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Abstract

In this paper, we study numerical approximations of a recently proposed phase field
model for the vesicle membrane deformation governed by the variation of the elastic bend-
ing energy. To overcome the challenges of high order nonlinear differential systems and the
nonlinear constraints associated with the problem, we present the phase field bending elas-
ticity model in a nested saddle point formulation. A mixed finite element method is then
employed to compute the equilibrium configuration of a vesicle membrane with prescribed
volume and surface area. Coupling the approximation results for a related linearized prob-
lem and the general theory of Brezzi-Rappaz-Raviart, optimal order error estimates for the
finite element approximations of the phase field model are obtained. Numerical results are
provided to substantiate the derived estimates.
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1. Introduction

Recent biological studies have demonstrated that biological membranes have very rich struc-
tures and play an integral part in cell functions. The usual vesicle membranes are formed by
a bilayer of amphiphilic lipid molecules. The research on the structure, geometry, mechan-
ics and function properties of membranes is thus of great interests in the emerging subject of
lipidomics. The bending elasticity model for bilayer membranes, in particular, has been widely
used to study the mechanical properties of vesicle membranes.

According to Helfrich [13, 26, 34], the elastic bending energy is formulated in the form of a
surface integral on the membrane Γ:

E =

∫

Γ

{

a1 + a2(H − c0)
2 + a3G

}

ds, (1.1)
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where a1 represents the surface tension, H = k1+k2

2 is the mean curvature of the membrane
surface, with k1 and k2 as the principle curvatures, and G = k1k2 is the Gaussian curvature.
The coefficient a2 is the bending rigidity and a3 the stretching rigidity, and c0 is the sponta-
neous curvature that describes the asymmetry effect of the membrane or its environment. The
equilibrium membrane configurations are the minimizers of the energy subject to given surface
area and volume constraints [17].

For brevity, we focus on the special case where the energy involves only the mean curvature
square term, that is,

Eelastic =

∫

Γ

H2ds , (1.2)

though much of our study here can be extended to work for (1.1) as well as other more general
cases.

A classical method to study free interface computationally is to employ a mesh that has
grid points on the interfaces, and deforms according to the motion of the boundary. Examples
include the boundary integral and boundary element methods [27, 35]. An alternative is to
employ fixed-grid methods that include the volume-of-fluid method, front-tracking method and
level-set method [6, 12, 32, 33, 36]. The applications of these methods to the bending elasticity
models can be found in, for example, [2, 29]. In recent works [17] and [15, 18, 19, 37], some phase
field models have been developed based on a general energetic variation framework involving the
above bending elastic energy. Extensions to coupled membrane and fluid interaction systems
can be found in [1, 16].

A phase function u = u(x), defined on the physical (computational) domain Ω containing
the vesicle Γ, is a key ingredient of phase field modeling [5, 7, 8, 24]. We visualize that the
level set {x : u(x) = 0} gives the membrane, while {x : u(x) > 0} represents the inside of the
membrane and {x : u(x) < 0} represents the outside of the membrane.

For the simplified energy (1.2), the corresponding phase field model is given by [17]

E(u) =

∫

Ω

1

2ǫ

(

ǫ∆u +
1

ǫ
u(1 − u2)

)2
dx . (1.3)

The surface area and volume constraints can be specified as

A(u) =

∫

Ω

u dx = α , (1.4)

B(u) =

∫

Ω

(

ǫ

2
|∇u|2 +

1

4ǫ
(u2 − 1)2

)

dx = β . (1.5)

Here, the parameter ǫ is a small regularization constant that determines the typical interfacial
width of the phase field function u. The equilibrium phase field model is then defined by
minimizing E subject to the constraints (1.4-1.5). The consistency of the the phase field model
energy (1.3) with the energy (1.2) in the sharp interface limit, that is, as ǫ → 0, has been
demonstrated in [14].

In terms of algorithmic development, discrete finite difference, finite element and spectral
approximations have all been developed [17, 19] for the phase field model presented above.
Extensive numerical simulations have been carried out and different energetic bifurcation phe-
nomena have been discussed in [17] and [15, 19], and they have demonstrated the effectiveness
of the phase field approach in the modeling of vesicle membrane deformations. Although finite
element analysis of phase field type models (largely for phase transition problems) have been
studied by various authors, see for example [7, 10, 20, 23, 24], the analysis for the phase field
bending elasticity model of vesicle membranes is still under development. In particular, it is
a challenge to carry out rigorous error analysis due to the nonlinear nature of the variational
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problem, the involvement of high order differential forms and the nonlinear constraints. So far,
only basic convergence analysis has been given in [21] and no error estimate has been presented.
In this paper, we study a mixed finite element method based on a new variational formulation
of the phase field model. We present a complete analysis on the optimal order error estimates
of the finite element solutions. Our basic approach is to derive an error estimate first for the
mixed finite element approximation of a linearized problem by applying the abstract framework
developed in [9] for nested linear saddle point problems. Then the optimal order error estimate
is derived for the nonlinear phase field bending elasticity model (1.3-1.5) by applying the Brezzi-
Rappaz-Raviart theory on the finite dimensional approximations of nonlinear problems [4]. The
estimates are rigorous in the sense that we do not need to make any a priori assumption on the
numerical solutions. Moreover, the theoretical results are further substantiated by the numeri-
cal experimental data. The reformulation as a nested saddle point problem and the subsequent
analysis also shed light on the further algorithmic development for the phase field models.

The rest of this paper is organized as follows: in section 2, the phase field model is refor-
mulated as a nonlinear nested saddle point variational system. In section 3, a related linear
problem is formulated and analyzed based on the general framework of linear nested saddle
point problem. In section 4, we discuss the mixed finite element approximation of the linear
saddle point problem, then we derive error estimates for the nonlinear nested saddle point
problem. Some preliminary numerical results are given in section 5 and finally, some conclusion
remarks are presented in section 6.

2. A Saddle Point Formulation of the Phase Field Model

In this section, we first present the variational phase field model with prescribed surface area
and volume as introduced in [17]. Then, we present its nested saddle point formulation based
on the duality theory for variational problems and the corresponding Euler-Lagrange systems.

2.1. The Variational Phase Field Model

Let ǫ > 0 be a small parameter that controls the width of the diffusive transition layer around
the membrane, then as mentioned earlier, the original bending elastic energy model for vesicle
membrane deformations under the prescribed surface area and bulk volume is formulated in a
phase field setting as the following minimization problem with constraints [17]: find u = u(x)
such that it minimizes the elastic bending energy

min E(u) =

∫

Ω

1

2ǫ
(ǫ∆u +

1

ǫ
(1 − u2)u)2dx , (2.1)

with subject to
A(u) = α, B(u) = β , (2.2)

where the volume constraint functional A = A(u) and the surface area constraint functional
B = B(u) are defined as in (1.4-1.5). We note that the variational problem (2.1-2.2) may be
complemented with either a Dirichlet boundary condition u |∂Ω= −1 or a Neumann boundary
condition ∂u

∂n
|∂Ω= 0. Additional variational (natural) boundary condition can also be derived.

In a general ansatz, the consistency of the phase field elastic energy (2.1) with the sharp inter-
face description (1.2) has been demonstrated [14] using the Dirichlet boundary condition. For
ǫ → 0, there is little difference no matter which boundary condition is enforced. In fact, peri-
odic boundary conditions may also be imposed if ǫ is small and the computational domain Ω is
chosen to be sufficiently large. For convenience, we assume the homogeneous Neumann bound-
ary condition in this paper. In the mixed formulation, this becomes a variational boundary
condition, thus it is easy to implement numerically.
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2.2. A Nested Min-max Variational Formulation

We consider the minimization problem with constraints (2.1-2.2) via the introduction of
Lagrangian multipliers. Let the characteristic function δ(·|0) be defined for any λ0 ∈ R,

δ(λ0|0) =

{

0, if λ0 = 0,
+∞, otherwise.

Obviously,

δ(λ0|0) = sup
λ∈R

λλ0.

Then,

δ((

∫

Ω

udx − α)|0) = sup
λ1∈R

λ1(

∫

Ω

udx − α),

δ((

∫

Ω

[
ǫ

2
|∇u|2 +

1

4ǫ
(u2 − 1)2]dx − β)|0) = sup

λ2∈R

λ2(

∫

Ω

[
ǫ

2
|∇u|2 +

1

4ǫ
(u2 − 1)2]dx − β)).

Now, the original constrained minimization problem can be transformed into the following
saddle point problem.

inf
u∈H̃

sup
λ1,λ2∈R

{

∫

Ω

ǫ

2
|∆u −

1

ǫ2
(u2 − 1)u|2dx + λ1(

∫

Ω

udx − α)

+λ2(

∫

Ω

[
ǫ

2
|∇u|2 +

1

4ǫ
(u2 − 1)2]dx − β)}, (2.3)

where H̃ = H2
n(Ω) is the space of functions in H2(Ω) with homogeneous Neumann boundary

condition. On the other hand, by the duality theory,

ǫ

2

∫

Ω

|∆u −
1

ǫ2
(u2 − 1)u|2dx = sup

p∈L2(Ω)

{

∫

Ω

p(∆u −
1

ǫ2
(u2 − 1)u)dx −

1

2ǫ

∫

Ω

p2dx}.

Thus, the problem (2.3) can be transformed into the following nested saddle point formulation

inf
u∈H̃

sup
p∈M̃

sup
λ1,λ2∈R

{

∫

Ω

p(∆u −
1

ǫ2
(u2 − 1)u)dx −

1

2ǫ

∫

Ω

p2dx

+λ1(

∫

Ω

udx − α) + λ2(

∫

Ω

[
ǫ

2
|∇u|2 +

1

4ǫ
(u2 − 1)2]dx − β)}, (2.4)

where M̃ = L2(Ω).

2.3. A Weak Nested Saddle Point Formulation

Assume that the problem (2.4) has a saddle point (u, p, λ1, λ2) ∈ H̃ × M̃ × R × R. Then
(u, p, λ1, λ2) is characterized by the following variational system:











































∫

Ω

[(∆u −
1

ǫ2
(u2 − 1)u)q −

1

ǫ
pq]dx = 0, ∀q ∈ M̃

∫

Ω

[p∆v −
1

ǫ2
(3u2 − 1)pv + λ1v + λ2(

1

ǫ
(u2 − 1)u − ǫ∆u)v]dx = 0, ∀v ∈ H̃

µ1(α −

∫

Ω

udx) = 0, ∀µ1 ∈ R

µ2(

∫

Ω

[
ǫ

2
|∇u|2 +

1

4ǫ
(u2 − 1)2]dx − β) = 0, ∀µ2 ∈ R.

(2.5)
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In terms of the first equation in (2.5), we can get

∆u =
1

ǫ2
(u2 − 1)u +

1

ǫ
p . (2.6)

The last equation in (2.5) can be transformed via Green’s formula into:

µ2

(

∫

Ω

[−
ǫ

2
u∆u +

1

4ǫ
(u2 − 1)2]dx +

ǫ

2

∫

∂Ω

∂u

∂n
uds − β

)

= 0, ∀µ2 ∈ R . (2.7)

Substituting (2.6) into (2.7) and in the second equation of (2.5), taking the test functions
v, q ∈ M̂ = H = H1(Ω) and applying integration by parts, we can get











































∫

Ω

∇u · ∇qdx +

∫

Ω

1

ǫ2
(u2 − 1)uqdx +

1

ǫ

∫

Ω

pqdx = 0, ∀q ∈ M̂
∫

Ω

∇v · ∇pdx +

∫

Ω

[
1

ǫ2
(3u2 − 1)p − λ1 + λ2p]vdx = 0, ∀v ∈ H

µ1( α −

∫

Ω

udx) = 0, ∀µ1 ∈ R

µ2

(
∫

Ω

[
1

2
up +

1

4ǫ
(u4 − 1)]dx + β

)

= 0, ∀µ2 ∈ R .

(2.8)

The Neumann boundary condition of u is naturally implied from the weak form. It is easy to
see that (2.8) is equivalent to the following variational formulation:



























∫

Ω

∇u · ∇qdx +

∫

Ω

1

ǫ2
(u2 − 1)uqdx +

1

ǫ

∫

Ω

pqdx = 0, ∀q ∈ M̂
∫

Ω

∇v · ∇pdx +

∫

Ω

[
1

ǫ2
(3u2 − 1)pv − λ1v + λ2pv]dx = 0, ∀v ∈ H

µ1(α −

∫

Ω

udx) + µ2

(
∫

Ω

[
1

2
up +

1

4ǫ
(u4 − 1)]dx + β

)

= 0, ∀µ1, µ2 ∈ R .

(2.9)

Note that from the first equation in (2.9), we have (2.6) in the weak sense, and substituting
into the second equation, we get the following strong form of the Euler-Lagrange equation in
the distribution sense

−∆(ǫ∆u +
1

ǫ
(1 − u2)u) + (

1

ǫ2
(3u2 − 1) + λ2)(ǫ∆u +

1

ǫ
(1 − u2)u) − λ1 = 0,

with appropriate boundary conditions. The system (2.9) may thus be viewed as a saddle point
formulation of the above system. Similarly, we may also view the standard Galerkin finite
element approximation of (2.9) as a mixed finite element approximation [3] of the above fourth
order equation.

3. Analysis and Approximation of a Linear Problem

In this section, we first consider the theory and the mixed finite element approximation of
a corresponding linear saddle point problem. The mixed finite element approximation of the
nonlinear saddle point problem (2.9) is discussed in the next section.

3.1. A Linear Nested Saddle Point Problem

We extract the following linear part of the nonlinear problem (2.9): find (p, u,~λ) ∈ X ×Q×
M , where X = Q = H1(Ω) and M = R2, such that







a(p, q) + b(u, q) = f(q), ∀q ∈ X

b(v, p) + c(v,~λ) = g(v), ∀v ∈ Q
c(u, ~µ) = χ(~µ), ∀~µ ∈ M

(3.1)
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where the bilinear functionals are given by

a(p, q) =
1

ǫ

∫

Ω

pqdx , ∀q ∈ X,

b(v, p) =

∫

Ω

∇p · ∇vdx , ∀v ∈ Q,

c(u, ~µ) =

∫

Ω

(−µ1 + µ2ρ(x))udx , ∀~µ ∈ M .

(3.2)

Here, the function ρ = ρ(x) is chosen so that the constraints
∫

Ω
udx and

∫

Ω
uρ(x)dx are

independent. Without loss of generality, we let xc denote the center of mass of Ω, that is,

xc|Ω| =

∫

Ω

xdx,

then for simplicity, we may let ρ(x) = eT (x − xc) where e is any given unit vector.
The terms f(q), g(v), and χ(~µ) on the right hand side of (3.1) are all taken to be some

continuous linear functionals on X, Q, M respectively.
Using the abstract theory on the linear nested saddle point problem developed in [9], the

existence and uniqueness of the solution of the continuous nested saddle point problem (3.1)
can be proved along with the optimal error estimate of its finite element approximation.

3.2. Abstract Framework for Linear Nested Saddle Point Problems

Here, we recall a couple of results (Lemma 4.1 and Lemma 4.2 in [9]) on the nested saddle
point problems and its finite element approximation.

Let X, Q and M be three real Hilbert spaces. Given three continuous bilinear functionals
a : X × X → R, b : X × Q → R, and c : Q × M → R and f ∈ X ′, g ∈ Q′, and χ ∈ M ′, we
consider the following problem:

Find (u, p, λ) ∈ X × Q × M , such that







a(u, v) + b(v, p) = f(v), ∀v ∈ X ,
b(u, q) + c(q, λ) = g(q), ∀q ∈ Q ,

c(p, µ) = χ(µ), ∀µ ∈ M .
(3.3)

Following [9], we define two subspaces N1 ⊂ Q and N2 ⊂ X as follows:

N1 = {q ∈ Q; c(q, µ) = 0, ∀µ ∈ M}; N2 = {v ∈ X ; b(v, q) = 0, ∀q ∈ N1}. (3.4)

We have the following results on the existence and uniqueness of the solution for the system
(3.3) [9].

Lemma 3.1. Assume that a(·, ·) is N2 − coercive, i.e.

a(v, v) ≥ a0‖v‖
2
X , ∀v ∈ N2, (3.5)

and the following inf-sup conditions hold:

inf
q∈N1

sup
v∈X

b(v, q)

‖v‖X‖q‖Q

≥ b0 (3.6)

inf
µ∈M

sup
q∈Q

c(q, µ)

‖q‖Q‖µ‖M

≥ c0 (3.7)

for some positive constants a0, b0, c0. Then the problem (3.3) has a unique solution (u, p, λ) ∈
X × Q × M .
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Next let Xh ⊂ X, Qh ⊂ Q, and Mh ⊂ M be three finite dimensional subspaces. We introduce
the corresponding approximation of (3.3) as follows. Find (uh, ph, λh) ∈ Xh × Qh × Mh such
that







a(uh, vh) + b(vh, ph) = f(vh), ∀vh ∈ Xh ,
b(uh, qh) + c(qh, λh) = g(qh), ∀qh ∈ Qh ,

c(ph, µh) = χ(µh), ∀µh ∈ Mh .
(3.8)

Similar as (3.4), we introduce two subspaces N1h ⊂ Qh and N2h ⊂ Xh as follows:

N1h = {qh ∈ Qh; c(qh, µh) = 0, ∀µh ∈ Mh} , N2h = {vh ∈ Xh; b(vh, qh) = 0, ∀qh ∈ N1h} .
(3.9)

We have the following results concerning the discrete problem (3.8).

Lemma 3.2. Assume that a(·, ·) is N2h-coercive, i.e.

a(vh, vh) ≥ a⋆‖vh‖
2
X∀vh ∈ N2h, (3.10)

and the following inf-sup conditions hold:

inf
qh∈N1h

sup
vh∈Xh

b(vh, qh)

‖vh‖X‖qh‖Q

≥ b⋆ , (3.11)

inf
µh∈Mh

sup
qh∈Qh

c(qh, µh)

‖µh‖M‖qh‖Q

≥ c⋆ (3.12)

for some positive constants a⋆, b⋆, c⋆. Then the discrete problem (3.8) has a unique solution
(uh, ph, λh) ∈ Xh × Qh × Mh with the following error estimate,

‖u − uh‖X + ‖p − ph‖Q + ‖λ − λh‖M

≤ C{ inf
vh∈Xh

‖u − vh‖X + inf
qh∈Qh

‖p − qh‖Q + inf
µh∈Mh

‖λ − µh‖M}, (3.13)

where the constant C depends only on a⋆, b⋆, c⋆, and on the operator norms ‖a‖, ‖b‖ and ‖c‖ of
the bilinear functional a(·, ·), b(·, ·), c(·, ·), respectively.

3.3. Application to the Linear Nested Saddle Point Problem

In order to get the existence and uniqueness of the solution for the continuous system (3.1),
we need to prove (3.5-3.7) so that the lemma 3.1 can be applied.

For any given µ1, µ2 ∈ R, notice that for ρ(x) = eT (x − xc) where e is a given unit vector,
we have

∫

Ω
ρ(x)dx = 0, thus, by taking v = −µ1 + µ2ρ(x), we get

c(v, ~µ) = ‖v‖2
0 = µ2

1|Ω| + µ2
2

∫

Ω

ρ2(x)dx ≥ min
(

|Ω|,

∫

Ω

ρ2(x)dx
)

(µ2
1 + µ2

2) ,

and

‖v‖2
1 = (µ2

1 + µ2
2)|Ω| + µ2

2

∫

Ω

ρ2(x)dx ≤ max
(

|Ω|,

∫

Ω

ρ2(x)dx
)

(µ2
1 + µ2

2) .

So,

sup
v∈Q

c(v, ~µ)

‖v‖1
≥

min
(

|Ω|,
∫

Ω
ρ2(x)dx

)

[

max
(

|Ω|,
∫

Ω
ρ2(x)dx

)]
1

2

|~µ| ,

and this verifies (3.7).
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Next, we prove the inf-sup condition (3.6). Note that by the definition (3.4), we easily get

N1 = {q ∈ Q;

∫

Ω

qdx = 0 and

∫

Ω

ρqdx = 0} .

For q ∈ N1, we may apply a standard Poincaré inequality

‖∇q‖2
0 ≥ c1‖q‖

2
1

for some constant c1 > 0. So, we have

b(v, q) = ‖∇q‖2
0 ≥ c1‖q‖

2
1

for some constant c1 > 0. Then,

sup
v∈X

b(v, q)

‖v‖1
=

‖∇q‖2
0

‖q‖1
≥ c1‖q‖1 . (3.14)

The inf-sup condition (3.6) is thus verified.
Now, to prove the N2 coercivity of a(·, ·), we first characterize the elements of N2. Given a

smooth test function w defined in Ω, we define q = w − µ1 − µ2ρ(x) with

µ1 =
1

|Ω|

∫

Ω

w(x)dx, µ2 =

∫

Ω
w(x)ρ(x)dx

∫

Ω ρ2(x)dx
.

Then q ∈ N1. So, for v ∈ N2, we get from b(v, q) = 0 that
∫

Ω

∇v · ∇wdx = µ2

∫

Ω

∇v · ∇ρdx = c2

∫

Ω

w(x)ρ(x) ,

where c2 is a constant. Applying integration by parts, we get
∫

∂Ω

∂v

∂n
wds +

∫

Ω

(−∆v − c2ρ)wdx = 0 .

This implies that v is a weak solution of −∆v = c2ρ in Ω with the homogeneous Neumann
boundary condition. This leads to:

N2 = {v ∈ X ; −∆v = c2ρ, and
∂v

∂n
= 0 }.

Let v1 be the unique weak solution of

−∆v1 = ρ,

∫

Ω

v1dx = 0, and
∂v1

∂n
= 0 .

Then, for v ∈ N2, we have v = c3 + c2v1, so, on one hand,

‖∇v‖2
0 = c2

2‖∇v1‖
2
0 ,

and on the other hand,
∫

Ω

|v|2dx = c2
3|Ω| + c2

2‖v1‖
2
0 ≥ c2

2‖v1‖
2
0 ≥ c2

2‖∇v1‖
2
0

‖v1‖
2
0

‖∇v1‖2
0

= ‖∇v‖2
0

‖v1‖
2
0

‖∇v1‖2
0

.

Thus, there exists a constant c4 > 0 such that

a(v, v) =

∫

Ω

v2dx ≥ c4‖v‖
2
X .

We thus have the coercivity of a in N2.
By the general abstract framework given in Lemma 3.1, we have
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Theorem 3.1. The linear continuous nested mixed variational system (3.1) has a unique

solution (p, u,~λ) ∈ X × Q × M.

3.4. The Mixed FEM of the Linear Problem

To construct the finite element approximation of the mixed formulation, we take the discrete
function spaces as

Xh = Qh = {qh ∈ C0(Ω) ∩ H1(Ω) | qh|e
∈ Pk(e), ∀e ∈ Jh}; Mh = R2 (3.15)

where Jh is a triangulations of Ω̄ consisting elements K whose diameters are bounded above
by the mesh parameter h, and Pk denotes the space of all polynomials of degree no bigger than
k. For small h → 0, we assume that the family Jh is uniformly regular in the sense that there
exists two constants σ, τ > 0, independent of h, such that

hK ≤ σρK , τh ≤ hK ≤ h,

where hK is the diameter of K and ρK is the diameter of the inscribed sphere in K [11].
Then the mixed finite element approximation of the continuous mixed variational system

(3.1) is: find (ph, uh, ~λh) ∈ Xh × Qh × Mh, such that







a(ph, qh) + b(uh, qh) = f(qh), ∀qh ∈ Xh ,

b(vh, ph) + c(vh, ~λh) = g(vh), ∀vh ∈ Qh ,
c(vh, ~µ) = χ(~µ), ∀~µ ∈ Mh .

(3.16)

Here, the bilinear forms a, b and c are defined as in (3.2), f(q), g(v) and χ(~µ) again represent
continuous linear functionals on Xh, Qh, Mh.

We also define Nh
1 and Nh

2 as in (3.9) corresponding to the above bilinear forms. Following
the same construction as in the continuous case, we can easily get that b(·, ·), c(·, ·) are bounded
and satisfy the discrete inf-sup conditions (3.11) and (3.12). We may also prove the coercivity
of a(·, ·) in Nh

2 using argument similar to the continuous case. For instance, we may find a
unique finite element function vh

1 ∈ Xh that satisfies
∫

Ω

∇vh
1 · ∇whdx =

∫

Ω

wh(x)ρ(x) , ∀wh ∈ Xh , and

∫

Ω

vh
1 dx = 0.

Then, we also get a characterization of the subspace Nh
2 as:

Nh
2 =

{

vh ∈ Xh |

∫

Ω

∇vh · ∇whdx = c2

∫

Ω

whρ(x) , ∀wh ∈ Xh

}

=
{

vh = c3 + c2v
h
1 | c2, c3 ∈ R

}

.

Since vh
1 can be viewed as the finite element approximation of v1 in Xh, by standard finite

element theory, we get that

lim
h→0

‖vh
1 ‖

2
0

‖∇vh
1 ‖

2
0

=
‖v1‖

2
0

‖∇v1‖2
0

.

Thus, for h small, ‖vh
1 ‖

2
0/‖∇vh

1‖
2
0 is uniformly bounded, independent of h, thus, we again have

a constant c5 > 0 such that for h small, and for any vh ∈ Nh
2 ,

a(vh, vh) =
1

ǫ

∫

Ω

|vh|
2dx ≥ c5‖vh‖

2
X .

Then, following from Lemma 3.2, we have the following theorem
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Theorem 3.2. Assume the solution (p, u,~λ) of (3.1) is in Hk+1(Ω) × Hk+1(Ω) × R2, then
the mixed finite element approximation (3.16) corresponding to the linear nested saddle point

system (3.1) has a unique solution (ph, uh, ~λh). And we have the following error estimate:

‖p− ph‖1 + ‖u − uh‖1 + |~λ − ~λh| ≤ Chk
{

‖u‖k+1 + ‖p‖k+1 + |~λ|
}

, (3.17)

for some constant C > 0 independent of h and the solution u, p and ~λ.

Note that similar to eigenvalue problems, the order of the error estimates for the Lagrange
multipliers can often be higher than those given in the above. We leave the discussion on this
and other type of error estimates to future works.

4. Error Estimate for FEM of the Phase Field Model

With the help of the error estimates for the linear problem, we now present the same
estimates for the nonlinear saddle point problem. In this regard, we first recall some abstract
theory on the finite dimensional approximations of nonlinear problems, then we apply it to the
problem (2.9) which is the saddle point formulation of the phase field model for the vesicle
membrane deformations.

4.1. BRR Theory

Let us recall some results on the finite dimensional approximations of the nonlinear problems
due to Brezzi-Rappaz-Raviart [4].

Let V and W be two Banach spaces, Λ be a compact interval of the real line R. We introduce
a C1 mapping G: Λ × V → W and a linear continuous mapping T ∈ L(W ; V ). We set:

F (α, u) = u + TG(α, u).

We consider the finite dimensional approximation of a solution pair (α, u) ∈ Λ × V of the
equation

F (α, u) = 0 . (4.1)

Assume that for any (α, u) ∈ Λ × V , the operator TDuG(α, u) ∈ L(V, V ) is compact, and
there exists a branch {(α, u(α)), α ∈ Λ} of nonsingular solutions of the equation (4.1).

Next, for h > 0, we are given a finite-dimensional subspace Vh of the space V and an
operator Th ∈ L(W ; Vh). We set for α ∈ Λ, uh ∈ Vh:

Fh(α, uh) = uh + ThG(α, uh) .

The approximate problem consists of finding a solution (α, uh) ∈ Λ × Vh of the equation

Fh(α, uh) = 0 . (4.2)

Then, we have the following lemma [4].

Lemma 4.1. Assume that G is a C1 mapping from Λ × V into W with D1G bounded on all
bounded subsets of Λ × V , TDuG(α, u) ∈ L(V, V ) is compact, and (4.1) has a non-singular C1

solution branch α ∈ Λ → u(α) ∈ V . Assume in addition that

lim
h→0

‖v − Πhv‖V = 0, ∀v ∈ V (4.3)

for some linear operator Πh ∈ L(V ; Vh) and

lim
h→0

‖Th − T ‖L(W ;V ) = 0 . (4.4)
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Then, there exists a neighborhood ϑ of the origin in V and, for h ≤ h0 small enough, a unique
C1 function α ∈ Λ → uh(α) ∈ Vh such that for all α ∈ Λ

Fh(α, uh(α)) = 0, uh(α) − u(α) ∈ ϑ . (4.5)

Furthermore, we have for some constant K0 > 0, independent of h and α such that

‖uh(λ) − u(λ)‖V ≤ K0{‖u(λ) − Πhu(λ)‖V + ‖(Th − T )G(λ, u(λ))‖V } . (4.6)

4.2. A Mixed FEM of the Nonlinear Problem

Now we consider the mixed finite element approximation of nonlinear nested saddle point
problem (2.9) by adopting the BRR framework quoted earlier.

We introduce the linear operator T : g = (g1, g2, ~g3) ∈ W̃ = H−1(Ω)×H−1(Ω)×R2 → ũ =

(p, u,~λ) ∈ Ṽ = H1(Ω) × H1(Ω) × R2 defined by



























∫

Ω

pqdx + ǫ

∫

Ω

∇u · ∇qdx =

∫

Ω

g1qdx, ∀q ∈ H1(Ω) ,

ǫ

∫

Ω

∇v · ∇pdx − λ1

∫

Ω

vdx + λ2

∫

Ω

ρvdx =

∫

Ω

g2vdx, ∀v ∈ H1(Ω) ,

−µ1

∫

Ω

udx + µ2

∫

Ω

ρudx = ~µ · ~g3, ∀~µ ∈ R2 .

(4.7)

Here, the mapping G = (g1, g2, ~g3) = (g1, g2, g31, g32) is given by

g1(ũ) =
1

ǫ
(1 − u2)u;

g2(ũ) = λ2(p + ρ) +
1

ǫ2
(3u2 − 1)p;

g31(ũ) = α;

g32(ũ) = −β −

∫

Ω

[
1

2
up +

1

4ǫ
(u4 − 1)]dx +

∫

Ω

ρudx.

By definition, G = G(ũ) depends on the parameter α (and also the parameter β). By
normalization, we may always take β = 1 (or some other constant area), then the solution
of (2.9) may be viewed as a solution branch of (4.7) with G = G(ũ) for the corresponding
parameter α. Without causing confusion, we also adopt the notation G = G(α, ũ) to emphasize
on the dependence of G on the parameter α.

We use the standard notation for the Sobolev spaces to define

V = L2(Ω) × L2(Ω) × R2,

so that V →֒ W̃ and the embedding is compact.
Given an element G ∈ W̃ , we define the linear mapping T by TG = −(p, u,~λ) with (p, u,~λ)

being the solution of (4.7) for the corresponding G. The nonlinear problem (2.9) is then
equivalent to (4.1).

Now, set Vh = Xh×Qh×R2. A mixed finite element approximation of the nonlinear nested
saddle point problem is then given by : find a solution ũh = (ph, uh, ~λh) ∈ Vh of the equation



























∫

Ω

phqhdx + ǫ

∫

Ω

∇uh · ∇qhdx =

∫

Ω

g1(ũh)qhdx, ∀qh ∈ Xh
∫

Ω

∇vh · ∇phdx −

∫

Ω

(λh
1vh + λh

2ρvh)dx =

∫

Ω

g2(ũh)vhdx, ∀vh ∈ Qh

−µ1

∫

Ω

uhdx + µ2

∫

Ω

ρuhdx = ~µ · ~g3(ũh), ∀~µ ∈ R2.

(4.8)
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Similarly, for G = (g1(ũh), g2(ũh), ~g3(ũh)), we may define the linear operator Th : W̃ → Vh

by ThG = −ũh = (ph, uh, ~λh) which satisfies the equation (4.8) with a given element G ∈ W̃ .
Thus, the finite element approximation of (2.9) is equivalent to (4.2).

By the standard approximation properties of the finite element spaces, we obviously have
(4.3). By the discussion on the linear problem, we have

lim
h→0

‖T − Th‖L(W̃ ,Ṽ ) = 0

so that the condition (4.4) is satisfied. Moreover, assume that the solution ũ satisfies the full
regularity estimates, that is, ũ ∈ Hk+1(Ω)×Hk+1(Ω)×R2, where k is the degree of the piecewise
polynomials used in the finite element spaces, we then have the estimate

‖(T − Th)g‖Ṽ ≤ Chk (4.9)

for some constant C, independent of h.
So, in order to apply the BRR theory, we need to check the bounds and differentiability of

G and the compactness of TDũG.

Lemma 4.2. For any given α, G is a continuously differentiable mapping from Ṽ to V and
the operator ũ → TDũ(G(α, ũ)) is a compact operator in L(Ṽ , Ṽ ).

Proof. On one hand, we note that T is a linear continuous operator from W̃ into Ṽ , and
the imbedding V ⊂ W̃ is compact. Therefore, T is a compact operator form V into Ṽ . On
the other hand, it is easy to check that for ũ ∈ Ṽ , by Sobolev imbedding theorem, G(ũ) is in
V . So, in order to prove the lemma, it is sufficient to show that the operator G : Ṽ 7→ V is
continuously differentiable. For g1(ũ) = 1

ǫ
(1 − u2)u, we have

‖g1(ũ1) − g1(ũ2)‖0 = 1
ǫ
‖(u2

1 − 1)u1 − (u2
2 − 1)u2‖0

≤ c‖u1 − u2‖L6(‖u1‖
2
L6 + ‖u2‖

2
L6)

≤ c‖u1 − u2‖1(‖u1‖
2
1 + ‖u2‖

2
1) ,

for some generic constant c > 0. So g1 is continuous in Ṽ . The continuity of g2 and ~g3 can be
similarly derived. Now, for any ṽ = (v, q, ~µ) ∈ Ṽ ,

Dũ(g1)ṽ =
1

ǫ
(1 − 3u2)v

Dũ(g2)ṽ =
1

ǫ2
(3u2 − 1)q +

6

ǫ2
upv + λ2q + µ2(p + ρ) ,

Dũ(g31)ṽ = 0 ,

Dũ(g32)ṽ = −

∫

Ω

[
1

2
(uq + pv) +

1

ǫ
u3v]dx +

∫

Ω

ρvdx .

By similar proof of the continuity of g1, we can show that DũG is also continuous with respect
to ũ from Ṽ to V . In fact, G is a C∞ mapping due to the fact that its components are all
polynomial mappings from Ṽ to V and the norms of their derivatives all are bounded by a
constant depending only on the norm of ũ in Ṽ . Therefore, we reach the conclusion of the
lemma.

As a direct consequence of the BRR theory, and combining with the discussion on the linear
problem, we have the following convergence properties of the mixed finite element approximation
of the nonlinear variational problem.

Theorem 4.1. Assume that Λ is a compact interval in R, and there exists a C1 branch
{α, ũ(α)} of nonsingular solutions of the nonlinear variational problem (2.9). Then, there
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exists a neighborhood Θ of the origin in Ṽ , for h ≤ h0 small enough, there is a unique branch
{α, ũh(α)} of solutions of (2.9) such that ũh(α) − ũ(α) ∈ Θ for all α ∈ Λ with

lim
h→0

sup
α∈Λ

‖ũ(α) − ũh(α)‖Ṽ = 0 . (4.10)

Moreover, if α → ũ(α) is a C1 function from Λ into U = Hk+1(Ω) × Hk+1(Ω) × R2, we have
the error estimate

‖ũ(α) − ũh(α)‖Ṽ ≤ Chk, (4.11)

where C is a constant independent of h.

The above estimates provide optimal order convergence of the finite element approximations
to u and p in the standard H1(Ω) norm. Of course, it would be of interests if estimates on the
errors of the zero level set of u can also be obtained along with the estimates of the errors of
u and p in other norms as well as superconvergence results for mixed methods [28]. We leave
this as questions for future studies.

5. Numerical Results

The mixed finite element methods using continuous piecewise linear element spaces have
been implemented. For simplicity, we report here only the case with 3d radial symmetry. This
effectively reduces our computation to the case in a two dimensional domain.

Note that for most of the parameter values, the exact solutions of the nonlinear saddle point
problem are not known analytically. Thus, in order to check the accuracy of the finite element
approximation and in particular, to verify numerically the error estimates given in the above,
we consider the following nonlinear system (5.1) which is obtained from (2.9) with extra forcing
terms on the right hand side:



























∫

Ω

∇u · ∇qdx +

∫

Ω

1

ǫ2
(u2 − 1)uqdx +

1

ǫ

∫

Ω

pqdx =

∫

Ω

f1qdx, ∀q ∈ M
∫

Ω

∇v · ∇pdx +

∫

Ω

[
1

ǫ2
(3u2 − 1)pv − λ1v + λ2pv]dx =

∫

Ω

f2qdx, ∀v ∈ H

µ1(α −

∫

Ω

udx) + µ2(

∫

Ω

[
1

2
up +

1

4ǫ
(u4 − 1)]dx + β) = ~µ · ~f3, ∀~µ ∈ R2 .

(5.1)

The theoretical analysis made earlier in the paper naturally applies to the inhomogeneous
system given in (5.1) also so we expected the finite element solutions would have the error
estimates predicted in the theorem 4.1. But for (5.1), it is convenient to find an exact solution
analytically. Here, we take the forcing terms properly so that an exact solution of the form

u(r, z) = cos(πr) cos(πz), p(r, z) = cos(πr) cos(πz),

in the cylindrical coordinates can be obtained. The computational domain is taken as [0, 1] ×
[0, 1] which should be viewed as a cross section of a three dimensional cylinder in the (r, z)
plane. The parameters are given as α = 0.0000, β = 5.6709, and ǫ = 0.1. Note that not all of
these values correspond to some physically meaningful setting, in particular, for small ǫ, it is
expected that for practical problems, the variable p often encounters larger variations than the
variable u. However, the choice of the exact solution is taken for the convenience of verifying
the error estimates. The errors of the computed finite element approximations using different
mesh sizes are given in the table 1.

From the table 1, we can see that the errors of u and p in the H1-norm indeed show
the convergence order is linear. This result confirms our theoretical analysis. In addition,
second order errors in the L2-norm are also demonstrated, which match with the theoretical



278 Q. DU AND L. ZHU

mesh ‖u − uh‖1 ‖p− ph‖1

8 × 8 0.314095 0.314140
16 × 16 0.155473 0.155496
32 × 32 0.077375 0.077398
64 × 64 0.038610 0.038618

mesh ‖u − uh‖0 ‖p − ph‖0

8 × 8 0.006963 0.006963
16 × 16 0.001670 0.001670
32 × 32 0.000410 0.000409
64 × 64 0.000104 0.000101

Table 1: The numerical errors in the H1 and L2 norms

expectation based on the usual finite element error estimates for elliptic problems. Naturally,
this also motivates further theoretical work in the future to confirm such an observation through
rigorous derivation of L2 error estimates.

6. Discussion and Conclusion

In this paper, we presented some studies on the mixed finite element approximation to a
phase field model of vesicle membrane deformation under elastic bending energy, with pre-
scribed volume and surface area. We focused on the theoretical analysis of the finite element
approximation and provided rigorous error estimates using the abstract framework for nested
saddle point formulation developed in [9] and the general Brezzi-Rappaz-Raviart theory for
approximations of nonlinear problems [4]. The optimal order error estimate for the finite ele-
ment approximation of the nonlinear phase field model has been demonstrated theoretically and
verified numerically. There are various other numerical analysis and algorithmic issues to be
studied further, for example, the nested saddle point reformulation of the phase field equations
motivates the development of efficient and robust iterative schemes, in particular, Uzawa type
algorithms, for such problems. Mixed finite element approximations to time dependent models
can be considered as well, similar to the study in [30]. Adaptive finite element approximations
of the nonlinear phase field models are now also under active investigation and will be reported
elsewhere [22].
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