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Abstract

In this paper, we discuss the finite volume element method of P1-nonconforming quadri-
lateral element for elliptic problems and obtain optimal error estimates for general quadri-
lateral partition. An optimal cascadic multigrid algorithm is proposed to solve the non-
symmetric large-scale system resulting from such discretization. Numerical experiments
are reported to support our theoretical results.
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1. Introduction

Finite volume method(FVM) is a discretization technique widely used in the approximation
of conservation laws, in computational fluid dynamics, and in convection-diffusion problems.
Apart from an approximation of the solution at discrete points, we can seek a discrete solution
in a finite element space. This version of approximation is often called the finite volume element
method(FVEM). On the one hand, it has a simplicity for implementation comparable to the
finite difference method and can be viewed as a generalization of the finite difference method;
on the other hand, it has a flexibility similar to that of the finite element method(FEM) for
handling complicated geometries and boundary conditions and preserves more mathematical
structures of the original continuous problem, which makes systematic error analysis possible.
Another important advantage of this method is that such generated numerical solutions usually
have certain conservation property locally, thus it can be expected to capture shocks, to pro-
duce simple stencils, or to study other physical phenomena more effectively. About its recent
developments, we refer to the monographs [2, 9, 10, 11, 14, 18, 22] for details.

Nonconforming elements have been used effectively especially in the computation of fluid
and solid mechanics due to their stability nature. Recently increasing attentions have been paid
to these elements for their potential application in parallel computing. Driven by these reasons,
many nonconforming elements have been proposed in the triangular and quadrilateral cases from
1970s [13, 15, 16, 20, 21]. Observing the fact that any P1 function on a quadrilateral can be
uniquely determined by its values on any three of the four midpoints on the edges, [20] and [16]
introduced the P1-nonconforming quadrilateral element from different points of view and this
element has the least degrees of freedom among all the low order nonconforming quadrilateral
elements. The quadrilateral finite element spaces are generally constructed starting from a given
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finite dimensional polynomials space V̂ on a reference element K̂ by a bilinear isomorphism.
Recent observation made by [1] implies that for such defined finite element spaces, a necessary
and sufficient condition for approximation of order r+ 1 in Lp and r in W 1,p is that v̂ contains
the space Qr. Thus for the truly quadrilateral element, the P1-nonconforming finite element
space obtained from the standard reference element will not guarantee the optimal convergence
rate anymore. But the nonparametric scheme proposed in [20] provides an efficient way of
computing without losing the order of convergence.

In this paper, we are interested in using the nonparametric P1-nonconforming quadrilateral
element to solve elliptic problems by FVEM. Considering the particular characteristic of this
element, we propose its finite volume element discretization scheme corresponding to a dual
partition of overlapping type. Numerical analysis shows optimal convergence rate under H1-
norm, but in order to obtain optimal error estimate under L2-norm, additional assumptions on
the source term and the partition are needed. A counterexample is given to show that more
regular assumption on the source term is necessary. But numerical experiments demonstrate
that the assumption on the partition is unnecessary, which means the L2-norm error estimate
may can be improved.

In the field of scientific computing, designing effective algorithm to solve the systems re-
sulting from the discretization of PDEs is always the concern of many researchers. Cascadic
multigrid method, which requires no coarse grid corrections and can be viewed as a ”one-way”
multigrid method, is proven to be effective for solving large-scale finite element discretization
problem, see [3, 4, 5, 6, 7, 17, 24, 25, 27] for details. But for the finite volume element dis-
cretization, the algebraic systems of self-adjoint elliptic problems are nonsymmetric in general,
which brings many difficulties for designing optimal cascadic multigrid algorithms. Based on
the observation that the nonsymmetric equations are a small perturbation of the usual finite
element discretization equations, we propose a new cascadic multigrid algorithm in [26] to solve
the finite volume element discretization problem for P1-conforming triangular element. The
aim of this paper is to apply this algorithm to the P1-nonconforming quadrilateral element.
The nonconformity of this element is conquered by defining a new inter-grid transfer operator.
Theoretical analysis and numerical experiments show that this algorithm is optimal in both
accuracy and computational complexity.

The rest of our paper is organized as follows: In Section 2, we give some notations used in this
paper and formulate the FVE scheme for the nonparametric P1-nonconforming quadrilateral
element for self-adjoint elliptic problems; then in Section 3, we obtain optimal H1- and L2-norm
error estimates for it, and a counterexample is given to show that the L2-norm error estimate
cannot be optimal in regularity; Section 4 is devoted to analyze the cascadic multigrid algorithm
for the discretization problem; then in the last section, we give some numerical experiments to
support our theoretical results.

2. Notations and the Finite Volume Element Scheme for the

P1-nonconforming Quadrilateral Element

In this paper, we consider the following self-adjoint elliptic problem

−∇ · (A∇u) = f, in Ω,
u = 0, on ∂Ω,

(2.1)

where Ω is a convex polygonal domain in R2, and A = (ai,j)2×2 ∈ (W 1,∞(Ω))4 is a given real
matrix function satisfying

0 < α∗|ξ|2 ≤ ξtA(x)ξ ≤ α∗|ξ|2 <∞, ∀ξ ∈ R2. (2.2)

In what follows we shall adopt the standard definitions of Sobolev spaces, the notations of their
norms and semi-norms as presented in [12].
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For convenience, we give a brief introduction of the nonparametric P1-nonconforming quadri-
lateral element proposed in [20]. Suppose Th is a regular and quasi-uniform quadrilateral de-
composition of the domain Ω, h the maximum meshsize of the partition, let NK , NP , and NE

denote the number of quadrilaterals, vertices, and edges respectively. Set

Th = {K1,K2, · · · ,KNK
} :

NK⋃
j=1

Kj = Ω;

P = {P1, P2, · · · , PNP
} : the set of all vertices of K ∈ Th;

Eh = {e1, e2, · · · , eNE
} : the set of all edges of K ∈ Th;

M = {m1,m2, · · · ,mNE
} : the set of all midpoints of e ∈ Eh.

(2.3)

In particular, let N i
P , N i

E denote the number of interior vertices, edges and midpoints of the
partition Th.

Remark 2.1 For convenience, we let {P1, P2, · · · , PNi
P
} denote the set of interior points and

{PNi
P +1, PNi

P +2, · · · , PNP
} the set of boundary points.
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Figure 1. 

For given K ∈ Th with vertices Pj , 1 ≤ j ≤ 4, and midpoints of edges mj , 1 ≤ j ≤ 4, as in
Figure 1., there is a unique affine transformation F : R2 → R2 such that

F (m̂1) = m1, F (m̂2) = m2, F (m̂3) = m3, F (m̂4) = m4, (2.4)

since the four midpoints of any quadrilateral form a parallelogram. Denote K̂ = F−1(K) and
define ϕ̂j ∈ Span{1, x̂, ŷ}, 1 ≤ j ≤ 4, such that

ϕ̂j(m̂k) =

{
1, k = j, j + 1 mod 4,
0, otherwise.

(2.5)

Then the basis function space can be constructed by using the fixed reference basis function
{ϕ̂j}4

j=1, although K̂ may vary. Now the P1-nonconforming quadrilateral finite element space
can be defined as

NCh = {vh : Ω → R| vh|K ∈ P1(K) for any K ∈ Th, vh is continuous at each m ∈ M\∂Ω},
NCh

0 = {vh ∈ NCh| vh(m) = 0 for any m ∈ M∩ ∂Ω}.
(2.6)

To each vertex Pj ∈ P , denote by E(j) the set of all edges e ∈ E such that one of endpoints
on each edge is Pj , and by M(j) the set of all midpoints m on edges in E(j). Let ϕj ∈ NCh be
defined as

ϕj(m) =

{
1, if m ∈ Mj,

0, if m ∈ M\M(j).
(2.7)

In fact ϕj can be obtained from the basis defined on K̂ by the affine transformation F . Under
the assumption that each interior edge has at least one interior vertex as its endpoint, all
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functions associated with the interior vertex Pj ∈ P\∂Ω, j = 1, 2, · · · , N i
P form the basis of

NCh
0

Remark 2.2 For the rectangular partition, the nonparametric element is equivalent to the
standard reference element and all the following results still hold.

Now we come to discretize problem (2.1). Its variational form is to find u ∈ V = H1
0 (Ω)

such that

a(u, v) = (f, v), ∀v ∈ V, (2.8)

where

a(u, v) =

∫

K

A∇u · ∇v dx. (2.9)

Then the standard Galerkin finite element approximation of (2.8) is to find ûh ∈ Vh = NCh
0

such that

ah(ûh, vh) = (f, vh), ∀vh ∈ Vh, (2.10)

where

ah(u, v) =
∑

K∈Th

∫

K

A∇u · ∇v dx, ∀ u, v ∈ Vh. (2.11)

In the finite volume discretization, to obtain a unique approximate solution, we require
the number of dual element should equal to the number of unknowns. For P1-nonconforming
quadrilateral element, the basis functions are corresponding to the vertices while continuous
at the midpoints of the partition. Considering this particular characteristic, we choose the
following defined dual partition: for any K ∈ Th, the diagonals of each element split itself into
four triangles, let K∗

Pi,K
be the union of all triangles with Pi as their common vertex on K and

define

T ∗
h = {K∗

Pi
, K∗

Pi
=

⋃

K

K∗
Pi,K

, i = 1, 2, · · · , NP }, (2.12)

then T ∗
h constitutes a dual partition of Th and each K∗

Pi
is called a control volume[see Figure

2.] It is obvious that the control volumes are overlapped.

K
P
*

 P 

K
P
* −−control volume 

Figure 2. 

Then the finite volume element method of (2.1) is to find uh ∈ Vh such that

−
∫

∂K∗

Pi

(A∇huh) · n ds =

∫

K∗

Pi

f dx, i = 1, 2, · · · , N i
P , (2.13)

where n is the unit outward normal to ∂K∗
Pi

. It should be noted that the formulation is
a discretization form of stating that we have an integral conservation locally on the control
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volume. Let χi be the characteristic function of K∗
Pi

, then problem (2.13) is equivalent to find
uh ∈ Vh such that

−
Ni

P∑

i=1

V i

∫

∂K∗

Pi

(A∇huh) · n ds =

∫

Ω

f

Ni
P∑

i=1

V iχi dx, ∀ {V i}Ni
P

i=1 ∈ RNi
P . (2.14)

Let

Wh = {wh ∈ L2(Ω) : wh|K∗

i,j
= const and wh|∂Ω = 0}, (2.15)

where K∗
i,j = K∗

Pi
∩K∗

Pj
. Then we can define a one-to-one operator rh : Vh → Wh such that

for any vh =
Ni

P∑
i=1

V iϕi ∈ Vh,

rhvh =

Ni
P∑

i=1

V iχi. (2.16)

It is easy to check that such defined operator has the following approximation property

‖rhvh − vh‖0,q ≤ ch|vh|1,q,h, ∀ vh ∈ Vh, 1 < q <∞. (2.17)

Employing the operator, problem (2.14) can be rewritten as: seek uh ∈ Vh such that

a∗h(uh, vh) = (f, rhvh), ∀vh ∈ Vh, (2.18)

where

a∗h(uh, vh) = −
Ni

P∑

i=1

V i

∫

∂K∗

Pi

(A∇huh) · n ds, ∀ vh =

Ni
P∑

i=1

V iϕi. (2.19)

3. Numerical Analysis

In order to get optimal H1 and L2-norm error estimates for (2.13), we first give several
important lemmas which are crucial to the numerical analysis in section 3.1, while solvability
of the problem is presented in section 3.2.

3.1 Lemmas

Lemma 3.1 [20] The semi-norm |v|21,h =
∑

K∈Th

‖∇v|20,K is also a norm on the space NCh
0 .

Define
ωi,K = {j : Pi and Pj are diagonal points of K},
wi =

⋃
K∈Th

wi,K ,

w = {(i, j) : 1 ≤ i < j ≤ NP , j ∈ ωi},
(3.1)

then

Lemma 3.2 There exists a positive constant c0 > 0 independent of h such that for any vh =
Ni

P∑
i=1

V iϕi ∈ Vh,

∑

(i,j)∈ω

|V i − V j |2 ≤ c0‖∇hvh‖2
0,Ω, (3.2)

where if k > N i
P , V k = 0.



64 H.Y. MAN AND Z.C. SHI

P
1
 

P
2
 

P
3
 P

4
 

m
1
 

m
2
 

m
3
 

m
4
 

ω
1,K

={3} ω
2,K

={4} 

Figure 3. 

K 
α 

 

O 

Proof. Since vh is piecewise linear on Th and continuous at the midpoint of each edge, using
the notations in Figure 3., on element K we have

V 1 + V 4 − V 2 − V 3 = ∇vh,K · (a1 + a4 − a2 − a3

2
,
b1 + b4 − b2 − b3

2
), (3.3)

V 1 + V 2 − V 3 − V 4 = ∇vh,K · (a1 + a2 − a3 − a4

2
,
b1 + b2 − b3 − b4

2
), (3.4)

where (ai, bi), 1 ≤ i ≤ 4, is the coordinate of the vertex Pi. After simple manipulation, we get

V 1 − V 3 =
1

2
∇vh,K · (a1 − a3, b1 − b3), (3.5)

V 2 − V 4 =
1

2
∇vh,K · (a2 − a4, b2 − b4). (3.6)

So

(V 1 − V 3)2 + (V 2 − V 4)2 ≤ 1

4
|∇vh,K |2(|P1P3|2 + |P2P4|2). (3.7)

By [19], since Th is regular, there exists a constant σ1 > 0, such that for any element K ∈ Th,

|P1P3|
|P3P4|

≤ σ1,
|P3P4|
|P2P4|

≤ σ1, (3.8)

thus
|P1P3| ≤ σ2

1 |P2P4|. (3.9)

Similarly, there exists σ2 > 0 such that

|P2P4| ≤ σ2
2 |P1P3|. (3.10)

Substituting (3.9). (3.10) into (3.7) to obtain

(V 1 − V 3)2 + (V 2 − V 4)2 ≤ 1

4
(σ2

1 + σ2
2)|∇vh,K |2|P1P3||P2P4|. (3.11)

On the other hand, the regularity of Th implies that the four subtriangles contained in each K
is also regular, i.e., there exists θ0 > 0, such that any inner angle of the subtriangles is bigger
than θ0. Let α denote the acute angle between the lines P1P2 and P3P4, then

2θ0 < α < π − 2θ0. (3.12)

Since

meas(K) =
1

2
|P1P3||P2P4| sinα >

1

2
sin(2θ0)|P1P3||P2P4|, (3.13)
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combining this with (3.11), we have

(V 1 − V 3)2 + (V 2 − V 4)2 ≤ σ2
1 + σ2

2

2 sin(2θ0)
|∇vh,K |2meas(K) =

σ2
1 + σ2

2

2 sin(2θ0)
|vh|21,K . (3.14)

Summing this inequality over all K ∈ Th gives (3.2).
Define

Qh = {qh ∈ L2(Ω) : qh|K = const, K ∈ Th}, (3.15)

then we have that

Lemma 3.3 For any matrix-valued function Ā ∈ (Qh)4, there holds

−
Ni

P∑

i=1

V i

∫

∂K∗

Pi

(Ā∇huh) · nds =

∫

Ω

Ā∇huh · ∇hvhdx, ∀ uh, vh ∈ Vh, (3.16)

where vh can be expressed as

Ni
P∑

i=1

V iϕi.
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Proof. Using the notations in Figure 4., the left-hand of (3.16) can be rewritten as

−
Ni

P∑

i=1

V i

∫

∂K∗

Pi

(Ā∇huh) · nds = −
∑

K∈Th

AK , (3.17)

where

AK = (V 1 − V 3)

∫

P2P4

(Ā|K∇huh) · n42ds+ (V 2 − V 4)

∫

P1P3

(Ā|K∇huh) · n31ds. (3.18)

Since uh is linear on each K, we have

AK = (V 1 − V 3)|P2P4|ĀK∇uh,K · n42 + (V 2 − V 4)|P1P3|ĀK∇uh,K · n31. (3.19)

Noting (3.5) and (3.6),

AK =
1

2
|P1P3||P2P4|(∇vh,K · ~τ31ĀK∇uh,K · n42 + ∇vh,K · ~τ42ĀK∇uh,K · n31). (3.20)
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On the other hand,

~τ31 = − sinα n42 − cosα ~τ42, n31 = cosα n42 − sinα ~τ42, (3.21)

so

AK = −1

2
|P1P3||P2P4| sinα (∇vh,K · n42 Ā|K∇uh,K · n42 + ∇vh,K · ~τ42 Ā|K∇uh,K · ~τ42)

= −meas(K)Ā|K∇uh,K∇vh,K = −
∫

K

Ā∇uh∇vhdx.

(3.22)
Substituting this equality into (3.17), we get the desired result.

3.2 The solvability of the discrete problem

We first give a lemma which shows that the finite volume element bilinear form a∗h(·, ·) is
only a perturbation of the finite element bilinear form ah(·, ·).

Lemma 3.4 If A ∈ (W 1,∞(Ω))4, then there exists a constant C independent of the meshsize
h, such that for any uh, vh ∈ Vh,

|a∗h(uh, vh) − ah(uh, vh)| ≤ Ch‖uh‖1,h‖vh‖1,h. (3.23)

proof. Let Ā be the L2 orthogonal projection of A onto space (Qh)4, i.e.,

Āij |K =
1

meas(K)

∫

K

aij(x)dx, 1 ≤ i, j ≤ 2, K ∈ Th. (3.24)

Define

ā∗h(uh, vh) = −
Ni

P∑

i=1

V i

∫

∂K∗

Pi

Ā∇huh · n ds, (3.25)

by lemma 3.3,

ā∗h(uh, vh) =

∫

Ω

Ā∇huh · ∇hvhdx, (3.26)

so
|ā∗h(uh, vh) − ah(uh, vh)| ≤ Ch‖uh‖1,h‖vh‖1,h. (3.27)

On the other hand,

a∗h(uh, vh) − ā∗h(uh, vh)

= −
∑

K∈Th

( (V 1 − V 3)

∫

P2P4

(A − Ā)|K∇huh · n42ds

+ (V 2 − V 4)

∫

P1P3

(A − Ā)|K∇huh · n31ds),

(3.28)

so
|a∗h(uh, vh) − ā∗h(uh, vh)|

≤ Ch‖A‖1,∞,Ω‖uh‖1,h(
∑

(i,j)∈ω

|V i − V j |2) 1

2

≤ Ch‖A‖1,∞,Ω‖uh‖1,h‖vh‖1,h.

(3.29)

Combining it with (3.27), we complete the proof of this lemma.
By Lemma 3.4,

a∗h(vh, vh) = ah(vh, vh) + a∗h(vh, vh) − ah(vh, vh)
≥ (α∗ − Ch)‖vh‖2

1,h,
(3.30)

where the uniform ellipticity of ah(·, ·) is used. If we choose properly small h0 = α∗

2C
, then we

have the uniform ellipticity of a∗h(·, ·) stated in the following theorem:
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Theorem 3.1 There exists a constant C independent of the meshsize h, such that for any
h ∈ (0, h0),

a∗h(vh, vh) ≥ C‖vh‖2
1,h, ∀vh ∈ Vh. (3.31)

Now an application of Lax-Milgram lemma gives the existence and uniqueness of the solution
of the discrete problem (2.13).

3.3 H1 and L2-norm error estimates

Theorem 3.2 Let u, uh be the solution of (2.1) and (2.13) respectively, then there exists a
constant C independent of h, such that

‖u− uh‖1,h ≤ Ch‖u‖2. (3.32)

Proof. Define the interpolation operator Πh : H2(Ω) ∩H1
0 (Ω) → NC0

h as in [20] such that

Πhu(m) =
1

2
(u(P1) + u(P2)), ∀m ∈ M, (3.33)

where P1 and P2 are the endpoints of an edge with m as its midpoint. For any u ∈ H2(Ω) ∩
H1

0 (Ω), its interpolation can be expressed as

Πhu =
1

2

Ni
P∑

i=1

uiϕi, (3.34)

where ui = u(Pi). It has the following approximation property

‖u− Πhu‖ + h‖u− Πhu‖1,h ≤ Ch2‖u‖2, ∀ u ∈ H2(Ω) ∩H1
0 (Ω). (3.35)

Let eh = Πhu− uh, by Theorem 3.1,

c0‖∇eh‖2 ≤ −
Ni

P∑

i=1

(
ui

2
− U i)

∫

∂K∗

Pi

A∇h(Πhu− uh) · n ds. (3.36)

Noting (2.13) and the fact that

−
∫

∂K∗

Pi

A∇u · nds =

∫

K∗

Pi

fdx, (3.37)

(3.36) can be rewritten as

c0‖∇heh‖2 ≤ −
Ni

P∑

i=1

(
ui

2
− U i)

∫

∂K∗

Pi

A∇h(Πhu− u) · n ds

≤ C0‖∇heh‖0,Ω{
∑

(i,j)∈ω

(

∫

PiPj

A∇h(Πhu− u) · nij ds )2 } 1

2 ,

(3.38)

where Lemma 3.2 is used.
On the other hand,

|
∫

PiPj

A∇(Πhu− u) · nij ds| ≤ Ch‖u‖2,K, (3.39)

where K is the element with Pi, Pj as its two vertices.
So

‖∇heh‖0 ≤ Ch‖u‖2. (3.40)

Combining it with (3.35) completes the proof of this theorem.
To obtain optimal convergence rate for the L2-norm error estimates, we need the following

assumption that each quadrilateral in Th is almost a parallelogram, i.e.,
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Assumption 3.1 The distant dK between the midpoints of the diagonals is of order O(h2) for
all elements K as h→ 0.

As stated in [23] all quadrilaterals produced by the bi-section scheme of mesh subdivision
satisfy this assumption. Under this assumption we have

Theorem 3.3 Let u, uh be the solution of (2.1) and (2.13) respectively. If A ∈W 2,∞(Ω) and
f ∈W 1,p(Ω), p > 1, then there exists a constant C > 0 independent of h, such that

‖u− uh‖0 ≤ Ch2‖f‖1,p. (3.41)

Proof. Let ψ ∈ H1
0 (Ω) be the solution of

−∇ · (A∇ψ) = u− uh in Ω, and ψ = 0 on ∂Ω, (3.42)

then we have
‖ψ‖2 ≤ C‖u− uh‖0. (3.43)

An application of Green’s formula shows that

‖u− uh‖2
0 =

∑
K∈Th

(A∇(u − uh),∇(ψ − Πhψ))K +
∑

K∈Th

A∇(u− uh),∇Πhψ)K

− ∑
K∈Th

< A∇ψ · n, u− uh >∂K

= I1 + I2 + I3.

(3.44)

By (3.35) and Theorem 3.2,
|I1| ≤ Ch2‖u‖2‖ψ‖2. (3.45)

For the consistency error I3, as in [20], it can be bounded by

|I3| ≤ Ch‖u− uh‖1,h‖ψ‖2 ≤ Ch2‖u‖2‖ψ‖2. (3.46)

About I2, it can be rewritten as

I2 = (f,Πhψ) − (f, rhΠhψ) −
Ni

P∑

i=1

ψi

2

∫

∂K∗

Pi

A∇huh · n ds

+
∑

K∈Th

∫

∂K

A∇u · n Πhψ ds−
∑

K∈Th

(A∇uh,∇Πhψ)K .

(3.47)

As in [10], let CK(f) =

∫

B

fwKdx on K, where B is the biggest ball in R2 satisfying B ⊂⊂ K

and wK a cut-off function supported in B̄ as defined by Def.4.1.3 in [8], then the first two terms
in the right-hand side of (3.47) can be bounded by

(f,Πhψ − rhΠhψ) ≤ ch2‖f‖1,p‖ψ‖2 +
∑

K∈Th

∫

K

CK(f)(Πhψ − rhΠhψ)dx. (3.48)

For the parallelogram,

∫

K

(Πhψ − rhΠhψ)dx = 0, the last term in (3.48) disappears. But this

does not hold for the general quadrilateral mesh. Using notations in Figure 3.,

(Πhψ − rhΠhψ)|K =
4∑

i=1

ψi

2
(ϕi − χi). (3.49)

A careful calculation leads to
∫

K

(ϕ1 − χ1)dx =
meas(K)

3
(
|P3O| − |P1O|

|P1P3|
), (3.50)
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∫

K

(ϕ2 − χ2)dx =
meas(K)

3
(
|P4O| − |P2O|

|P2P4|
), (3.51)

∫

K

(ϕ3 − χ3)dx =
meas(K)

3
(
|P1O| − |P3O|

|P1P3|
), (3.52)

∫

K

(ϕ4 − χ4)dx =
meas(K)

3
(
|P2O| − |P4O|

|P2P4|
). (3.53)

So ∫

K

(Πhψ − rhΠhψ)dx

=
meas(K)

3
{ ψ1 − ψ3

2

|P3O| − |P1O|
|P1P3|

+
ψ2 − ψ4

2

|P4O| − |P2O|
|P2P4|

}.
(3.54)

By Assumption 3.1 and the regularity of Th ,

|
∑

K∈Th

∫

K

CK(f)(Πhψ − rhΠhψ)dx|

≤ Ch2 (
∑

K∈Th

|CK(f)|2 ·meas(K))
1

2 (
∑

(i,j)∈ω

(
ψi

2
− ψj

2
)2)

1

2

≤ Ch2 (
∑

K∈Th

‖CK(f)‖2
0,K)

1

2 ‖Πhψ‖1,h

≤ Ch2‖f‖0‖ψ‖1.

(3.55)

Substituting it into (3.48), we get

(f,Πhψ − rhΠhψ) ≤ Ch2‖f‖1,p‖ψ‖2, p > 1. (3.56)

Since ∑

K∈Th

∫

K

∇ · (A∇uh) rhΠhψdx

=

Ni
P∑

i=1

ψi

2

∫

∂K∗

Pi

A∇huh · n ds+
∑

K∈Th

∫

∂K

A∇uh · n rhΠhψ ds,

(3.57)

and
∑

K∈Th

(A∇uh,∇Πhψ)K = −
∑

K∈Th

(∇ · (A∇uh),Πhψ) +
∑

K∈Th

∫

∂K

A∇uh · n Πhψ ds, (3.58)

the last three terms of (3.47) can be rewritten as

s =
∑

K∈Th

∫

K

∇ · (A∇uh) (Πhψ − rhΠhψ) dx

+
∑

K∈Th

{−
∫

∂K

A∇uh · n (Πhψ − rhΠhψ) ds+

∫

∂K

A∇u · n Πhψ ds}

=̂ A1 +A2,

(3.59)

where
|A1| ≤ Ch2‖A‖2,∞‖u‖2‖ψ‖2. (3.60)

Note the fact that ∑

K∈Th

∫

∂K

A∇u · n rhvh ds = 0, ∀ vh ∈ Vh, (3.61)

and ∫

e

(vh − rhvh) ds = 0, ∀ e ∈ Eh, (3.62)
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let Ae = A(me), A2 can be rewritten as

A2 =
∑

K∈Th

∑

e∈Eh(K)

∫

e

(A − Ae)∇(u − uh) · n (Πhψ − rhΠhψ) ds

+
∑

K∈Th

∑

e∈Eh(K)

∫

e

Ae ∇u · n Πhψ ds

=̂ B1 +B2,

(3.63)

where
|B1| ≤ Ch2‖u‖2‖ψ‖2. (3.64)

For B2, we introduce the standard Q1-conforming finite element space X0
h defined on Th with

zero boundary and let ΠQ1
be its standard interpolation operator. Since

∑

K∈Th

∫

∂K

Ae ∇u · n wh = 0, ∀ wh ∈ X0
h, (3.65)

∫

e

(Πhψ − ΠQ1
ψ)ds = 0, (3.66)

B2 =
∑

e∈Eh

∫

e

(Ae∇u · n − c1) [Πhψ − ΠQ1
ψ] ds, ∀ c1 ∈ R, (3.67)

where [·] denotes the jump of a function over an edge. Then we have

|B2| ≤ Ch‖u‖2 (h−1‖Πhψ − ΠQ1
ψ‖0 + |Πhψ − ΠQ1

ψ|1,h)
≤ Ch2‖u‖2‖ψ‖2.

(3.68)

Noting (3.43), we complete the proof of this theorem.
In the following, we will use the counterexample given in [18] to show that the optimal

L2-norm error estimate
‖u− uh‖0 ≤ Ch2‖u‖2 ≤ Ch2‖f‖0, (3.69)

does not hold for the P1-nonconforming quadrilateral finite volume element discretization either.
Counterexample: Consider the model problem:

{
−∆u = f, in Ω,

u = 0, on ∂Ω,
(3.70)

where Ω = [−2, 2] × [−2, 2]. Let Th be a decomposition of Ω into 4n2 equal-size squares with

edge h =
1

n
, T ∗

h be the dual partition of Ω defined in section 2.

If we assume (3.69) is true, by the definition of L2-norm, we have

|
∫

Ω

(u − uh)φ dx| ≤ Ch2‖φ‖0‖f‖0, ∀ φ ∈ L2(Ω). (3.71)

Introduce the auxiliary function ψ ∈ H2(Ω) ∩H1
0 (Ω) defined by

{
−∆ψ = φ, in Ω,

ψ = 0, on ∂Ω,
(3.72)

then as in [18], it can be deduced that

‖Πhψ − rhΠhψ‖0 ≤ Ch2‖φ‖0, ∀ ψ ∈ H2(Ω) ∩H1
0 (Ω). (3.73)

Choosing a special function ψ ∈ H2(Ω) ∩H1
0 (Ω) such that

ψ(x1, x2) = x1(1 − x1), in Ω1 = [0, 1]× [0, 1]. (3.74)
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By (3.73), the following estimate should hold for this ψ:

‖ψ − rhΠhψ‖0,Ω1
≤ Ch2. (3.75)

However, a direct calculation shows that

‖ψ − rhΠhψ‖2
0,Ω1

=

∫

Ω1

ψ2 dx+

∫

Ω1

(rhΠhψ)2 dx− 2

∫

Ω1

ψrhΠhψ dx

=
1

30
+
h5

24

N∑

i=1

{ − 12i4 + 24(N + 1)i3 − (12N2 + 36N + 19)i2

+(N + 1)(12N + 7)i− (N + 1)(3N +
1

2
) }

+
h5

6

N−1∑

i=1

{−3i4 + 6Ni3 − (3N2 +
1

4
)i2 +

1

4
Ni }

=
1

72
h2 + o(h2),

(3.76)

i.e.,

‖ψ − rhΠhψ‖0,Ω1
=

√
2

12
h+ o(h). (3.77)

Comparing it with (3.75), we get a contradiction. That means (3.69) is not true in fact.

4. Cascadic Multigrid Algorithm

In this section, we will apply the cascadic multigrid algorithm proposed in [26] to solve
the discrete problem (2.13). We construct a sequence of nested quadrilateral partition of Ω as
follows: suppose a coarse partition T0 is given, we define the finer partition Tl for l ≥ 1 by
subdividing every quadrilateral in Tl−1 into four sub-quadrilaterals by the bi-section technique.
For such defined nested partitions,

(1) If the coarse partition T0 is regular, quasi-uniform, and satisfies Assumption 3.1, then
all these properties still hold for every Tl, l ≥ 1;

(2)Let hl denote the maximum mesh size of Tl, then hl =
hl−1

2
;

(3) For every partition Tl, the notations Vh, N i
P , Pi, ϕi, P , Eh, M defined in Section 2 are

rewritten as Vl, N
i
P,l, P

l
i , ϕ

l
i, Pl, El, Ml;

(4) For Tl, denote its dual partition as T ∗
l .

Using these partitions, the problem (2.10) defined on Tl can be written as: find ûl ∈ Vl such
that

al(ûl, vl) = (f, vl), ∀ vl ∈ Vl, (4.1)

and the problem (2.18) can be written as: find ul ∈ Vl such that

a∗l (ul, vl) = (f, rlvl), ∀vl ∈ Vl, (4.2)

where al(·, ·), a∗l (·, ·), rl are the restriction of ah(·, ·), a∗h(·, ·) and rh on Tl respectively.
Define the energy norm on level l as

|||v|||2l = al(v, v), ∀ v ∈ Vl. (4.3)

It is easy to see that ||| · |||l is equivalent to the norm ‖ · ‖1,hl
, i.e.,

C∗‖v‖1,hl
≤ |||v|||l ≤ C∗‖v‖1,hl

, ∀v ∈ Vl. (4.4)

Since Vl−1 ⊆ Vl does not hold in this case, in order to get a cascadic multigrid algorithm
for problem (4.2), we define an inter-grid transfer operator Il : Vl−1 → Vl as follows: for any
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vl−1 ∈ Vl−1,

Ilvl−1 =

Ni
P,l∑

i=1

W iϕl
i, (4.5)

where
(1) If P l

i ∈ Pl−1

W i =
1

2NC

NC∑

j=1

vl−1|Kj
(P l

i ), (4.6)

where Kj , j = 1, 2, · · · , NC are elements in Tl with common vertex P l
i ;

(2) else

W i =
1

2
Vl−1(P

l
i ). (4.7)

For such defined operator, it has the following approximation property:

Lemma 4.1 There exists a constant C > 0, such that for any v ∈ Vl−1,

‖Ilv‖0 ≤ C‖v‖0, (4.8)

|||Ilv|||l ≤ C|||v|||l−1 , (4.9)

‖v − Ilv‖0 ≤ Chl‖v‖1,hl−1
, (4.10)

‖ul − Ilul−1‖0 ≤ Ch2
l ‖f‖1,p, (4.11)

where ul, ul−1 are the solution of (4.2) on level l, l − 1 respectively.

proof. Since (4.8) and (4.9) can be easily obtained from (4.10) by inverse inequality and the
equivalence of the norms, we need only to prove (4.10) and (4.11). Without loss of generality,
we assume that NC = 4 for convenience of analysis.
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For any v =
Ni

P,l∑
i=1

V iϕl−1
i , using the notations in Figure 5., v|M =

9∑
i=1

V iϕl−1
i . By the defini-

tion of Il, Ilv|K1
can be expressed as

Ilv|K1
=

4∑

i=1

W iϕl
i, (4.12)
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where

W 1 =
1

4
(V 1 + V 2 + V 8 + V 9), W 2 =

1

2
(V 2 + V 9), W 4 =

1

2
(V 8 + V 9),

W 3 =
1

8
{ (4V 9 + 2V 2 + 2V 6) + (V 9 − V 1)

|P9O1|
|P1P9|

+ (V 8 − V 2)
|P2O1|
|P2P8|

+(V 9 − V 3)
|P9O2|
|P3P9|

+ (V 4 − V 2)
|P2O2|
|P2P4|

+ (V 9 − V 5)
|P9O3|
|P5P9|

+(V 4 − V 6)
|P6O3|
|P4P6|

+ (V 9 − V 7)
|P9O4|
|P9P7|

+ (V 8 − V 6)
|P6O4|
|P6P8|

}.

(4.13)

After careful manipulations, we obtain
∫

K1

(v − Ilv)
2 dx

= { |b1o|
|b1b3|

((v(m1) − Ilv(m1))
2 + (v(m2) − Ilv(m2))

2 + (v(o) − Ilv(o))
2)

+
|b3o|
|b1b3|

((v(m3) − Ilv(m3))
2 + (v(m4) − Ilv(m4))

2 + (v(o) − Ilv(o))
2) } |K1|

3
≤ Ch2

l { (V 1 − V 9)2 + (V 2 − V 8)2 + (V 2 − V 4)2 + (V 3 − V 9)2

(V 5 − V 9)2 + (V 4 − V 6)2 + (V 6 − V 8)2 + (V 7 − V 9)2 }.

(4.14)

So
‖v − Ilv‖0 ≤ Chl(

∑

(i,j)∈ωl−1

(V i − V j)2 )
1

2 ≤ Chl‖v‖1,hl−1
. (4.15)

On the other hand, since

‖ul − Ilul−1‖0

≤ ‖ul − u‖0 + ‖u− Πlu‖0 + ‖Πlu− IlΠl−1u‖0 + ‖IlΠl−1u− Ilul−1‖0

≤ Ch2
l ‖f‖1,p + ‖Πlu− IlΠl−1u‖0,

(4.16)

we need only to estimate the last term in (4.16). Note that

Πlu|K1
=
u(b1)

2
ϕl

1 +
u(b2)

2
ϕl

2 +
u(b3)

2
ϕl

3 +
u(b4)

2
ϕl

4, (4.17)

IlΠl−1u|K1
=

Πl−1u(b1)

2
ϕl

1 +
Πl−1u(b2)

2
ϕl

2 +
Πl−1u(b4)

2
ϕl

4

+
1

8
{ Πl−1u|M1

(P9) + Πl−1u|M2
(P9)

+Πl−1u|M3
(P9) + Πl−1u|M4

(P9) }ϕl
3,

(4.18)

we have

‖Πlu− IlΠl−1u‖2
0,K1

≤ C { [u(b1) − Πl−1u(b1)]
2 + [u(b2) − Πl−1u(b2)]

2 + [u(b4) − Πl−1u(b4)]
2

+[u(b3) − Πl−1u|M1
(b3)]

2 + [u(b3) − Πl−1u|M2
(b3)]

2

+[u(b3) − Πl−1u|M3
(b3)]

2 + [u(b3) − Πl−1u|M4
(b3)]

2 } |K1|.
(4.19)

Let T̃l be the subdivision of Tl with each quadrilateral divided into two triangles and Π̃l be the
standard interpolation operator of P1-conforming triangular element defined on T̃l, then

∫

K1

(Π̃lu− Πl−1u)
2dx

≥ |K1|
20

|b1o|
|b1b3|

{ [u(b1) − Πl−1u(b1)]
2 + [u(b2) − Πl−1u(b2)]

2 + [u(b4) − Πl−1u(b4)]
2 }

+
|K1|
20

|b3o|
|b1b3|

{ [u(b2) − Πl−1u(b2)]
2 + [u(b3) − Πl−1u|M1

(b3)]
2 + [u(b4) − Πl−1u(b4)]

2 }.
(4.20)
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By Assumption 3.1, for properly small h0, it holds that

|b1o|
|b1b3|

>
1

3
,

|b3o|
|b1b3|

>
1

3
. (4.21)

So

‖Π̃lu− Πl−1u‖2
0,K1

≥ |K1|
60

{ [u(b1) − Πl−1u(b1)]
2 + [u(b2) − Πl−1u(b2)]

2

+[u(b3) − Πl−1u|M1
(b3)]

2 + [u(b4) − Πl−1u(b4)]
2 }.

(4.22)

Combining it with (4.19), we obtain

‖Πlu− IlΠl−1u‖2
0,K1

≤ C

4∑

i=1

‖Π̃lu− Πl−1u‖2
0,Ki

. (4.23)

That is to say
‖Πlu− IlΠl−1u‖0 ≤ C‖Π̃lu− Πl−1u‖0 ≤ Ch2

l ‖f‖0. (4.24)

Substituting it into (4.16), we get (4.11).
Considering the fact that the finite volume quadratic form is a small perturbation of the

finite element quadratic form, as in [26], we propose a cascadic multigrid algorithm to solve the
system (4.2) as follows:
Algorithm I.

(1) Let u0
0 = u∗0=̂u0 be the exact solution of (4.2) for l = 0;

(2) for l = 1, 2, · · · , L, let ũl be the solution of the following problem

al(ũl, v) = (f, rlv) −Nl(Ilu
∗
l−1, v), ∀ v ∈ Vl, (4.25)

where
Nl(u, v) = a∗l (u, v) − al(u, v), ∀ u, v ∈ Vl, (4.26)

let u0
l = Ilu

∗
l−1, for (4.25) do iterations

uml

l = Gml

l u0
l ; (4.27)

(3) Set u∗l =̂u
ml

l ;
where Gl : Vl → Vl is the iteration operator on level l, such as the Richardson, Jacobi,
Gauss-seidel or CG iterations, ml is the number of iteration steps and it is the smallest integer
satisfying

ml ≥ βL−lmL (4.28)

for some fixed β > 1, mL > 0.
It is well known that for the smoothing operator mentioned above, there exists a linear

operator Sl : Vl → Vl such that

ũl −Gml

l u0
l = Sml

l (ũl − u0
l ), (4.29)

and it holds that

|||Sml

l v|||l ≤ C
h−1

l

m
γ
l

‖v‖0, ∀ v ∈ Vl, (4.30)

|||Sml

l v|||l ≤ |||v|||l , ∀ v ∈ Vl, (4.31)

where γ is a positive number depending on the given iteration, γ = 1 for the CG iteration and

γ =
1

2
for the other three iterations mentioned above.

By the equivalence of the norm ||| · ||| and ‖ · ‖1,hl
, (3.23), (3.32) can be rewritten as

|a∗l (wl, vl) − al(wl, vl)| ≤ c1hl|||wl|||l|||vl|||l, ∀wl, vl ∈ Vl, (4.32)
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and
|||u − ul|||l ≤ c2hl‖u‖2. (4.33)

To avoid ambiguity in the following analysis, we rewrite (3.41) as

‖u− ul‖0 ≤ c3h
2
l ‖f‖1,p (4.34)

and denote the constants in (4.8)-(4.11), (4.30) as c4, c5 respectively . The inverse inequality
that will be used is written as

|||v|||l ≤ c6h
−1
l ‖v‖0, ∀ vl ∈ Vl, l = 0, 1, · · · , L. (4.35)

For convenience of theoretical analysis, we introduce a projection operator Pl : Vl−1 +Vl →
Vl defined by

al(Plu, v) = al(u, v), ∀ v ∈ Vl. (4.36)

From the definition, it is easily seen that

|||Plv|||l ≤ |||v|||l−1, ∀ v ∈ Vl−1. (4.37)

Similar argument as Lemma 2.4 in [24] leads to

Lemma 4.2 For the above defined operator Pl, there exists a constant c7 such that

‖v − Plv‖0 ≤ c7hl|||v|||l−1, ∀ v ∈ Vl−1. (4.38)

Lemma 4.3 If ul, ũl are the solutions of (4.2) and (4.25) respectively, then there exists a
constant C1 such that

|||ul − ũl|||l ≤ C1h
2
l ‖f‖1,p + C1hl{|||ul−1 − ũl−1|||l−1 + |||ũl−1 − u∗l−1|||l−1}. (4.39)

proof. Since for any v ∈ Vl,

al(ul − ũl, v) = al(ul, v) − (f, rlv) + a∗l (Ilu
∗
l−1, v) − al(Ilu

∗
l−1, v)

= al(ul − Ilu
∗
l−1, v) − a∗l (ul − Ilu

∗
l−1, v)

≤ c1hl|||ul − Ilu
∗
l−1|||l|||v|||l ,

(4.40)

we obtain

|||ul − ũl|||l ≤ c1hl { |||ul − Ilul−1|||l + |||Ilul−1 − Ilu
∗
l−1|||l }

≤ c1c4c6h
2
l ‖f‖1,p + c1c6hl { |||ul−1 − ũl−1|||l−1 + |||ũl−1 − u∗l−1|||l−1 }. (4.41)

Let C1 = max{ c1c4c6, c1c6 }, we get (4.39).

Lemma 4.4 Let ũl , u∗l be the solution defined in Algorithm I., then there exists a constant
C2 such that

|||ũl − u∗l |||l ≤ C2hl

m
γ
l

‖f‖1,p + (1 +
C2

m
γ
l

)|||ũl−1 − u∗l−1|||l−1

+
C2h

−1
l

m
γ
l

{ |||ũl − ul|||l + |||ũl−1 − ul−1|||l−1 }.
(4.42)

proof. Note that

|||ũl − u∗l |||l = |||Sml

l (ũl − Ilu
∗
l−1)|||l

≤ |||Sml

l (ũl − Ilũl−1)|||l + |||Sml

l Pl(ũl−1 − u∗l−1)|||l
+ |||Sml

l (Il − Pl)(ũl−1 − u∗l−1)|||l
≤ c5h

−1
l

m
γ
l

‖ũl − Ilũl−1‖0 + |||ũl−1 − u∗l−1|||l−1

+
c5(c6 + c7)

m
γ
l

|||ũl−1 − u∗l−1|||l−1.

(4.43)
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On the other hand,

‖ũl − Ilũl−1‖0 ≤ ‖ũl − ul‖0 + ‖ul − Ilul−1‖0 + ‖Il(ul−1 − ũl−1‖0

≤ c6h
2
l ‖f‖1,p + ‖ũl − ul‖0 + c6‖ul−1 − ũl−1‖0.

(4.44)

So

|||ũl − u∗l |||l ≤ c5c6hl

m
γ
l

‖f‖1,p + (1 +
c5(c6 + c7)

m
γ
l

)|||ũl−1 − u∗l−1|||l−1

+
c5 max{1, c6}h−1

l

α∗m
γ
l

{ |||ũl − ul|||l + |||ũl−1 − ul−1|||l−1 }.
(4.45)

Choosing C2 = max{ c5(c6 + c7),
c5 max{1, c6}

α∗

} completes the proof of this lemma.

Based on the above two lemmas and using a similar argument of Theorem 3.3 in [26] leads
to

Theorem 4.1 If the meshsize h0 of the coarsest partition is small enough such that (4.24)
holds on every level l and

C1h0 <
1

4
, (4.46)

moreover the number of the iteration steps on the last level satisfies

m
γ
L ≥





max { C2β
γ

βγ − 1
, exp(1)(C2 + 10C1C2)2L }, if βγ = 2,

max { C2β
γ

βγ − 1
, exp(1)(C2 + 10C1C2)

4

βγ − 2
}, if βγ > 2,

(4.47)

then under the same assumption as in Theorem 3.3, we have

|||uL − u∗L|||L ≤ C3(h
2
L +

L∑

l=1

hl

m
γ
l

)‖f‖1,p, (4.48)

where C3 = max { 2C1, exp(1)(C2 + 10C1C2) }.
Similar arguments to Lemma 1.3 and 1.4 in [3] leads to

Lemma 4.5 Under the assumptions of Theorem 4.1, the accuracy of the cascadic multigrid
Algorithm I is

|||uL − u∗L|||L ≤






C3 (hL +
1

1 − 2
βγ

1

m
γ
L

) hL ‖f‖1,p, for β > 2
1

γ , p > 1,

C3 (hL + L
1

m
γ
L

) hL ‖f‖1,p, for β = 2
1

γ , p > 1.
(4.49)

Lemma 4.6 The computational cost of the cascadic multigrid Algorithm I is proportional to

L∑

l=0

mlnl ≤
{
C 1

1− β
4

mLnL for β < 4,

C LmLnL for β = 4,
(4.50)

where nl is the number of degrees of freedom on level l.

We call a cascadic multigrid algorithm is optimal in the energy norm on level l, if we obtain
both the accuracy

|||ul − u∗l |||l ≈ |||u − ul|||l, (4.51)

and the multigrid complexity

amount of work = O (nl), nl = dim Vl. (4.52)

Summing the above two lemmas, we obtain
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Theorem 4.2 Under the assumptions of Theorem 4.1, we have that
(1). For γ = 1, if 2 ≤ β < 4, then the cascadic multigrid Algorithm I is optimal;

(2). For γ =
1

2
, if β = 4 and mL satisfies

mL ≥ L2, (4.53)

then the cascadic multigrid Algorithm I is quasi-optimal, i.e.,

‖uL − u∗L‖1,hl
≤ C hL ‖f‖1,p, (4.54)

and the complexity of computation is

L∑

l=0

mlnl ≤ C nL ( 1 + log(nL) )3. (4.55)

5. Numerical Examples

In this section we will give two examples to confirm the theoretical results established above.

Example I. We consider the following problem:

{
−∇ · (A∇u) = f, in Ω = (0, 1) × (0, 1),

u = 0, on ∂Ω,
(5.1)

where A =

(
e2x + y2 + 1 ex+y

ex+y x2 + e2y + 1

)
. let u = sin(2πx) sin(2πy)(x3 − y4 + x2y3) and f

is determined by them.

For the three kinds of meshes depicted in Figure 6.-8., we use the P1-nonconforming quadri-
lateral finite volume element method to discretize (5.1) respectively and list the error between
the finite volume element solution uh and the exact solution u in Table 1.-3..
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Figure 8. random−distorted mesh

For the partitions depicted in Figure 6. and Figure 7., which satisfy the Assumption 3.1, we
can see from Table 1 and Table 2 that the convergence rate of the error under H1 and L2-norm
is optimal. This is in consistent with our theoretical results. But for the random-distorted mesh
which does not satisfy the bi-section assumption, Table 3 shows that the convergence rate of
the error is still optimal when the mesh is less distorted(≤ 30%). Numerical behavior is better
than that of theoretical analysis, which means in some sense that the L2-norm error estimates
may can be improved.

Table 1 Error behavior on uniform mesh
#unknowns ‖u − uh‖0 #rate |u − uh|1,h #rate

15 × 15 5.433179e-03 3.999064e-01

31 × 31 1.355461e-03 2.0030 2.003736e-01 0.9970

63 × 63 3.386902e-04 2.0007 1.002405e-01 0.9992

127 × 127 8.465657e-05 2.0003 5.012701e-02 0.9998

255 × 255 2.114455e-05 2.0013 2.506435e-02 1.0000

511 × 511 5.338417e-06 1.9858 1.253228e-02 1.0000

Table 2 Error behavior on distorted bi-section mesh
#unknowns ‖u − uh‖0 #rate |u − uh|1,h #rate

15 × 15 5.800791e-03 4.147051e-01

31 × 31 1.506877e-03 1.9447 2.093579e-01 0.9861

63 × 63 3.885956e-04 1.9552 1.053572e-01 0.9907

127 × 127 9.778691e-05 1.9906 5.276996e-02 0.9975

255 × 255 2.456481e-05 1.9930 2.647886e-02 0.9949

511 × 511 6.133504e-06 2.0018 1.323951e-02 1.0000

Table 3 Error behavior on random-distorted mesh
#unknowns ‖u − uh‖0 #rate |u − uh|1,h #rate

15 × 15 5.800791e-03 4.147051e-01

31 × 31 1.506877e-03 1.9447 2.093579e-01 0.9861

63 × 63 3.885956e-04 1.9552 1.053572e-01 0.9907

127 × 127 9.778691e-05 1.9906 5.276996e-02 0.9975

255 × 255 2.456481e-05 1.9930 2.647886e-02 0.9949

511 × 511 6.133504e-06 2.0018 1.323951e-02 1.0000

Example II. In this example we use the Algorithm I. proposed in section 4 to solve the
discrete problem in Example I..

Here we discuss the distorted mesh depicted in Figure 7., the subdivision of this mesh by
the bi-section technique generates a set of nested partitions. Using the Gauss-seidel and CG
iterations as the smoothing operator, we list the energy error between the cascadic multigrid
solution u∗L and the exact solution u on the last level L in Table 4-5 respectively. We can see
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from the tables that for both of the smoothers, if the mesh is refined once, the energy error
is decreasing by half independent of the coarse mesh. It means that the convergence rate of
Algorithm I is one and independent of the refinement level for energy error.

Table 4 Gauss-seidel smoother
mL = 2L2, β = 4.0

# unknowns # L |u∗

L − u|1,hL

2 1.238004e-02
3 1.235990e-02

511 × 511 4 1.236131e-02
5 1.235362e-02
6 1.234954e-02

3 6.176383e-03
4 6.180438e-03

1023 × 1023 5 6.177397e-03
6 6.175250e-03
7 6.173981e-03

4 3.088991e-03
5 3.088916e-03

2047 × 2047 6 3.087799e-03
7 3.087129e-03
8 3.086699e-03

Table 5 CG smoother
mL = 10, β = 3.0

# unknowns # L |u∗

L − u|1,hL

2 1.234826e-02
3 1.236117e-02

511 × 511 4 1.236476e-02
5 1.236476e-02
6 1.236476e-02

3 6.176750e-03
4 6.181118e-03

1023 × 1023 5 6.181107e-03
6 6.181096e-03
7 6.181107e-03

4 3.089028e-03
5 3.089067e-03

2047 × 2047 6 3.089067e-03
7 3.089067e-03
8 3.089067e-03
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