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Abstract

This paper presents a class of high resolution local time step schemes for nonlinear
hyperbolic conservation laws and the closely related convection–diffusion equations, by
projecting the solution increments of the underlying partial differential equations (PDE)
at each local time step. The main advantages are that they are of good consistency, and
it is convenient to implement them. The schemes are L

∞ stable, satisfy a cell entropy
inequality, and may be extended to the initial boundary value problem of general unsteady
PDEs with higher–order spatial derivatives. The high resolution schemes are given by
combining the reconstruction technique with a second order TVD Runge-Kutta scheme or
a Lax-Wendroff type method, respectively.

The schemes are used to solve a linear convection–diffusion equation, the nonlinear in-
viscid Burgers’ equation, the one– and two–dimensional compressible Euler equations, and
the two–dimensional incompressible Navier–Stokes equations. The numerical results show
that the schemes are of higher–order accuracy, and efficient in saving computational cost,
especially, for the case of combining the present schemes with the adaptive mesh method
[15]. The correct locations of the slow moving or stronger discontinuities are also obtained,
although the schemes are slightly nonconservative.
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1. Introduction

This paper is aimed at the construction of numerical approximations for nonlinear hyperbolic
conservation laws

∂

∂t
u+

∂

∂x
f(u) = 0, (1.1)

and the closely related convection–diffusion equations

∂

∂t
u+

∂

∂x
f(u) =

∂

∂x
Q(u, ux), (1.2)

with given initial data u(x, 0) = u0(x) and corresponding suitable boundary conditions. Here
u = u(x, t) is an m–vector of conserved quantities, x ∈ R

d, m, d ≥ 1, f(u) =
(
f1(u), · · · , fd(u)

)
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is a nonlinear convective flux vector, and Q(u, ux) =
(
Q1(u, ux), · · · , Qd(u, ux)

)
is a dissipation

flux vector satisfying the weak parabolicity condition ∇vQ(u, v) ≥ 0, for all u and v in R
m.

These equations are of great practical importance since they arise in fluid flows, for example,
reactive flows, groundwater flows, non–Newtonian flows, traffic flows, two-phase flows in oil
reservoirs etc. During the past few decades there has been an enormous amount of activity
related to the construction of high resolution schemes for Eqs.(1.1) and (1.2), see for instance
[4, 12] and references therein. Explicit high resolution methods have been proven to be very
efficient in capturing moving discontinuities or fronts, such as shock waves etc. However, they
need a small time step size satisfying a Courant-Friedrichs-Lewy (CFL) condition for Eq.(1.1)
and a similar more restriction condition for Eq.(1.2), to guarantee stability. For an implicit
scheme, the time step size is also often constrained by nonlinear convergence. The spatial step
sizes and the “signal” speeds are the two main elements to limit a choice of the time step size.
Hence, when solving numerically unsteady PDEs, it may occur that in some spatial regions
there is the need for a smaller time step than in other regions. Typical examples are numerical
simulations of viscous fluid flows on nonuniform meshes and other computations of solutions
to PDEs on an adaptive mesh [3, 9, 15]. Due to the above reason, the large time step schemes
[7, 18] and the local time step schemes [3, 5, 9] become attractive. The large time step schemes
satisfy the CFL condition by automatically increasing the stencil with the size of the time step.
They can give correctly the location of shocks with virtually no smearing, but they seem to be
inconvenient in practical applications, especially in treating boundary conditions.

The local time step schemes are only restricted by a local stability condition rather than the
traditional global stability condition dominated by the smallest cells. The schemes studied in
[3, 5, 9] are conservative, but they suffer a loss of consistency near a time grid interface in terms
of truncation errors, see Section 2. Recently, the local time step schemes are widely studied
and extended to adaptive grid methods, see e.g. [8, 14, 16].

The discrete conservation of a numerical algorithm for (1.1) or (1.2) is important in order
to keep the correct location of the discontinuities. Hou and LeFloch in [6] have shown that if a
nonconservative scheme for (1.1) converges, it converges to a solution of ∂tu+∂xf(u) = µ, where
µ is a Borel measure source term that is expected to be zero in the region where the solution u
is smooth and concentrated where u is not smooth. Even so, nonconservative schemes are also
valuable in some practical applications and have been implemented successfully, for example,
in computations of compressible multi-fluids [2] and fluid flows on an overlapping grid [10].
Another kind of the nonconservative schemes are residual distribution methods for hyperbolic
conservation laws [1].

The aim of this paper is to study high resolution local time discretization schemes for (1.1)
and (1.2), by projecting the solution increments of the underlying PDEs at each local time step.
Because of good consistency, they may be applied to solving the initial boundary value problem
of general unsteady PDEs with higher–order spatial derivatives. Moreover, the schemes are L∞

stable, and it is convenient to implement them. Although the schemes will loose locally the
discrete conservation, correct shocks have been obtained numerically when computing the 1D
scalar Burgers’ equation and the cylindrical explosion problem of the Euler equations.

This paper is organized as follows. In Section 2, we first review and analyze the scheme of
Osher and Sanders [9]. A simple projection of the solutions is used in their scheme, but it suffers
a loss of local consistency with the governing equations. Motivated by their scheme, we present
a class of high resolution local time step schemes for Eq. (1.1) by projecting directly the solution
increments of the underlying PDEs at each local time step. They include consistent first order
Euler type schemes, second–order Runge–Kutta type schemes, and second–order Lax–Wendroff
type schemes with multi–time increments. The schemes suffer from a slight loss of conservativity
at isolated time grid interfaces. It turns out though, that shock speeds are hardly perturbed,
see our numerical computations in Section 4. Because of good consistency, we may extend them
to solve unsteady PDEs with higher–order derivatives, for example, Eq. (1.2). In Section 3, our
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schemes will be extended to the initial boundary value problems of Eq. (1.2). In Section 4, the
local time step schemes are used to solve a linear convection–diffusion equation, the Burgers’
equation, the compressible Euler equations, and the incompressible Navier–Stokes equations.
The purpose is to demonstrate the ability of obtaining a higher–order rate of convergence and
saving computational costs of the present schemes. We conclude the paper with a few remarks
in Section 5.

2. Numerical Schemes for Conservation Laws

For simplicity in this section we will mainly restrict our attention to one–dimensional scalar
equations, i.e. d = 1 and m = 1. There does not exist a difficulty in extension of the schemes
to the multidimensional case. In Section 4, we will use our schemes presented in this section
to solve numerically the two dimensional compressible Euler equations and the incompressible
Navier-Stokes equation.

Consider a set {xj} of the physical domain R, where xj denotes the coordinate of a discrete
cell boundary, j ∈ Z, and define the cell size ∆xj+ 1

2
= xj+1 − xj and the cell Ij+ 1

2
= {x|xj <

x < xj+1}. The initial value function u(x, 0) = u0(x) will be approximated by the cell average
over each cell Ij+ 1

2
, i.e.

uh(x, 0) =
1

∆xj+ 1
2

∫

I
j+ 1

2

u0(x) dx =: u0

j+ 1
2

for x ∈ Ij+ 1
2
. (2.1)

t

x

t
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Figure 1: Non–uniform meshes in time and space.

2.1 Osher and Sanders’ Scheme
In this subsection, we review the local time step scheme of Osher and Sanders presented in

[9].
For convenience, we only consider two time increments here, ∆tn = tn+1 − tn and ∆tn/2,

and assume that ∆tn is used for the cells with left boundary index in the set D1 = {j|j ≤ j0−1}
and ∆tn/2 is for D2 = {j|j ≥ j0}, see Fig.1(a), ∆tn = t1 − t0 there. The Osher and Sanders
scheme can be defined as

u
n+ 1

2

j+ 1
2

=

{
un

j+ 1
2

, j ∈ D1,

un
j+ 1

2

− 1

2
λn

j+ 1
2

∆+h(u
n
j− 1

2

, un
j+ 1

2

), j ∈ D2,
(2.2)

un+1

j+ 1
2

= un
j+ 1

2

−
1

2
λj+ 1

2
∆+

1

2

(
h(un

j− 1
2

, un
j+ 1

2

) + h(u
n+1/2

j− 1
2

, u
n+ 1

2

j+ 1
2

)
)
, j ∈ Z. (2.3)

where λj+ 1
2

= ∆tn

∆x
j+1

2

, un
j+ 1

2

is a numerical cell average approximation of the solution u(x, t)

over the cell Ij+ 1
2

at t = tn, ∆+ denotes the forward difference operator, and h(un
j− 1

2

, un
j+ 1

2

)
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is any numerical convective flux function of some three–point conservative scheme satisfying
the consistancy condition: h(u, u) = f(u). Examples of the numerical convective fluxes include
the Godunov flux, the Lax–Friedrichs flux, and the Engquist–Osher flux etc. In our numerical
computations, we will use the following numerical convective flux for a scalar equation on
nonuniform meshes:

h(uj− 1
2
, uj+ 1

2
) =

∆+xjf(uj− 1
2
) + ∆+xj−1f(uj+ 1

2
)

∆+xj + ∆+xj−1

− max
u

{|f ′(u)|}max{∆+xj ,∆+xj−1}
uj+ 1

2
− uj− 1

2

∆+xj + ∆+xj−1

, (2.4)

which is monotone, that is to say, h(u, v) is nondecreasing in the first variable and nonincreasing
in the second variable.

For comparison in the following subsection, we rewrite the scheme (2.2)–(2.3) as:

(δu)n
j+ 1

2

:= − λn
j+ 1

2

∆+h(u
n
j− 1

2

, un
j+ 1

2

), j ∈ Z, (2.5)

u
n+ 1

2

j+ 1
2

=

{
un

j+ 1
2

, j ∈ D1,

un
j+ 1

2

+ 1

2
(δu)n

j+ 1
2

, j ∈ D2,
(2.6)

(δu)
n+ 1

2

j+ 1
2

:= − λn
j+ 1

2

∆+h(u
n+ 1

2

j− 1
2

, u
n+ 1

2

j+ 1
2

), j ∈ Z, (2.7)

un+1

j+ 1
2

=un
j+ 1

2

+
1

2

(
(δu)n

j+ 1
2

+ (δu)
n+ 1

2

j+ 1
2

)
, j ∈ Z. (2.8)

The scheme (2.2)–(2.3) or (2.5)–(2.8) is constructed by using a simple projection of the
solution at each local time step when the global time step size is available over any cell, see the
first equation in (2.6). It is conservative in the global time step, because

un+1

j0−
1
2

=un
j0−

1
2

−
1

2
λn

j0−
1
2

(
h(un

j0−
1
2

, un
j0+ 1

2

) − h(un
j0−

3
2

, un
j0−

1
2

)

+ h(un
j0−

1
2

, u
n+ 1

2

j0+ 1
2

) − h(un
j0−

3
2

, un
j0−

1
2

)
)
,

un+1

j0+
1
2

=un
j0+

1
2

−
1

2
λn

j0+ 1
2

(
h(un

j0+
1
2

, un
j0+

3
2

) − h(un
j0−

1
2

, un
j0+

1
2

)

+ h(u
n+ 1

2

j0+
1
2

, u
n+ 1

2

j0+ 3
2

) − h(un
j0−

1
2

, u
n+ 1

2

j0+ 1
2

)
)
.

Osher and Sanders have proven convergence of corresponding approximate solutions to entropy
solution of conservation laws (1.1). We refer the reader to [9] for details. However, the scheme
(2.2)–(2.3) or (2.5)–(2.8) is non–conservative at each local time step, and the solutions at each
local time step are not TVD, total variation diminishing. Moreover, the above scheme also
suffers a loss of local consistency near a time grid interface in the sense of the truncation errors.
To show this, we consider ut + aux = 0 with a positive constant a > 0 and a spatial mesh with
a constant step size, i.e. ∆xj+ 1

2
= ∆x. Then the scheme (2.2)–(2.3) at xj0+ 1

2
becomes

un+1

j0+
1
2

=un
j0+ 1

2

−
a

2
λn

j+ 1
2

(un
j0+

1
2

− un
j0−

1
2

+ u
n+ 1

2

j0+ 1
2

− un
j0−

1
2

),

or

un+1

j0+ 1
2

− un
j0+ 1

2

∆t
+ a

1

2
(un

j0+ 1
2

+ u
n+ 1

2

j0+
1
2

) − un
j0−

1
2

∆x
= 0.
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If assuming that the exact solution u(x, t) is smooth enough, then the following “modified”
equation can be derived at xj0+ 1

2
:

ut + aux = −
a∆t

4∆x
ut +

a∆x

2
uxx −

∆t

2
utt −

a∆t2

8∆x
utt + O(∆x2,∆t2,∆t3/∆x).

Obviously, if ∆t
∆x → c, a finite constant, then the scheme is not locally consistent with the

underlying PDEs, ut + aux = 0, even though ∆x→ 0, and ∆t→ 0.
Due to the local inconsistency, we may conclude that it is difficult to extend the scheme

(2.2)–(2.3) to (1.2), by using a traditional way to discretize higher–order derivatives near a time
grid interface. Also assuming that a uniformly spatial mesh with a constant space step size ∆x

is used, we discretize the term (uxx)
n+ 1

2

j0+ 1
2

as

I :=
1

∆x2
(u

n+ 1
2

j0+ 3
2

− 2u
n+ 1

2

j0+
1
2

+ u
n+ 1

2

j0−
1
2

).

Because u
n+ 1

2

j0−
1
2

= un
j0−

1
2

as in (2.2), we have

I =
1

∆x2
(u

n+ 1
2

j0+ 3
2

− 2u
n+ 1

2

j0+
1
2

+ un
j0−

1
2

) = (uxx)
n+ 1

2

j0+ 1
2

−
∆t

2∆x2
(ut)

n+ 1
2

j0+ 1
2

+ · · · .

The truncation error is O(∆t/∆x2), which is not ideal.
Combining the above predictor–corrector type local time step scheme with a reconstruction

technique [17], Dawson and Kirby presented a high resolution local time scheme for conservation
laws [5]. To our knowledge, it seems to be inconvenient to implement numerically their scheme,
because the variables at different steps in the Runge–Kutta methods within D1 and D2 are
interacting with each other, see Section 3.4 of their paper [5]. Moreover, their scheme will
degenerate to first order accuracy in the sense of the truncation error, see also numerical results
given in [5]. Besides the above analysis, another possibility to decrease accuracy of their scheme
is the numerical approximation of the slope, which is similar to the previous analysis. For
example, we use

S
n+ 1

2

j0+ 1
2

:= minmod




∆+u
n+ 1

2

j0−
1
2

∆+xj0−
1
2

,
∆+u

n+ 1
2

j0+
1
2

∆+xj0+ 1
2


 ,

to approximate (ux)
n+ 1

2

j0+ 1
2

, where the function minmod(a, b) is defined by

minmod(a, b) =

{
sign(a)min{|a|, |b|}, ab > 0,

0, ab ≤ 0.
(2.9)

Using the predictor step (2.2) and Taylor expansion, we have

S
n+ 1

2

j0+ 1
2

=minmod
(un+ 1

2

j0+
1
2

− un
j0−

1
2

∆+xj0−
1
2

,
∆+u

n+ 1
2

j0+
1
2

∆+xj0+ 1
2

)
= minmod

(
(ux)

n+ 1
2

j0+ 1
2

+ O(∆+xj0+ 1
2
),

(ux)
n+ 1

2

j0+ 1
2

+
∆tn

2∆+xj0−
1
2

(ut)
n+ 1

2

j0+ 1
2

+ O(∆t2n/∆+xj0−
1
2
,∆+xj0−

1
2
)
)
.

It shows that S
n+ 1

2

j0+ 1
2

is not a good approximation of (ux)
n+ 1

2

j0+ 1
2

.
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2.2 A New Local Time Step Scheme
2.1.1 First–order accurate time discretization
First, we consider the case of two time increments as in the last subsection.
A new local time step scheme can be given as follows:

(δu)n
j+ 1

2

:= −λn
j+ 1

2

∆+h(u
n
j− 1

2

, un
j+ 1

2

), j ∈ Z, (2.10)

u
n+ 1

2

j+ 1
2

= un
j+ 1

2

+
1

2
(δu)n

j+ 1
2

, j ∈ Z, (2.11)

(δu)
n+ 1

2

j+ 1
2

:=





(δu)n

j+ 1
2

, j ∈ D1,

−λn
j+ 1

2

∆+h(u
n+ 1

2

j− 1
2

, u
n+ 1

2

j+ 1
2

), j ∈ D2,
(2.12)

un+1

j+ 1
2

= u
n+ 1

2

j+ 1
2

+
1

2
(δu)

n+ 1
2

j+ 1
2

, j ∈ Z. (2.13)

Equation (2.13) may also be rewritten as

un+1

j+ 1
2

= un
j+ 1

2

+
1

2

(
(δu)n

j+ 1
2

+ (δu)
n+ 1

2

j+ 1
2

)
. (2.14)

Although it has a same form as one in Eq.(2.8), two schemes are different. Actually, we have

un+1

j0−
1
2

=un
j0−

1
2

− λn
j0−

1
2

(
h(un

j0−
1
2

, un
j0+ 1

2

) − h(un
j0−

3
2

, un
j0−

1
2

)
)
, (2.15)

un+1

j0+ 1
2

=un
j0+

1
2

−
1

2
λn

j0+ 1
2

(
h(un

j0+ 1
2

, un
j0+ 3

2

) − h(un
j0−

1
2

, un
j0+ 1

2

)

+ h(u
n+ 1

2

j0+ 1
2

, u
n+ 1

2

j0+
3
2

) − h(u
n+ 1

2

j0−
1
2

, u
n+ 1

2

j0+
1
2

)
)
, (2.16)

for the scheme (2.10)–(2.13). It also shows the present scheme will be slightly nonconservative
at points where the time step changes. But it has a good consistency, and may be implemented
conveniently because a simple projection of the solution increments (δu) is used. Due to the
good consistency, the present scheme can be extended to the PDEs with higher-order derivatives.

Moreover, we have.

Lemma 2.1. Let uh(x, t) be defined by (2.1) and (2.10)–(2.13), the initial data be in the space
L∞ ∩L1 ∩BV , and the flux f(u) be locally Lipschitz continuous. If h(u, v) is nondecreasing in
the first variable and nonincreasing in the second variable, and a local CFL type of restriction
is satisfied, that is

Λn
j+ 1

2

(
h(v1, u) − h(v2, u)

v1 − v2
−
h(w, v1) − h(w, v2)

v1 − v2

)
≤ 1, (2.17)

for all u, w, v1 and v2 between the values of un
j+p and u

n+ 1
2

j+p (p = 0,±1) and where Λj+ 1
2

is
defined by

Λj+ 1
2

=

{
λn

j+ 1
2

, j ∈ D1,

1

2
λn

j+ 1
2

, j ∈ D2.
(2.18)

Then, we have

min
j

{un
j+ 1

2

} ≤ u
n+ 1

2

j+ 1
2

≤ max
j

{un
j+ 1

2

}, (2.19)

min
j

{un
j+ 1

2

} ≤ un+1

j+ 1
2

≤ max
j

{un
j+ 1

2

}, (2.20)
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and cell entropy inequalities hold

U(u
n+ 1

2

j+ 1
2

) ≤ U(un
j+ 1

2

) −
1

2
λn

j+ 1
2

(
H(un

j+ 1
2

, un
j+ 3

2

) −H(un
j− 1

2

, un
j+ 1

2

)
)
, (2.21)

U(un+1

j+ 1
2

) ≤ U(u
n+ 1

2

j+ 1
2

) −
1

2
λn

j+ 1
2

(
H(u

n+ 1
2

j+ 1
2

, u
n+ 1

2

j+ 3
2

) −H(u
n+ 1

2

j− 1
2

, u
n+ 1

2

j+ 1
2

)
)
, (2.22)

where H(u
n+ 1

2

j+ 1
2

, u
n+ 1

2

j+ 3
2

) is numerical entropy flux satisfying H(u, u) = F (u), and (U,F ) is any

convex entropy pair of (1.1), F ′(u) = U ′(u)f ′(u).

The proof of the above lemma is not difficult, and will be omitted here. But we cannot derive
a global numerical entropy condition in the sense of distributions and convergence analysis of
the present scheme now.

Next, we extend the scheme (2.10)–(2.13) to a more general case with multi–time increments:

∆tn, α1∆tn, · · · , αk∆tn, where
∑k

l=1
αl = 1, see Fig.1(b). Let us define β1 = α1, βl =

∑l
i=1

αi,
l = 2, · · · , k.

The algorithm can be described as follows (We name it Algorithm I):

Step 1: Compute increment (δu)n
j+ 1

2

for all j ∈ Z:

(δu)n
j+ 1

2

:= −λn
j+ 1

2

∆+h(u
n
j− 1

2

, un
j+ 1

2

), (2.23)

Step 2: Update solution at t = tn + β1∆tn:

un+β1

j+ 1
2

= un
j+ 1

2

+ α1(δu)
n
j+ 1

2

, j ∈ Z, (2.24)

Step 3: For l = 2, · · · , k, do the following:

(a). Project increment (δu)
n+βl−1

j+ 1
2

at local time step:

(δu)
n+βl−1

j+ 1
2

=

{
(δu)n

j+ 1
2

, j ∈ D1,

−λn
j+ 1

2

∆+h(u
n+βl−1

j− 1
2

, u
n+βl−1

j+ 1
2

), j ∈ D2,
(2.25)

(b). Update solution at t = tn + βl∆tn for all j:

un+βl

j+ 1
2

= u
n+βl−1

j+ 1
2

+ αl(δu)
n+βl−1

j+ 1
2

. (2.26)

The scheme (2.23)–(2.26) has the same properties as the scheme (2.10)–(2.13).

2.2.2 Higher–order accurate spatial discretization

In this subsection, we simply discuss the reconstruction technique [17] in order to improve
the spatial accuracy of the previous schemes. For each local time step, we use the following
piecewise linear function:

wn+βl

h (x, t) = un+βl

j+ 1
2

+ Sn+βl

j+ 1
2

(x− xj+ 1
2
) =: wn+βl

j+ 1
2

(x), (x, t) ∈ Ij+ 1
2
× [tn+βl

, tn+βl+1
[, (2.27)

to replace the original piecewise constant function. Here Sn+βl

j+ 1
2

is a numerical slope approxi-

mating (ux)n+βl

j+ 1
2

, l = 0, 1, · · · , k − 1, and β0 = 0. There are many manners to define Sn+βl

j+ 1
2

.
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The commonly used formulae are

Sn+βl

j+ 1
2

= minmod
(
Sn+βl,L

j+ 1
2

, Sn+βl,R

j+ 1
2

)
, (2.28)

Sn+βl

j+ 1
2

=
(
sign(Sn+βl,L

j+ 1
2

) + sign(Sn+βl,R

j+ 1
2

)
) |Sn+βl,L

j+ 1
2

| · |Sn+βl,R

j+ 1
2

|

|Sn+βl,L

j+ 1
2

| + |Sn+βl,R

j+ 1
2

| + ε
, (2.29)

Sn+βl

j+ 1
2

=
(|Sn+βl,R

j+ 1
2

|2 + εR)Sn+βl,L

j+ 1
2

+ (|Sn+βl,L

j+ 1
2

|2 + εL)Sn+βl,R

j+ 1
2

|Sn+βl,L

j+ 1
2

|2 + |Sn+βl,R

j+ 1
2

|2 + εL + εR
, (2.30)

which are the Minmod limiter, the van Leer limiter, and the van Albada limiter, respectively.
Here

Sn+βl,R

j+ 1
2

=
∆+u

n+βl

j+ 1
2

∆+xj+ 1
2

, Sn+βl,L

j+ 1
2

=
∆+u

n+βl

j− 1
2

∆+xj− 1
2

,

and εL and εR are taken as 3∆xj− 1
2

and 3∆xj+ 1
2

in our numerical computations, respectively.

Then, the above Algorithm I can be modified as follows (We call it Algorithm II):

Step 1: Compute increment (δu)n
j+ 1

2

for all j ∈ Z:

(δu)n
j+ 1

2

:= −λn
j+ 1

2

∆+h(u
n
j,L, u

n
j,R), (2.31)

Step 2: Update solution at t = tn + β1∆tn:

un+β1

j+ 1
2

= un
j+ 1

2

+ α1(δu)
n
j+ 1

2

, j ∈ Z, (2.32)

Step 3: For l = 2, · · · , k, do the following:

(a). Project increment (δu)
n+βl−1

j+ 1
2

at t = tn + βl−1∆tn:

(δu)
n+βl−1

j+ 1
2

=

{
(δu)n

j+ 1
2

, j ∈ D1,

−λn
j+ 1

2

∆+h(u
n+βl−1

j,L , u
n+βl−1

j,R ), j ∈ D2,
(2.33)

(b). Update solution at t = tn + βl∆tn for all j:

un+βl

j+ 1
2

= u
n+βl−1

j+ 1
2

+ αl(δu)
n+βl−1

j+ 1
2

, (2.34)

where un+βl

j,L = wn+βl

j− 1
2

(xj), u
n+βl

j,R = wn+βl

j+ 1
2

(xj).

2.2.3 Higher–order accurate time discretization
To increase the accuracy of the time discretization, we can use Runge–Kutta methods or

Lax–Wendroff type methods to replace the forward Euler time discretization used in the first
order method.

A second–order explicit TVD Runge–Kutta method [13], Heun’s method, may be imple-
mented as follows (We name it Algorithm III):

Step 1: Compute increment (δu)n
j+ 1

2

for all j ∈ Z:

(δu)n
j+ 1

2

:= −λn
j+ 1

2

∆+h(u
n
j,L, u

n
j,R), (2.35)



High Resolution Schemes with Varying Time and Space Grids 129

Step 2: Update solution at t = tn + β1∆t for all j ∈ Z:

un+β1,∗

j+ 1
2

=un
j+ 1

2

+ α1(δu)
n
j+ 1

2

, (2.36)

(δu)n+β1,∗

j+ 1
2

= − λn
j+ 1

2

∆+h(u
n+β1,∗
j,L , un+β1,∗

j,R ), (2.37)

un+β1

j+ 1
2

=
1

2

(
un

j+ 1
2

+ un+β1,∗

j+ 1
2

+ α1(δu)
n+β1,∗

j+ 1
2

)
. (2.38)

Step 3: For l = 2, · · · , k, project increment (δu)
n+βl−1

j+ 1
2

and update solution un+βl

j+ 1
2

at t =

tn + βl−1∆tn:

(δu)
n+βl−1

j+ 1
2

=

{
(δu)n

j+ 1
2

, j ∈ D1,

−λn
j+ 1

2

∆+h(u
n+βl−1

j,L , u
n+βl−1

j,R ), j ∈ D2,
(2.39)

un+βl,∗

j+ 1
2

=




un

j+ 1
2

+ βl(δu)
n+βl−1

j+ 1
2

, j ∈ D1,

u
n+βl−1

j+ 1
2

+ αl(δu)
n+βl−1

j+ 1
2

, j ∈ D2,
(2.40)

(δu)n+βl,∗

j+ 1
2

= − λn
j+ 1

2

∆+h(u
n+βl,∗
j,L , un+βl,∗

j,R ), (2.41)

un+βl

j+ 1
2

=





1

2
un

j+ 1
2

+ 1

2

(
un+βl,∗

j+ 1
2

+ βl(δu)
n+βl,∗

j+ 1
2

)
, j ∈ D1,

1

2
u

n+βl−1

j+ 1
2

+ 1

2

(
un+βl,∗

j+ 1
2

+ αl(δu)
n+βl,∗

j+ 1
2

)
, j ∈ D2.

(2.42)

The accuracy of Algorithm III in time can be verified by using the Taylor series expansion
at xj0 . To save space, we omit it.

We can also consider a higher–order Lax–Wendroff type time discretization for hyperbolic
conservation laws (1.1). Using Taylor expansion, we have

u
n+βl+1

j+ 1
2

= un+βl

j+ 1
2

+ αl∆tn(ut)
n+βl

j+ 1
2

+
1

2
(αl∆tn)2(utt)

n+βl

j+ 1
2

+ O(∆t3n), (2.43)

where

(ut)
n+βl

j+ 1
2

= −
(
f(u)x

)n+βl

j+ 1
2

,

and

(utt)
n+βl

j+ 1
2

=
( ∂

∂x

(
a2(u)ux

))n+βl

j+ 1
2

, a(u) = f ′(u).

The term a2(u)ux in the above equation is a special form of a diffusion flux Q(u, ux). Thus it
may be discretized in a same way described in Section 3. In the following, we use gj to denote
its approximation at the spatial grid interface xj .

Now we have the following algorithm (We name it Algorithm IV):

Step 1: Compute increments (δtu)
n
j+ 1

2

and (δttu)
n
j+ 1

2

for all j ∈ Z:

{
(δtu)

n
j+ 1

2

:= −λn
j+ 1

2

∆+h(u
n
j,L, u

n
j,R),

(δttu)
n
j+ 1

2

:= ∆tn

2
λn

j+ 1
2

∆+g
n
j ,

(2.44)

Step 2: Update solution at t = tn + β1∆tn:

un+β1

j+ 1
2

= un
j+ 1

2

+ α1(δtu)
n
j+ 1

2

+ (α1)
2(δttu)

n
j+ 1

2

, j ∈ Z, (2.45)
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Step 3: For l = 2, · · · , k, do the following:

(a). Project increments (δtu)
n+βl−1

j+ 1
2

and (δttu)
n+βl−1

j+ 1
2

at t = tn + βl−1∆tn:

(δtu)
n+βl−1

j+ 1
2

=

{
(δtu)

n
j+ 1

2

, j ∈ D1,

−λn
j+ 1

2

∆+h(u
n+βl−1

j,L , u
n+βl−1

j,R ), j ∈ D2,
(2.46)

and

(δttu)
n+βl−1

j+ 1
2

=

{
(δttu)

n
j+ 1

2

, j ∈ D1,
∆tn

2
λn

j+ 1
2

∆+g
n+βl−1

j , j ∈ D2,
(2.47)

(b). Update solution at t = tn + βl∆tn for all j:

un+βl

j+ 1
2

=




un

j+ 1
2

+ βl(δtu)
n+βl−1

j+ 1
2

+ (βl)
2(δttu)

n+βl−1

j+ 1
2

, j ∈ D1,

u
n+βl−1

j+ 1
2

+ αl(δtu)
n+βl−1

j+ 1
2

+ (αl)
2(δttu)

n+βl−1

j+ 1
2

, j ∈ D2,
(2.48)

where un+βl

j = 1

2
(un+βl

j,L + un+βl

j,R ).

For the above Lax–Wendroff type algorithm, we should project two “increments” in the local
time step.

3. Numerical Schemes for Convection–Diffusion Equations

In this section we discuss the application of the local time step schemes to convection–
diffusion equations (1.2).

The local time step schemes Algorithm I–III presented in the last section can be applied to
the initial boundary value problems of unsteady parabolic and convection–diffusion equations.
We need only use corresponding spatial discretizations to replace the solution increment in the
previous algorithms. The spatial discretization may be finite difference, or finite element, or
spectral methods.

For a finite volume approximation of the convection–diffusion equation (1.2), the increment
can be computed simply as

(δu)n+βl

j+ 1
2

= −λn
j+ 1

2

∆+h(u
n+βl

j,L , un+βl

j,R ) + λn
j+ 1

2

∆+g
n+βl

j , (3.1)

where gn+βl

j is the numerical diffusive flux approximating Q(u, ux):

gn+βl

j = Q



1

2
(un+βl

j,L + un+βl

j,R ),
∆+u

n+βl

j− 1
2

∆+xj− 1
2



 . (3.2)

Similarly, we can use

gn+βl

j = a2(un+βl

j )
∆+u

n+βl

j− 1
2

∆+xj− 1
2

, (3.3)

for Algorithm IV.

4. Numerical Experiments

Several examples will be considered in this section. All of them have been used by several
authors to test various numerical schemes. In our computations, the CFL number is taken as
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0.48 and 0.24 for the one- and two- dimensional cases, respectively, unless stated otherwise.
The codes are run on a Pentium-III PC with 800 MHz under a Linux environment.

Example 4.1. Linear Convection–Diffusion Equation.We will provide the results for the
following one–dimensional linear convection–diffusion equation






ut + cux = auxx, (x, t) ∈ (0, 2π) × (0, T ),

u(x, 0) = sin(x), x ∈ (0, 2π),

u(x+ 2π, t) = u(x, t), t ∈ (0, T ),

(4.1)

where c and a ≥ 0 are both constant. The exact solution is u(x, t) = e−at sin(x − ct). We
compute the solution up to T = 2 and consider three cases: (1) a = 0, c = 1, and (2) a = 1, c = 1.

In this example, we will use the numerical convective flux given in Eq.(2.4) and the van
Albada limiter (2.30) approximating the slopes.

First, we assume that the spatial step size ∆x is used within the global domain, ∆t/2 is
within [π, 1.5π] and ∆t is in other regions. Tables 1–2 show the L∞–, L1–, and L2–errors and
corresponding convergence orders obtained by the Algorithm III with (3.1), and Table 3 shows
the corresponding results obtained by the Algorithm IV.

Table 1: Example 4.1: The errors and convergence order for the case (1) by the Algorithm III.

N L
∞–error order L

1–error order L
2–error order

20 2.17e-02 – 9.81e-02 – 4.15e-02 –

40 5.32e-03 2.03 2.41e-02 2.03 1.00e-02 2.05

80 1.32e-03 2.01 5.78e-03 2.06 2.41e-03 2.05

160 3.30e-04 2.00 1.39e-03 2.06 5.82e-04 2.05

Table 2: Example 4.1: The errors and convergence order for the case (2) by the Algorithm III.

N L
∞–error order L

1–error order L
2–error order

20 2.14e-03 – 8.47e-03 – 3.77e-03 –

40 6.06e-04 1.82 2.42e-03 1.81 1.07e-03 1.82

80 1.62e-04 1.90 6.45e-04 1.91 2.86e-04 1.90

160 4.17e-05 1.96 1.67e-04 1.95 7.40e-04 1.95

Table 3: Same as Table 1, except for Algorithm IV.

N L
∞–error order L

1–error order L
2–error order

20 2.11e-02 – 9.51e-02 – 4.02e-02 –

40 5.02e-03 2.07 2.35e-02 2.02 9.80e-03 2.04

80 1.24e-03 2.02 5.68e-03 2.05 2.36e-03 2.05

160 3.13e-04 1.99 1.37e-03 2.05 5.73e-04 2.04

Next, we assume that the half step sizes ∆x/2 and ∆t/2 are used within [π, 1.5π], while
the step sizes ∆x and ∆t are in other region. Tables 4–5 show the results obtained by the
Algorithm III with (3.1), while the data in Table 6 are obtained by the Algorithm IV.
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Table 4: Example 4.1: The errors and convergence order for the case (1) by the Algorithm III.

N L
∞–error order L

1–error order L
2–error order

25 2.44e-02 – 8.02e-02 – 3.57e-02 –

50 6.25e-03 1.96 1.94e-02 2.05 8.46e-03 2.08

100 1.59e-03 1.97 4.66e-03 2.06 2.01e-03 2.07

200 3.98e-04 2.00 1.12e-03 2.06 4.85e-04 2.05

Table 5: Example 4.1: The errors and convergence order for the case (2) by Algorithm III.

N L
∞–error order L

1–error order L
2–error order

25 1.91e-03 – 7.21e-03 – 3.18e-03 –

50 5.79e-04 1.72 2.20e-03 1.71 9.65e-04 1.72

100 1.58e-04 1.87 6.02e-04 1.87 2.63e-04 1.88

200 4.10e-05 1.95 1.57e-04 1.94 6.85e-05 1.94

From these results, we can observe that second–order rates of convergence can be obtained
for the linear convection–diffusion equation. If using the van Leer’s limiter (2.29) to replace
the van Albada limiter (2.30), similar results may be obtained. However, the Minmod limiter
(2.28) is more diffusive.

Example 4.2. The Burgers’ equation.This example is to solve the in-viscid Burgers equa-
tion

ut +

(
u2

2

)

x

= 0, 0 ≤ x ≤ 2π, (4.2)

subject to the 2π-periodic initial data u(x, 0) = 0.5 + sin(x), x ∈ [0, 2π).
The solution propagates to the right, steepening until the critical time tc = 1, at which a

shock forms. In this computation, we also use the numerical convection flux given in (2.4) and
the van Albada limiter (2.30) approximating slopes.

First, we assume that the half step sizes ∆x/2 and ∆t/2 are used within [π, 1.5π], while the
global step sizes ∆x and ∆t in the other domain. Table 7 shows the L∞–, L1–, and L2–errors
and corresponding convergence orders obtained by the Algorithm III.

Second, we assume that the half step sizes ∆x/2 and three local time steps 0.5∆t, 0.2∆t,
and 0.3∆t are used within [π, 1.5π], while the global step sizes ∆x and ∆t are used in the other
regions.

Tables 8 and 9 show the results obtained by the Algorithm III and Algorithm IV with three
time levels, respectively.

It is observed that a second-order rate of convergence can be obtained by our local time
step schemes. Fig. 2 also shows the solutions at t = 2, when the shock is well developed. The
moving shock has been captured and followed correctly.

To further validate the ability of the local time step schemes in capturing correctly the
moving shock, we solve a Riemann problem for the Burgers equation (4.2) with the initial data

u0(x) =

{
1.2, x < 0,

0.4, x > 0.

The computational domain is divided such that a small spatial step size ∆x = 0.1 and k local
time increments with small time step ∆t/k are used within 32 sub-intervals Ωi, i = 1, · · · , 32,
while the large step sizes ∆x = 1 and ∆t = CFL∆x

1.2 are in other sub-domains. The Ωi are
irregularly chosen as follows: Ω1 = [6.6, 7[, Ω2 = [12, 12.5[, Ω3 = [13.5, 13.8[, Ω4 = [15.8, 16[,
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Table 6: Same as Table 4, except for Algorithm IV.

N L
∞–error order L

1–error order L
2–error order

25 2.14e-02 – 8.17e-02 – 3.59e-02 –

50 5.70e-03 1.91 2.07e-02 1.98 8.92e-03 2.01

100 1.47e-03 1.96 5.09e-03 2.02 2.18e-03 2.03

200 3.77e-04 1.96 1.24e-03 2.04 5.35e-04 2.03

Table 7: Example 4.2: The errors and convergence order for solution at t = 0.8

N L
∞–error order L

1–error order L
2–error order

25 6.35e-02 – 3.33e-02 – 3.14e-02 –

50 1.84e-02 1.79 8.35e-03 2.00 7.87e-03 2.00

100 4.39e-03 2.07 2.19e-03 1.93 1.96e-03 2.01

200 1.13e-03 1.96 5.63e-04 1.96 4.96e-04 1.98

Ω5 = [22, 22.4[, Ω6 = [27.4, 27.8[, Ω7 = [32.8, 33.[, Ω8 = [38, 38.5[, Ω9 = [41.5, 41.6[, Ω10 =
[43.6, 44.1[, Ω11 = [46.1, 46.7[, Ω12 = [48.7, 49.1[, Ω13 = [54.1, 54.5[, Ω14 = [60.5, 61[, Ω15 =
[67, 67.4[, Ω16 = [70.4, 70.6[, Ω17 = [72.6, 72.9[, Ω18 = [76.9, 77.1[, Ω19 = [81.1, 81.3[, Ω20 =
[85.3, 85.6[, Ω21 = [86.6, 86.8[, Ω22 = [88.8, 89.1[, Ω23 = [92.1, 92.3[, Ω24 = [96.3, 96.5[, Ω25 =
[99.5, 99.7[, Ω26 = [102.7, 102.9[, Ω27 = [103.9, 104.3[, Ω28 = [105.3, 105.5[, Ω29 = [108.5, 108.6[,
Ω30 = [110.6, 110.9[, Ω31 = [122.9, 123.3[, and Ω32 = [125.3, 125.6[.

The numerical shock speeds are recorded in Fig. 3 from t = 0 to 150 for CFL=0.4 and k
time increments: k = 1, 2, 5, 10, 15, 20, 25, 30, 40, 50, 70, 100, and 200, respectively, while the
averaged shock speeds are listed in Table 10. The numerical shock speed is calculated here as

Sn =
1

(uL − uR)∆t

∞∑

j=−∞

(un
j+ 1

2

− un−1

j+ 1
2

)(xj+1 − xj). (4.3)

From these data we can observe that the numerical shock speeds are hardly perturbed when
increasing the number of the time increments. A comparison of the computed solutions at
t = 150 is given in Fig. 4 for this case. The profile of the solutions are almost same as one
obtained by the global time step scheme.

In Fig. 5, we record the numerical shock speeds from t = 0 to 150 for CFL=0.9 and k time
increments: k = 1, 5, 10, 15, 20, 25, 30, 40, 50, 70, 100, and 200, respectively. The averaged
shock speeds are reported in Table 11. A comparison of the computed solutions at t = 150
is given Fig. 6 for this case. In the above the minmod limiter has been used. Although the
perturbation appeared in the numerical shock speed is larger that the former, the averaged
shock speed is still correct and the computed solutions are acceptable. These computed results
show that the moving shock can be captured correctly by our local time step schemes, even
though they are slightly nonconservative at points where the time step changes.

It is also interesting to solve a much stronger and faster moving shock problem of the
Burgers’ equation with the initial data by using the present local time stepsize schemes

u(x, 0) = 17.4 + 13.3 sin(πx), −1 ≤ x ≤ 1.

This problem is introduced in [11] to test ability of the multi-domain WENO finite difference
schemes with interpolation. The resulting numerical shock location may lag behind the exact
shock location due to conservative errors [11]. Fig.7 shows the numerical solutions at t = 4 and
24 obtained by our local time step schemes. The solid line is obtained by the MUSCL scheme
on a finer uniform mesh with 2000 cells. Although there is numerical oscillation, the calculated
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Table 8: Same as Table 7, except for second mesh-partition.

N L
∞–error order L

1–error order L
2–error order

25 9.60e-02 – 4.65e-02 – 4.64e-02 –

50 2.50e-02 1.94 1.27e-02 1.87 1.27e-02 1.87

100 5.58e-03 2.16 3.10e-03 2.03 2.94e-03 2.11

200 1.22e-03 2.19 7.27e-04 2.09 6.57e-04 2.16

Table 9: Same as Table 8, except for Algorithm IV.

N L
∞–error order L

1–error order L
2–error order

25 1.00e-01 – 4.79e-02 – 4.65e-02 –

50 2.60e-02 1.94 1.31e-02 1.87 1.27e-02 1.87

100 5.71e-03 2.19 3.24e-03 2.02 3.06e-03 2.05

200 1.28e-03 2.16 7.69e-04 2.07 7.04e-04 2.12

shock location is correct. In our computations, the half step sizes ∆x/2 and ∆t/2 are used
within [−0.5, 0.5], while the global step sizes ∆x and ∆t in the other domain.

Example 4.3. One–dimensional Euler equations. We solve the following system of the
Euler equations

Ut + F (U)x = 0, (4.4)

where U = (ρ, ρu,E)T , and F (U) =
(
ρu, ρu2 + p, u(E + p)

)T
.

Here ρ is the density, u is the velocity, E is the total energy, p is the pressure. We assume
that the pressure is related to the total energy by E = p

γ−1
+ 1

2
ρu2 with γ = 1.4. The initial

data are set such that the exact solution is

ρ(x, t) = 1 + 0.2 sin
(
π(x− ut)

)
, u(x, t) = 0.7, p(x, t) = 1, x ∈ [0, 2].

The periodic boundary condition is specified. We compute the solution up to t = 2. The
errors and numerical orders of accuracy of the density ρ for our high resolution local time step
algorithm Algorithm III with kinetic flux–vector splitting schemes are shown in Table 12. We
can see that a second-order rate of convergence can also be obtained. Here the half step sizes
∆x/2 and ∆t/2 have been used within [0.7, 1.3], while the global step sizes ∆x and ∆t have
been used in other domain.

Example 4.4. Two–dimensional Euler equations.We solve the following system of two–
dimensional Euler equations

Ut + F (U)x +G(U)y = 0, (4.5)

where U = (ρ, ρu, ρv, E)T , F (U) =
(
ρu, ρu2 + p, ρuv, u(E + p)

)T
, and G(U) =

(
ρv, ρuv, ρv2 +

p, v(E + p)
)T

.

Table 10: Example 4.2: The averaged shock speed for CFL=0.4.

k Shock speed k Shock Speed k Shock speed

1 0.800000172 20 0.799664386 50 0.799648687

2 0.799993110 25 0.799659362 70 0.799646677

10 0.799688536 30 0.799655796 100 0.799643219

15 0.799672775 40 0.799651374 200 0.799640447
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Figure 2: Numerical solution (“◦”) and exact solution (solid line) of the periodic problem in Example
4.1 given at t = 2.

Table 11: Same as Table 10, except for CFL=0.9.

k Shock speed k Shock Speed k Shock speed

1 0.800000174 50 0.799866552 200 0.799822289

2 0.799961043 100 0.799837461 500 0.799813063

Here ρ is the density, (u, v) is the velocity vector, E is the total energy, p is the pressure.
We also assume that the pressure is related to the total energy by E = p

γ−1
+ 1

2
ρu2 + 1

2
ρv2 with

γ = 1.4. The initial data are set such that the exact solution is

ρ(x, y, t) = 1 + 0.2 sin
(
π(x+ y − ut− vt)

)
,

u(x, y, t) = 0.7, v(x, y, t) = 0.3, p(x, y, t) = 1.

The computational domain is taken as [0, 2] × [0, 2], and the periodic boundary conditions are
specified in x– and y– directions. The algorithm is a multidimensional extension of the high
resolution local time step scheme (2.35)–(2.42) with kinetic flux–vector splitting schemes. The
computational domain is divided such that that the half step sizes ∆x/2 and ∆y/2 are used
within [0.7, 1.3], respectively, and ∆t/2 is in [0.7, 1.3] × [0.7, 1.3], while the global step sizes
∆x, ∆y and ∆t are in other domain. We compute the solution up to t = 2. The errors and
numerical orders of accuracy of the density ρ are shown in Table 13. The results show that a
second-order rate of convergence can also be obtained by our local time step scheme.

We also solve two-dimensional Euler equations with a slow moving shock in the positive

0 30 60 90 120 150

shoc
k sp

eed

time

Figure 3: Numerical shock speeds are recorded for CFL=0.4 and k time increments: 1, 2, 5, 10, 15,
20, 25, 30, 40, 50, 70, 100, 200 (from bottom to top), respectively. CFL=0.4.
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Figure 4: Comparisons of numerical solutions for CFL=0.4 and k time increments: k= 1, 70, and 200.
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Figure 5: Numerical shock speeds are recorded for for CFL=0.9 and k time increments: k =1,2,50,100,
200, and 500 (from bottom to top), respectively.

y-direction. The initial data for the conservative variables

U(x, y, 0) =

{
(1.4, 0, 4.2, 8.8)T , y < 0.65,

(5.38064, 0, 4.25971, 27.2576)T , y > 0.65,
(4.6)

are chosen such that the exact solution is a shock moving with speed s = 0.015 in the the
positive y-direction, see [11]. The computational domain [0, 2]× [0, 2] is divided into 200× 200
cells such that that the half step sizes ∆x/2 and ∆y/2 are used within [0.7, 1.3], respectively,
and ∆t/2 is in [0.7, 1.3] × [0.7, 1.3], while the global step sizes ∆x, ∆y and ∆t are in other
domain. We compute the solution up to t = 20. The computed density is shown in Fig.8,
compared with the exact solution (solid).

Example 4.5. Double Mach reflection for 2D Euler equations. In this example, we
solve two-dimensional double Mach reflection problem for two-dimensional Euler equations by
combining our moving mesh method developed in [15], in order to investigate efficiency of the
local time step scheme when we combine it with the adaptive mesh methods. We refer the
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Figure 6: Comparison of numerical solutions for CFL=0.9 and k time increments: k = 1, 100, and
500, respectively.
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Figure 7: A much stronger and faster shock problem, see Case 3 of Example 3.1 in [11]. The computed
solutions are obtained by solving inviscid Burgers’ equation in 1D with 400 nonuniform cells. The CFL
number is 0.48. Left: t = 4, right: t = 24.

Table 12: Example 4.3: The errors and convergence order for solutions at t = 2.

N L
∞–error order L

1–error order L
2–error order

26 8.26e-03 – 9.56e-03 – 7.28e-03 –

52 2.33e-03 1.83 2.43e-03 1.98 1.89e-03 1.95

104 5.93e-04 1.97 5.91e-04 2.04 4.65e-04 2.02

208 1.61e-04 1.88 1.43e-04 2.05 1.12e-04 2.05

readers to [15] for a detailed description of this problem as well as the adaptive mesh method.
Here, the computational domain is divided into non-uniform 160×80 cells and the output time
is taken as t = 0.2. Fig. 9 shows the adaptive mesh and the density contours with 24 equally
spaced contour lines, calculated by using the local time step scheme and global time step scheme
on the moving meshes, respectively. We see that there is not obvious difference between them.
The CPU times are 4555.04 seconds for the local time step scheme and 9377.90 seconds for the
global time step scheme estimated on the Pentium-IV with 3GHz under a Linux environment,
respectively. It means that about 51.43% cost is saved in the present computation.

Example 4.6. Navier–Stokes equations. This example is to solve the Navier–Stokes equa-
tions: {

ωt + ∇ · (uω) = 1

Re∆ω, ∆ψ = ω, u = ∇⊥ψ,

u = given on ∂Ω,
(4.7)

and check the accuracy of our local time step schemes, where ∇⊥ = (−∂y, ∂x). The Reynolds
number is taken as Re = 100 and the computaional domain is [0, 2π] × [0, 2π] with periodic
boundary conditions, respectively. In this case, the algorithm used is an extension of the

Table 13: Example 4.4: The errors and convergence order for solutions at t = 2.

N×N L
∞–error order L

1–error order L
2–error order

26×26 1.76e-02 – 3.07e-02 – 1.72e-02 –

52×52 4.67e-03 1.91 7.41e-03 2.05 4.17e-03 2.04

104×104 1.26e-03 1.89 1.76e-03 2.07 9.95e-04 2.07

208×208 3.32e-04 1.92 4.14e-04 2.09 2.34e-04 2.09
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Figure 8: Slow moving shock problem, see Example 3.8 in [11]. The density t = 20 is obtained by
solving Euler system of equations in 2D. The CFL number is 0.24. The solid line denotes the exact
solution.
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Figure 9: Example 4.5. The density contours and the adaptive mesh at t = 0.2. Top: the local time
step scheme; middle: the global time step scheme; bottom: the adaptive mesh.

Algorithm III and (3.1). The discrete Possion equation for the stream function ψ is solved
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iteratively by a Jacobi type iteration.

The initial conditions are taken such that the exact solution of the problem is known

ω(x, y, t) = − 2 sin(x) sin(y)e−
2t
Re , ψ(x, y, t) = sin(x) sin(y)e−

2t
Re ,

u(x, y, t) = − sin(x) cos(y)e−
2t
Re , v(x, y) = cos(x) sin(y)e−

2t
Re .

The computational domain is discretized such that the half step sizes ∆x/2 and ∆y/2 are within
[0.8, 1.2], respectively, and ∆t/2 is in [0.8, 1.2] × [0.8, 1.2], while the global step sizes ∆x, ∆y
and ∆t are in other domain. Table 14 shows the errors and convergence orders for the vorticity
function at t = 2.

Table 14: Example 4.6: The errors and convergence order for solutions at t = 2.

N×N L
∞–error order L

1–error order L
2–error order

24×24 2.60e-02 – 3.49e-01 – 7.13e-02 –

48×48 7.22e-03 1.85 6.89e-02 2.34 1.44e-02 2.31

96×96 1.75e-03 2.04 1.37e-02 2.33 2.94e-03 2.29

192×192 4.54e-04 1.95 3.17e-03 2.11 7.04e-04 2.06

5. Concluding Remarks

A class of the local time step schemes have been studied for nonlinear hyperbolic conservation
laws (1.1) in this paper. The schemes are constructed by using a simple projection of the
solution increments at each local time step. They are of good consistency and L∞ stability, and
satisfy the cell entropy inequalities, even though these properties still do not imply convergence
of the schemes. High resolution schemes are derived by combining the initial reconstruction
technique with second–order TVD Runge–Kutta methods or second order Lax–Wendroff type
time discretization.

Because of the good consistency, our schemes have also been extended to the initial boundary
value problems of unsteady parabolic and convection–diffusive equations, e.g. (1.2). We need
only modify the corresponding spatial discretization operator in the right hand side term of the
algorithms.

The methods have been used to solve numerically a linear convection–diffusion equation,
the nonlinear inviscid Burgers’ equation, the one– and two–dimensional compressible Euler
equations, and the two–dimensional incompressible Navier–Stokes equations. From numerical
results, we can observe that second–order rates of convergence have been obtained by the
presented schemes; the local time step schemes can also save computational costs. Although
the schemes are slightly nonconservative, the moving shocks can be captured correctly in our
computations of two detailed examples.

It is possible to construct a conservative local time step scheme with a good consistency.
As an example for the special case as shown in Fig.1a, we may apply a two-steps scheme for
j ∈ D1, while a one-step scheme for j ∈ D2. However, it becomes expensive when the scheme
is extended to the case with multi-time increments and higher-order accuracy.

It is an interesting topic to construct third– and higher–order accurate schemes with locally
varying time and space grids.
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