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Abstract

We consider the quadrilateral Q1 isoparametric element and establish an optimal error
estimate in H

1 norm for the interpolation operator under a weaker mesh condition which
admits anisotropic quadrilaterals and allows the quadrilateral to become a regular triangle
in the sense of maximum angle condition [5, 11].
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1. Introduction

We shall consider the quadrilateral Q1 element and establish an estimate for the interpola-
tion error under a new mesh condition. This condition is weaker than the precede conditions
proposed in [12] and [2] among others. Moreover, it allows the quadrilateral to degenerate into
an anisotropic however regular triangle in the sense of maximum angle condition [5, 11, 2]. First
we will review some known results and introduce some notations.

Let K be a convex quadrilateral with vertices M1, M2, M3 and M4. Let K̂ = [−1, 1]2 be
the reference element. There exists a bijection mapping FK : K̂ → K that K = FK(K̂).

Let Q̂1(K̂) be the bilinear polynomial space, and let Q1 = Q1(K) be the corresponding
space defined on K. Let Π1 denote the usual bilinear interpolation operator.

Our aim is to obtain the following interpolation error estimate

‖u− Π1u‖0,K + h | u− Π1u |1,K≤ Ceh
2 | u |2,K (1.1)

under the condition we shall proposed, where h is the diameter of K. There are several condi-
tions in the literature for (1.1) to hold, here we only review, among others, the J condition and
RDP condition, proposed by Jamet [12] and Acosta and Duran [2] respectively, which can be
expressed as follows

Definition 1.1 K is regular with constant σ > 0, or shortly J (σ), if it holds that

h/ρ ≤ σ,

where h denotes the diameter of K and ρ the maximum of the diameters of all circles contained
in K.
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Definition 1.2 K is regular with constant N ∈ R and 0 < ψ < π, or shortly RDP(ψ,N), if
we can divide K into two triangles along one of its diagonals, which will always be called D1,
the other is D2 in such a way that | D2 | / | D1 |≤ N and both triangles satisfy the maximum
angle condition, i.e., each interior angle of these two triangles is bounded from above by ψ.

For other conditions, we referr to references [7, 8, 9, 14] and [3, 17]. A comprehensive review
of quadrilateral meshes can be found in the introduction of [14], there the equivalency and the
relation of some shape mesh conditions is also proved. The review of degenerate quadrilateral
mesh conditions can also be found in [2].

Under the J(σ) condition, it was shown in [12] that the constant Ce in (1.1) depends only
on σ. Under the constraint RDP(ψ,N), Acosta and his colleague prove that Ce depends only
on ψ and N . RDP(ψ,N) condition is so far the weakest mesh condition for (1.1) to hold.
However, due to the constraint | D2 | / | D1 |≤ N , it does not allow a quadrilateral to become
an anisotropic however regular triangle in the sense of maximum angle condition. As we will
see below the constraint | D2 | / | D1 |≤ N can be removed.

We introduce some notations and concepts. Let d1 denote the longer diagonal of K, d2 the
shorter one. As illustrated in Fig.1, we denote by T1 and T2 the two triangles obtained by
subdividing K along d1, and t1 and t2 are the two triangles obtained by decomposing K along
d2.
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Fig.1. Quadrilateral K

We now give the definition of the maximum angle condition.

Definition 1.3 [5, 11, 2] We say a triangle T (resp. a quadrilateral K) satisfies the maximum
angle condition with a constant ψ, or shortly MAC(ψ), if the angles of T (resp. K) are less
than or equal to ψ.

In the sequel, the regularity of triangles is refered to as in this maximum angle sense. Our
mesh condition can be stated as

Definition 1.4 We say a convex quadrilateral K satisfies the generalized maximum angle con-
dition, or shortly GMAC(ψ), if there exists a positive constant ψ < π such that, among Ti, ti,
i = 1, 2, there are at least three regular triangles in the sense of MAC(ψ).

Let us notice that the constraint | D2 | / | D1 |≤ N in the RDP(N , ψ) condition is dropped
in this condition. We shall prove the following result

Theorem 1.1 Let K be a convex quadrilateral satisfying GMAC(ψ) with the constant 0 < ψ <
π and u ∈ H2(K), then there exists a constant Cerr only depending on ψ such that

| u− Π1u |m,K≤ Cerr(ψ)h2−m | u |2,K ,m = 0, 1 (1.2)
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Our analysis is based on three key points. First, we introduce an appropriate classification
of quadrilaterals, which gives a close look on the geometry of quadrilaterals. Second, following
the idea of [2], we adopt an appropriate affine change for the analysis, which is different from
that used in [2]. Third, a sharper estimate for the integration

∫

K̂
1

JK

is given.

2. A Classification of Convex Quadrilaterals

In this section, we first introduce an appropriate method to classify convex quadrilaterals,
and propose a mesh condition which is equivalent to GMAC(ψ), but is more convenient for our
analysis.

Let Q denote the set of convex quadrilaterals. According to Definition 1.3, Q can be divided
into the following two subsets:

R = {K ∈ Q | K is regular },
D = {K ∈ Q | K /∈ R}.

D can be further divided into the following three subsets:

DB = {K ∈ D | both T1 and T2 are regular },
DO = {K ∈ D/DB | either T1 or T2 is regular },
DN = {K ∈ D | K /∈ DB ∪ DO}.

According to the regularity of t1 and t2, the set DO can be further divided as

DOB = {K ∈ DO | both of t1 and t2 are regular},
DON = {K ∈ DO | K /∈ DOB}.

Obviously we have

Q = R∪DB ∪DN ∪DOB ∪DON . (2.1)

With these preparations, we can state our equivalent mesh condition as following

Theorem 2.1 Let K be a convex quadrilateral, then K is regular if and only if

K ∈ RQ = R∪DB ∪ DOB. (2.2)

Proof. The necessity of (2.2) is obvious, we only need to show it is sufficient. First, if
K ∈ R ∪ DOB, K is certainly regular in the sense of GMAC(ψ). Second, if K ∈ DB, in this
case, we can assert just one of ti, i = 1, 2 is not regular in the sense of MAC(ψ). Otherwise, the
fact that d1 is the longer than d2 will be violated, which completes the proof.

We note here that if K is regular in the sense of RDP(ψ,N), from Lemma 3.1 of [2], there
exists a constant ψ1 = ψ1(ψ,N) < π such that K is regular in the sense of GMAC(ψ1). The
converse is not true, because not all quadrilaterals in DOB are ”regular” in that sense. For
example, the quadrilateral on the left hand in Fig.2 is not regular in the sense of RDP(ψ,N),
however is regular in the sense of GMAC(ψ) when the parameter a tends to zero.
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3. The Affine Transformation

In this section, following the idea of [2], we introduce an affine change of variables, which is
different from that defined in [2], however is more convenient for our analysis.
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Fig.3. Quadrilateral K and the affine element K̄

We fisrt quota a technical lemma from [1].

Lemma 3.1 Let L be the linear transformation associated with a matrix B. Given two vectors
v1 and v2, let α1 be the angle between them and α2 be the angle between L(v1) and L(v2), then
it holds that

2

cond(B)π
α1 ≤ α2 ≤ π(1 − 2

cond(B)
) +

2

cond(B)π
α1. (3.1)

We introducee an affine change by the following result.

Lemma 3.2 Let K be a quadrilateral of diameter h satisfying GMAC(ψ). Then, there exist
x̄1, x̄3, ȳ3 and ȳ4, an affine transformation Lx̄ = Bx̄ + P such that L(K̄(x̄1, x̄3, ȳ3, ȳ4)) = K
and constants C = C(ψ) such that

‖B‖ ≤ C, ‖B−1‖ ≤ C, in particular, cond(B) ≤ C2. (3.2)

Moreover, K̄ is regular in the sense of GMAC(ψ̄) with constant ψ̄ < π depending only on
ψ. Hereinafter, K̄(x̄1, x̄3, ȳ3, ȳ4) denotes the confirguration illustrated on the right-hand side of
Fig.3.

Proof. We will construct K̄(x̄1, x̄3, ȳ3, ȳ4) and L explicitly. Since K satisfies GMAC(ψ ),
we can assume without lose of generality that △M1M2M4 is regular, and that π ≥ ψ ≥ β ≥ δ
with δ = π

2
− ψ

2
(See Fig.3).

Further, we assume that the diagonal d1 lies along the y-axis and that the vertex M2 is put
at the origin (up to a rigid movement), y4 is the length of the longer diagonal d1, the vertex
corresponding to the angle β is placed at vertex M4(0, y4)(See Fig.3).

At last we let x̄1 = − |M1M4 | sinβ = x1, ȳ1 = y4, ȳ4 = y4 and

B =

(

1 0
cotβ 1

)

,

(

x̄3

ȳ3

)

= B−1

(

x3

y3

)

. (3.3)

An elementary calculation finds ‖B‖ ≤
√

2/sinβ, ‖B−1‖ ≤
√

2/sinβ, which imply that cond(B) ≤
2/sin2β. We let K̄(x̄1, x̄3, ȳ3, ȳ4) be the convex quadrilateral with vertices M̄1(x̄1, ȳ4), M̄2(0, 0),
M̄3(x̄3, ȳ3) and M̄4(0, ȳ4), note that L(K̄) = K.
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To prove the second part of the Lemma, we only show that the assertion is valid for K ∈ R.
In this case, any interior angle θ of K is not greater than ψ, in view of Lemma 3.1, we have

θ̄ ≤ π(1 − 2/πcond(B)) + (2/πcond(B))ψ = ψ̄ < π,

where the constant ψ̄ obviously only depends on ψ. Therefore K̄ is also a regular quadrilateral
in the sense of MAC(ψ̄), which ends the proof. For the other cases, the proof is similar because
L and its inverse are bounded linear transformations with the norms in terms of ψ.

Proceeding along the same line of Lemma 3.4 in [2], we have

Lemma 3.3 Given a quadrilateral K satisfying GMAC(ψ), let L and K̄(x̄1, x̄3, ȳ3, ȳ4) be the
affine transformation and the affine element given in Lemma 3.2, ū = u ◦ L. Then there are
two positive constants C1 and C2 depending only on ψ such that

C1 | ū− Π1u |1,K̄≤| u− Π1u |1,K≤ C2 | ū− Π1u |1,K̄ (3.4)

C1 | ū |2,K̄≤| u |2,K≤ C2 | ū |2,K̄ (3.5)

Remark 3.1 Notice that in our transformation, the constants in Lemma 3.2 and Lemma 3.3
only depend on ψ, while the corresponding constants in [2] depend on both ψ and the ratio
d2/d1.

4. Error Estimates

The purpose of this section is to derive the optimal interpolation error estimate for the
quadrilateral element satisfying GMAC(ψ). We shall follow the main ideas of [12] to decompose
the Q1 interpolation error into two parts: one is the P1 interpolation error and the other is
the difference between Π1 interpolation and P1 interpolation, and then use the idea of function
extension to estimate the sencond part. However, we shall use the idea of [2] to bound the first
part.

We introduce some notations. Denote the angles of the two diagonals M1M3 and M2M4

by α and π − α with 0 ≤ α ≤ π
2
, and let O be the point at which they intersect. Let

ai =| OMi |, i = 1, 2, 3, 4, let T1 denote triangle △M1M2M4 and T2 denote △M2M3M4. Set
a = max

1≤i≤4
(aiai+1), d = min{| M3M1 |, | M3M2 |, | M3M4 |}. As in Lemma 3.2, we assume the

longer diagonal d1 lies on the y-axis, M2 is placed at the fixed point (0, 0), x1 ≤ 0 and x3 ≥ 0
(See. Fig 3), and that T1 is regular.

To derive the estimate, following the idea of [12] and [2], we decompse the error in the
following way:
Let Π be the P1- Lagrange interpolation operator associated with the vertices M1, M2 and M4,
i.e, Πu is a linear function which admits the same values with u at these three nodes, then we
have

| u− Π1u |1,K≤| u− Πu |1,K + | Πu− Π1u |1,K . (4.1)

Because Πu is a linear function on quadrilateral K, Πu − Π1u belongs to the isoparametric
finite element space and vanishes at nodes Mi, i = 1, 2, 4, then we have

(Πu − Π1u)(x) = (Πu− Π1u)(M3)φ3(x),

where φ3 is the usual bilinear nodal basis at node M3, therefore

| u− Π1u |1,K≤| u− Πu |1,K + | (Πu − Π1u)(M3) || φ3 |1,K . (4.2)

We first take care of the term | u − Πu |1,K . In view of Lemma 3.2 and Lemma 3.3 in the
previous section, it suffices to analyze the case where the reference configuration K̄(x̄1, x̄3, ȳ3, ȳ4)
is considered.

Let ū be the function defined on K̄ through u by the following canonical relation

ū = u(L(x̄)), ∀x̄ ∈ K̄. (4.3)
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Denote Π̄ the P1-Lagrange interpolation of ū on K̄, which agrees with ū at the vertices M̄i, i =
1, 2, 4, we have

Πu = Π̄ū. (4.4)

Remark 4.1 Because d1 is the longest diagonal of K, we can always assume, without lose of
generality, that | T1 |≥| T2 |. Owning to det(B) = 1, we have | T̄1 |=| T1 |≥| T2 |=| T̄2 |,
therefore |T̄1|

|K̄|
≥ 1

2
. Where | T1 | is the volume of the triangle T1.

We need to give a brief verification for such an assumpation. First, if K ∈ R ∪ DB, by
the symmetry, it is reasonable for us to say so. Second, if K ∈ DOB, since d1 is the longer
diagonal by the definition, we assert the interior angle at the vertex M3 is greater than ψ,
otherwise the fact that t1 and t2 are regular in the sense of MAC(ψ) will be violated. Then
∠M4M3M2 > ∠M4M1M2, which implies that | x1 |≥| x3 |

Under this assumpation, we can obtain the following error estimate for the P1-Lagrange
interpolation operator Π̄ and Π,

Lemma 4.1 Let Π̄ū and Πu be defined as above, then

| ū− Π̄ū |m,K̄≤ Ch2−m | ū |2,K̄ ,m = 0, 1. (4.5)

| u− Πu |m,K≤ C(ψ)h2−m | u |2,K ,m = 0, 1. (4.6)

Proof. For m = 1, the inequality (4.5) can be proved in a similar way as Lemma 4.3 of [2] by

using the fact that |T̄1|
|K̄|

≥ 1

2
. For m = 0, using the affine transformation L̃ befined in Theorem

4.1 of [2], we can obtain another quadrilateral K̃, which obviously satisfies the condition J(σ)
with σ = 1. Therefore, the estimate on K̃ follows from [12] and the estimate on K̄ is obtained
by changing variables. At last,(4.6) is the immediate consequence of (4.5), Lemma 3.2 and
Lemma 3.3.

We now turn to the second term on the right hand of the inequality (4.2). This time,
following the idea of Lemma 3.2 of [12], we shall apply the theory of function extension from
[13], which first prove the following lemma.

Lemma 4.2 There exists a constant β0 > 0 only depending on ψ, such that, let G0 be a fixed
isosceles triangle with two angles equal to β0, there exists an isosceles triangle G contained in
K which is similar to G0, and admits the segment M3Mi as its base, where M3Mi denotes the
edge which satisfies d = M3Mi among M3Ml, l = 1, 2, 4.

Proof. In view of the equivalent result Lemma 2.1, there are three cases of which we have
to take care.

Case I K ∈ R.
First, we assume d =|M3M1 |, this is to say, |M3M1 |≤|M3M2 | and |M3M1 |≤|M3M4 |.

Owning to Remark 4.1, namely | T1 |≥| T2 |, it is easy to see max(|M1M2 |, |M1M4 |) ≥ min(|
M3M2 |, | M3M4 |) ≥| M3M1 |, therefore, there exists at least one triangle bewteen t1 and t2
such that d2 is its shortest edge, due to the regularity of t1 and t2, we conclude the assertion is
valid for this case.

Second, if the shortest edge is not | M3M1 |, without lose of generality, we assume d =|
M2M3 |, consequently | d1 |≥| M3M1 |>| M2M3 |, therefore M2M3 is the shortest edge of T2,
by virtue of the regularity of T2, we conclude the assertion is also valid for this case.

Case II K ∈ DB.
Note that in this case M3M1 is not the shortest one among M3Mi, i = 1, 2, 4. Following the

line of the second part of Case I, we can achieve the desired result.
Case III K ∈ DOB.
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If M3M1 is the shortest edge among M3Mi, i = 1, 2, 4, taking into account the regularity of
t1 and t2, following the same procedure of the first part of case I, we obtain the result. On
the contrary, without lose of generality, we assume again d =| M2M3 |. Since △M1M2M3 is
regular and d2 is not the shortest edge of △M1M2M3, we obtain

ψ ≥ ∠M1M2M3 ≥ δ.

Moreover T2 is not regular and d1 is the longer diagonal, then

∠M2M3M4 ≥ ψ,

which implies the desired result.
Using Lemma 4.2 and Lemma 4.1, we have

Lemma 4.3 Let K be a regular quadrilateral in the sense of GMAC(ψ) with constant ψ and
u ∈ H2(K), then, for any real 0 < γ < 1, it holds that

| (u− Πu)(M3) |≤ C(γ, ψ)dγh1−γ | u |2,K (4.7)

Proof. Owning to the Holder-continuous property with real 0 < γ < 1 of functions in
H2(K), using Lemma 4.2 and Lemma 4.1, proceeding along the same line of Lemma 3.2 of [12],
we can obtain the asserted result.

We remain to bound the term | φ3 |1,K , which forces us to estimate the integration
∫

K̂
|

J−1

K | dξdη, where JK is the Jacobian determinant of the bilinear transformation. Here we
adopt the method of [12]. Replacing the inequality log(1 + t) ≤ t1/2, t > 0 in the proof of
Lemma 2.1 of [12] by the inequality log(1 + t) ≤ t, t > 0, we get the following sharper estimate

∫

K̂

| J−1

K | dξdη ≤ 8/(sinα · a), (4.8)

with a = max
1≤i≤4

(aiai+1). We now bound the term 1

sinα in terms of ψ and |d2|
d . Let s1 be the

shortest edge of T1 and s2 be the shortest edge of T2. If K ∈ DOB, as illustrated in Fig.3, θ3
will go to zero, θ1 + γ ≥ δ

2
because △M1M2M3 is regular in the sense of MAC(ψ), moreover

β ≥ δ, thus it is easy to see δ
2
≤ α, i.e,

1

sinα
≤ C(ψ)

| d2 |
d

(4.9)

If K ∈ R ∪ DB, without lose of generality, we assume s1 = M1M4. If s1 is not the shortest
edge of △M1OM4, we have δ ≤ α because △M1M2M4 is regular. If s1 is the shortest edge
△M1OM4, in this case, if s2 = M3M4, by the regularity of △M2M3M4, it is easy to see α ≥ δ,
therefore without lose of generality, we assume s2 = M2M3. Because ψ ≥ β ≥ δ, we get
ψ ≥ θ2 ≥ δ. Moreover,

|M1M4 |
sinα

=
|M1O |
sinβ

,

|M2M3 |
sinα

=
| OM3 |

sin∠M4M2M3

.

Since △M2M3M4 is regular and M3M4 is not its shortest edge,

| s1 |
| s2 | =

|M1O | sin ∠M4M2M3

| OM3 | sinβ

=
| x1 | sin ∠M4M2M3

| x3 | sinβ

≥ C(ψ).

therefore,

1

sinα
=

| OM1 |
| s1 | sinβ

≤ C(ψ)
| OM1 |
| s2 | ≤ C(ψ)

| d2 |
d

. (4.10)
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By virtue of Lemma 2.2 in [12], (4.9) and (4.10), we derive as

| φ3 |1,K≤ 8
√

2h√
sinα · a

| φ̂3 |
1,∞,K̂≤ 16

√
2h

√

sinα | d1 || d2 |
| φ̂3 |

1,∞,K̂≤ C(ψ)
h

√

d | d1 |
,

which, together with Lemma 4.3 with γ = 1

2
, implies

| (u − Πu)(M3) || φ |1,K≤ C(ψ)h | u |2,K . (4.11)

Now we prove our main result Theorem 1.1.
Proof of Theorem 1.1.

Proof. Because

| u− Π1u |1,K≤| u− Πu |1,K + | (u− Πu)(M3) || φ3 |1,K .

The first term is bounded in Lemma 4.1, and the second term is bounded in (4.11). As for the
optimal L2 error estimate, it can be obtained by using our transformation, the idea of Theorem
4.1 of [2] and the estimates given in Theorem 1 of [12], for brevity, we skip the details.
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