman-Morrison-Woodbury formula and using the same argument as for

the BMBI method, we obtain

Xk+1,2 = −Q + P (I + EP )−1EQ,

where
{

U = A(Xk+1,1 − Xk,1), P = (AXk + B)−1U,

Q = (AXk + B)−1C2, E = (In1
, 0).

Hence, the BMBI method reduces to the following two-block case:

Method 4.2. (The BMBI method (Two-Block Case)).

1. Input matrices A, B, C and a tolerance ǫ. Set X0 := 0 and k:=0.

2. For i = 1 : 2, compute Xk+1,i by solving

(AXk + B)Xk+1,i = −Ci.

3. Update Xk+1,2 according to the following:

3.1 compute U = A(Xk+1,1 − Xk,1),

3.2 compute P by solving (AXk + B)P = U ,

3.3 set Q := Xk+1,2,

3.4 compute V by solving (I + EP )V = E,

3.5 compute Xk+1,2 := Xk+1,2 + PV Q.

4. Compute ρ =
‖Xk+1−Xk‖1

‖Xk‖1
.

5. If ρ 6 ǫ, then stop and set X := Xk+1.

6. Otherwise, set k =: k + 1 and return to Step 2.
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5. Convergence Theorem

In this section, under suitable conditions we will establish the local convergence theorem

for the BMBI method (4.2). The local convergence theorems for the MBI method can be

analogously demonstrated.

Theorem 5.1. Assume that the QME (1.1) has a minimal and a dominant solvent. Let X∗ be

the minimal solvent such that

θ := 2‖(AX∗ + B)−1‖2
F‖A‖F ‖C‖F < 2

1
m − 1.

Then, there exists an open ball S = S(X∗, r) such that, for ∀X0 ∈ S, the iteration sequence

{Xk} generated by the BMBI method satisfies

‖Xk+1 − X∗‖F 6 γ‖Xk − X∗‖F , k = 0, 1, 2, . . . ,

where γ = (1 + θ)m − 1 ∈ (0, 1) and ‖ · ‖F is the Frobenius matrix norm.

Proof. From the definition of the iteration sequence {Xk} we obtain

Xk+1,l − X∗
l = [−(AX

(l−1)
k + B)−1Cl] − [−(AX∗ + B)−1Cl]

= [(AX∗ + B)−1 − (AX
(l−1)
k + B)−1]Cl

= (AX
(l−1)
k + B)−1A(X

(l−1)
k − X∗)(AX∗ + B)−1Cl.

Here, we have used the equality

(AX
(l−1)
k + B) − (AX∗ + B) = A(X

(l−1)
k − X∗). (5.1)

Denote by

α = ‖(AX∗ + B)−1‖F .

When

‖A(Xk − X∗)‖F 6 ‖A‖F ‖Xk − X∗‖F <
1

2α(1 + θ)m
(5.2)

or

‖Xk − X∗‖F < r :=
1

2α(1 + θ)m‖A‖F

,

we can proceed the proof by considering each block of the matrix Xk+1.

For l = 1, based on (5.1) and (5.2), by making use of the perturbation lemma [23] we have

‖(AX
(0)
k + B)−1‖F <

α

1 − 1/(2(1 + θ)m)
< 2α.

It then follows that

‖Xk+1,1 − X∗
1‖F 6 2α‖A‖F ‖Xk − X∗‖F α‖C1‖F

6 2α2‖A‖F ‖C‖F‖Xk − X∗‖F .

Hence,

‖X
(1)
k − X∗‖F 6 ‖X

(0)
k − X∗‖F + ‖Xk+1,1 − X∗

1‖F

6 (1 + θ)‖Xk − X∗‖F
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and

‖A(X
(1)
k − X∗)‖F 6 ‖A‖F ‖X

(1)
k − X∗‖F <

1

2α(1 + θ)m−1
.

Again, by making use of the perturbation lemma, we have

‖(AX
(1)
k + B)−1‖F 6

α

1 − 1/(2(1 + θ)m−1)
< 2α.

Hence, for l = 2, it holds that

‖Xk+1,2 − X∗
2‖F 6 2α‖A‖F (1 + θ)‖Xk − X∗‖F α‖C2‖F

6 θ(1 + θ)‖Xk − X∗‖F .

By recursively continuing this process, we can obtain

‖X
(l)
k − X∗‖F 6 ‖Xk − X∗‖F +

l
∑

i=1

‖Xk+1,i − X∗
i ‖F

and

‖Xk+1,l − X∗
l ‖F 6 θ(1 + θ)l−1‖Xk − X∗‖F , l = 3, . . . , m.

Consequently, we get

‖Xk+1 − X∗‖F 6

m
∑

l=1

‖Xk+1,l − X∗
l ‖F

6

m
∑

l=1

θ(1 + θ)l−1‖Xk − X∗‖F

= [(1 + θ)m − 1]‖Xk − X∗‖F

= γ‖Xk − X∗‖F .

This completes the proof of the theorem.

The convergence conditions of Theorem 5.1 readily guarantee the well-definiteness of the

MBI and the BMBI iteration sequences. This fact is precisely described in the following theorem.

Theorem 5.2. Assume that the QME (1.1) has a minimal and a dominant solvent. Let X∗ be

the minimal solvent such that

θ := 2‖(AX∗ + B)−1‖2
F‖A‖F ‖C‖F < 2

1
m − 1.

Then, there exists an open ball S = S(X∗, r) such that, for ∀X0 ∈ S, it holds that

(i) dk,i := 1 + eT
i (AX

(i−1)
k + B)−1A(Xk+1,i − Xk,i) 6= 0, i = 1, . . . , n,

(ii) Dk,i := I + Ei(AX
(i−1)
k + B)−1A(Xk+1,i − Xk,i) is nonsingular, i = 1, . . . , m.

That is to say, the iteration sequences {Xk} generated by both MBI and BMBI methods are well

defined.

Proof. Theorem 5.1 and its proof show that the following estimates hold true:

(F1) ‖Xk+1 − X∗‖F 6 γ‖Xk − X∗‖F , k = 0, 1, . . ., and
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(F2) ‖(AX
(i−1)
k + B)−1‖F 6 2α, i = 1, . . . , n, k = 0, 1, . . .,

where γ ∈ (0, 1) is a constant and α = ‖(AX∗ + B)−1‖F . Because

dk,i > 1 − |eT
i (AX

(i−1)
k + B)−1A(Xk+1,i − Xk,i)|

> 1 − ‖eT
i (AX

(i−1)
k + B)−1‖F · ‖A‖F · ‖Xk+1,i − Xk,i‖F

> 1 − ‖(AX
(i−1)
k + B)−1‖F · ‖A‖F · ‖Xk+1,i − Xk,i‖F

> 1 − ‖(AX
(i−1)
k + B)−1‖F · ‖A‖F · (‖Xk+1,i − X∗‖F + ‖Xk,i − X∗‖F )

> 1 − 2α · ‖A‖F · γk(1 + γ) · ‖X0 − X∗‖F

= 1 − 2α(1 + γ)‖A‖F · γk‖X0 − X∗‖F ,

we see that dk,i > 0 holds true for all k when X0 is sufficiently close to X∗. This shows the

validity of (i). Analogously, as

fk,i = ‖Ei(AX
(i−1)
k + B)−1A(Xk+1,i − Xk,i)‖F

6 ‖Ei(AX
(i−1)
k + B)−1‖F ‖A‖F‖Xk+1,i − Xk,i‖F

6 ‖(AX
(i−1)
k + B)−1‖F ‖A‖F‖Xk+1,i − Xk,i‖F

6 ‖(AX
(i−1)
k + B)−1‖F ‖A‖F (‖Xk+1,i − X∗‖F + ‖Xk,i − X∗‖F )

6 2α · ‖A‖F · γk(1 + γ) · ‖X0 − X∗‖F

= 2α(1 + γ)‖A‖ · γk‖X0 − X∗‖F ,

we see that fk,i < 1 holds true for all k when X0 is sufficiently close to X∗. By making use of

the perturbation lemma, we immediately know that (ii) is valid.

6. Numerical Results

We use two examples to illustrate the numerical feasibility and effectiveness of the two-block

version of the BMBI method.

All implementations are run in MATLAB (Version 6.5) with machine precision 10−16 on a

Pentium IV personal computer, started from X0 = 0, and terminated when the current iteration

satisfies
‖Xi − Xi−1‖1

‖Xi‖1
6 n · eps,

where eps = 2−52 is the floating-point relative accuracy, and is roughly equal to 2.22 × 10−16.

Example 6.1. Consider a QME (1.1) for which

A =

















15 −5

−5 15 −5
. . .

. . .
. . .

−5 15 −5

−5 15

















+ αeeT , B =

















20 −10

−10 30 −10
. . .

. . .
. . .

−10 30 −10

−10 20

















,

and C = In, where e ∈ R
n is the vector with all elements being equal to one and In ∈ R

n×n is

the n-by-n identity matrix.
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Table 6.1: Numerical Results for Example 6.1

Method α 0.10 0.15 0.19 0.195 0.198

IT 22 34 78 115 231

BI ERR 2.20e-14 1.04e-14 1.93e-14 2.12e-14 2.06e-14

IT 22 32 72 105 207

BMBI ERR 1.45e-14 2.15e-14 1.81e-14 1.89e-14 2.13e-14

Table 6.2: Numerical Results for Example 6.2

Method n 20 40 60 80 100

IT 104 189 269 346 420

BI ERR 3.41e-15 7.89e-15 1.24e-14 1.70e-14 2.21e-14

IT 98 182 261 338 412

BMBI ERR 4.44e-15 8.62e-15 1.33e-14 1.70e-14 2.19e-14

This example is essentially similar to the one used in [14]. We take n = 100. For different α,

we list the iteration step (IT) and the relative error (ERR) for the BI and the BMBI methods

in Table 6.1. We remark that both methods converge to the same solution of the QME (1.1),

and the α selected here satisfy the over-damped condition (see [14]). From Table 6.1 we see

that the BMBI method outperforms the BI method in both iteration steps and approximation

accuracy.

Example 6.2. Consider a QME (1.1) for which A = C = In and

B =

















4 −1

−1 4 −1
. . .

. . .
. . .

−1 4 −1

−1 4

















.

This is an over-damped problem, too, due to λmin(B)2 − 4‖A‖2‖C‖2 > 0, where λmin(B)

denotes the smallest eigenvalue of the matrix B. For different n, we list the iteration steps

and the relative errors for the BI and the BMBI methods in Table 6.2. Again, we remark that

both methods can converge to the same solution of the QME (1.1). The numerical results in

Table 6.2 further confirm that the BMBI method outperforms the BI method in iteration steps.

Consequently, the BMBI method may be effective and practical than the BI method for

solving the quadratic matrix equation (1.1).

7. Concluding Remarks

We have constructed a modified Bernoulli iteration method and its block variant for solving

the quadratic matrix equation (1.1), and proved the local convergence of these new methods

under suitable conditions. If we neglect the sparsity of the involved matrices in the QME (1.1),

then the computational complexity of these new methods is O(n3), i.e., at each iteration step

their costs are O(n3) operations. However, the computational complexity of the Newton itera-

tion method is O(n4) and the Bernoulli iteration method is O(n3). Therefore, at each iteration
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step the costs of our new methods are less than the Newton but are comparable to the Bernoulli

iteration methods. Because our new methods use the currently available information promptly

like the Gauss-Seidel iteration applied to the system of linear equations, they may show faster

convergence speeds than the Bernoulli and the Newton iteration methods in actual applications.
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