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Abstract

In this work, we try to use the so-called Piecewise Constant Level Set Method (PCLSM)
for the Mumford-Shah segmentation model. For image segmentation, the Mumford-Shah
model needs to find the regions and the constant values inside the regions for the segmen-
tation. In order to use PCLSM for this purpose, we need to solve a minimization problem
using the level set function and the constant values as minimization variables. In this
work, we test on a model such that we only need to minimize with respect to the level set
function, i.e., we do not need to minimize with respect to the constant values. Gradient
descent method and Newton method are used to solve the Euler-Lagrange equation for
the minimization problem. Numerical experiments are given to show the efficiency and
advantages of the new model and algorithms.

Mathematics subject classification: 35G25, 65K10.
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1. Introduction

Level set methods, originally introduced by Osher and Sethian [13], have been developed to
be one of the most successful tools for the computation of evolving geometries, which appear
in many practical applications. They use zero level set of some functions to trace interfaces
separated a domain Ω into subdomains. For a recent survey on the level set methods see
[15, 10, 14].

In [7, 6, 9] some variants of the level set methods of [13], so-called ”piecewise constant level
set method (PCLSM)”, were proposed. The method can be used for different applications. In
[12, 17], applications to inverse problems involving elliptic and reservoir equations are shown.
In [7, 6, 9, 18], the ideas have been used for image segmentation problem.

Image segmentation is one of the foundational tasks of computer vision. Its goal is to
partition a given image into regions which contain distinct objects. One of the most common
forms of segmentation are based on assumption that distinct objects in an image have different
approximately constant(or slowly varying) colors (or roughnesses in the case of monochrome
imagery). In this paper, we use the Mumford-Shah model [11] for image segmentation with
PCLSM. In [2, 8, 15], the Osher-Sethian level set idea was used to solve the Mumford-Shah
model. No matter whether we use the Osher-Sethian method or PCLSM, we need to minimize
with respect to the level set functions and the constant values. In this work, we shall propose a
model such that only the level set function is the minimization variable. The advantage of this
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model is that we just have one variable to minimize. The resulted algorithms are more stable
and have a slightly faster convergence rate. This model eliminates the question about when
and how often to update the constant values.

The organization of our paper is as follows. In Section 2, firstly, we begin with a quick ex-
amination of what constitutes a piecewise constant level set method and the classical Mumford-
Shah model. The origin of the new idea is developed as well. In Section 3, gradient descent
method and Newton method of [18] are used for the new model. At the end of this section,
some remarks are given about how to obtain an initial guess for Newton method. In Section
4, numerical experiments are shown to demonstrate the efficiency of the new model and the
algorithms. For every example, the initial values of level set function and the values of some
parameters are shown. The differences between one-variable model and two-variable model are
compared in this section, too. In Section 5, we make some conclusions on this new model.

2. One-variable Mumford-Shah Model with PCLSM

Firstly, We shall recall PCLSM of [7]. The essential idea of PCLSM of [7] is to use a piecewise
constant level set function to identify the subdomains. Assume that we need to partition the
domain Ω into subdomains Ωi, i = 1, 2, . . . , n, and the number of subdomains is a priori known.
In order to identify the subdomains, we try to identify a piecewise constant level set function
φ such that

φ = i in Ωi, i = 1, 2, . . . , n. (1)

Thus, for any given partition {Ωi}
n
i=1 of the domain Ω, it corresponds to a unique PCLS

function φ which takes the values 1, 2, · · · , n. Associated with such a level set function φ, the
characteristic functions of the subdomains are given as

ψi =
1

αi

n
∏

j=1,j 6=i

(φ− j), αi =

n
∏

k=1,k 6=i

(i− k). (2)

If φ is given as in (1), then we have ψi(x) = 1 for x ∈ Ωi, and ψi(x) = 0 elsewhere. We can
use the characteristic functions to extract geometrical information for the subdomains and the
interfaces between the subdomains. For example,

Length(∂Ωi) =

∫

Ω

|∇ψi|dx, Area(Ωi) =

∫

Ω

ψidx. (3)

Define

K(φ) = (φ− 1)(φ− 2) · · · (φ− n) =

n
∏

i=1

(φ− i). (4)

At every point in Ω, the level set function φ satisfies

K(φ) = 0. (5)

This level set idea has been used for Mumford-Shah image segmentation in [7]. For a given
digital image u0 : Ω 7→ R, which may be corrupted by noise and blurred, the piecewise con-
stant Mumford-Shah segmentation model is to find subdomains Ωi and constant values ci by
minimizing:

∑

i

∫

Ωi

|ci − u0|
2dx+ β Length (Γ). (6)

The curve Γ is the one that separates the domain Ω into subdomains Ωi such that Ω =
⋃

i

Ωi∪Γ

and Γ =
⋃

i

∂Ωi. In [2], the traditional level set idea of [13] was used to represent the curve Γ

and to solve the problem (6). In [7, 16, 18], the PCLSM were used for identifying the regions
and the constant values. The minimization problem there is:

min
c,φ

K(φ)=0

{

F (c, φ) =
1

2

∫

Ω

|u(c, φ) − u0|
2dx+ β

∫

Ω

|∇φ|dx
}

,
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where

c = (c1, c2, · · · , cn), u(c, φ) =

n
∑

i=1

ciψi(φ).

From our simulations, we have observed that two set of different values of (c, φ) can produce
the same u and thus may confuse the algorithm and slow down the convergence. The remedy
we have used is to update the c values less often than φ and do not update the c values too
earlier in the iterations. In this work, we shall propose another technique to tackle this problem,
i.e. we shall eliminate the c as a minimization variable. Instead, we express it as a function of
the level set function φ. More precisely, we shall solve the following minimization problem to
segment an image u0:

min
φ

K(φ)=0

{

F (φ) =
1

2

∫

Ω

|u(φ) − u0|
2dx+ β

∫

Ω

|∇φ|dx
}

, (7)

where

u(φ) =

n
∑

i=1

ci(φ)ψi(φ), and ci(φ) =

∫

Ω ψi(φ)u0dx
∫

Ω
ψ2

i (φ)dx
, i = 1, 2, · · · , n. (8)

At convergence, we have that

ci(φ) =

∫

Ωi

u0dx

Area(Ωi)
, i = 1, 2, · · · , n,

i.e. ci is the mean value of u0 in Ωi. This value for ci is consistent with the values obtained by
the model of [2] and [7].

3. Algorithms

The model (7)-(8) is rather similar to the models of [18]. Then we shall use the same algo-
rithms used in [18] to solve (7)-(8). The augmented Lagrangian functional for the minimization
problem (7)-(8) is

L(φ, λ) = F (φ) +

∫

Ω

λK(φ) dx+
r

2

∫

Ω

|K(φ)|2dx, (9)

where λ ∈ L2(Ω) is the multiplier and r > 0 is a penalty parameter. The first algorithm we
shall use to solve the minimization problem is the following classical gradient descent method.
It shall be emphasized that it is also possible to use some other types of gradient methods, for
example, the Barzilai and Borwein (BB) gradient methods in [1], alternate step (AS) gradient
methods in [4, 3], and monotone gradient methods in [5].

Algorithm 1.(Gradient descent method) Choose initial values for φ0 and λ0. For k =
1, 2, · · · , do:

1. Use (8) to update u =
n
∑

i=1

ci(φ
k−1)ψi(φ

k−1).

2. Find φk from

L(φk, λk−1) = min
φ
L(φ, λk−1). (10)

3. Update the Lagrange-multiplier by

λk = λk−1 + rK(φk). (11)
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In order to get the optimal solution of (10), we can construct an artificial time variable and
solve the following equation to steady state

∂φ

∂t
+
∂L

∂φ
= 0.

It is easy to see that
∂L

∂φ
= (u − u0)u

′

(φ) − β∇ ·
( ∇φ

|∇φ|

)

+ λK
′

(φ) + rK(φ)K
′

(φ)

and the curvature term ∇ ·
(

∇φ
|∇φ|

)

is approximated by

∇ ·
( ∇φ

|∇φ|

)

≈ ∇ ·
( ∇φ
√

|∇φ|2 + ε

)

.

In our numerical examples, we take ε = 10−8. Normally, we choose a fixed step size ∆t and do
a fixed number of the following iterations to solve (10) approximately

φnew = φold − ∆t
∂L

∂φ
(φold, λk−1). (12)

In the simulations, the above iteration is terminated when the inner iteration number is more
than nλ or

∥

∥

∥

∥

∂L

∂φ
(φnew , λk−1)

∥

∥

∥

∥

L2

≤
1

10

∥

∥

∥

∥

∂L

∂φ
(φk−1, λk−1)

∥

∥

∥

∥

L2

.

We shall compare this algorithm with a corresponding algorithm of [7]. The λ for the algorithm
for [7] is updated using the same criteria.

Theories and numerical tests on image segmentation in [7, 6, 9, 18] and on inverse problem
in [12, 17] have shown that gradient descent method is a stable but slow convergent algorithm
with PCLSM. Therefore, different approaches have been used to accelerate the convergence.
Newton method has been used in [18] to get faster convergence. We shall follow the same idea
also for the minimization problem here.

Similarly as in [18], we define

R(φ, λ) =
1

2

∫

Ω

|u(φ) − u0|
2dx+

∫

Ω

λK(φ) dx. (13)

and

L0(φ, λ) = F (φ) +

∫

Ω

λK(φ) dx. (14)

It is easy to see that L0 is equal to L if we take r = 0 in (9). In addition, the functional L0

given in (14) reduces to R if we take β = 0. Based on a small value of β, we can replace Hessian
matrix

(

∂2L
∂φ2

∂2L
∂φ∂λ

∂2L
∂φ∂λ

0

)

(15)

by a simplified Hessian matrix
(

∂2R
∂φ2

∂2R
∂φ∂λ

∂2R
∂φ∂λ

0

)

. (16)

By the chain rule, we have
∂2R

∂φ2
=
(

u
′

(φ)
)2

+ (u− u0)u
′′

(φ) + λK
′′

(φ),

∂2R

∂φ∂λ
=

∂2R

∂λ∂φ
= K

′

(φ),

u′ =

n
∑

i=1

c′(φ)ψi(φ) + c(φ)ψ′
i(φ),

u
′′

(φ) =

n
∑

i=1

(c
′′

(φ)ψi + 2c
′

(φ)ψ
′

i(φ) + ciψ
′′

i (φ)).

Then Newton method is given in the following:
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Algorithm 2.(Newton method) Choose initial values φ0, λ0. For k = 1, 2, · · · , do:

1. Use (8) to update u =
n
∑

i=1

ci(φ
k−1)ψi(φ

k−1).

2. Update φk, λk from
(

φk

λk

)

=

(

φk−1

λk−1

)

−

(

∂2R
∂φ2

∂2R
∂φ∂λ

∂2R
∂φ∂λ

0

)−1
(

∂L0

∂φ
∂L0

∂λ

)

. (17)

For the algebraic system (17), we can solve a 2 × 2 system at each grid point, which means
that the cost for Algorithm 2 is nearly the same as for Algorithm 1 at each iteration. Some
remarks about the above algorithm are given in the following.

Remark 1. We have to find a relative good initial values for Newton method, which guarantees
this algorithm convergent. Different ways can be taken to get such initial values. In our
examples, we can take the data from Algorithm 1 by updating fixed iterations, which will
be carried out under condition of large noise added image u0 in (7). But for many of the
test examples, the simple scaling procedure outlined in 4 is good enough to have Algorithm 2
converge.

Remark 2. In general, we will take a small value of β. If the interfaces are oscillatory, we
increase the value of β and decrease △t to keep the algorithms stable.

4. Numerical Examples

In this section, we will demonstrate the efficiency of the new model (7) and compare it with
the algorithms given in [7]. We shall concentrate on two-phase segmentation only.

As in [18], we can use the following scaling procedure to get initial values for φ . First, we
set the phase number n = 2. Then we scale u0 to a function between 1 and 2 as in the following
and take this as the initial values for φ, i.e.

φ0(x) = 1 +
u0(x) − minx∈Ω u0

maxx∈Ω u0 − minx∈Ω u0
. (18)

For some case, we do a fixed number of iterations of Algorithm 1 using the above φ0 as the
starting value and then use the obtained image as the initial values for Algorithm 2. We
consider only two-dimensional grey scale images. To complicate the segmentation process we
typically expose the original image with Gaussian distributed noise and use the polluted image
as observation data u0. We report the signal-to-noise-ratio calculated by SNR=V1

V2

, where V1

and V2 are the variance of the data and the variance of the noise, respectively. In the following,
we shall use one-variable model to (7)-(8) and use two-variable model to refer to Algorithm 2
of [7].

We begin with an image of an old newspaper where only two phases are needed. One phase
represents the characters and the other phase represents the background of the newspaper.

The Log10 convergence for ‖F (φk)‖L2 and
‖K(φk)‖

L2

‖K(φ0)‖
L2

with gradient descent method for the

one-variable model and two-variable model are plotted in Fig.1. We use the same values for
β and ∆t for both models. For this plot for the two-variable model, the c values are updated
as stated in the remarks of [7]. The plot shows that the one-variable model converges slightly
faster. The cost functional converges to the same value for the two models. In Fig.2, we
try to compare gradient descent method with Newton method. Fig.2(c) shows the level set
function φ by Newton method at 10 iterations. This segmented is the same as that of gradient
descent method at 108 iterations in Fig.2(d). In the tests for Fig.1 and Fig.2, we have used
β = 0.1, r = 107,△t = 10−8, nλ = 10. Fig.2(b) shows a part of convergent φ clearly.
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(a) The Log10-convergence of ‖F (φk)‖L2 for one-

variable model and of ‖F (c, φk)‖L2 for two-variable
model.
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Figure 1: A comparison of the Log10-convergence the one-variable model with the two-variable
model by using gradient descent method.
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(a) An old newspaper
050100150200250300

0

20

40

60

80

100

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

(b) A small partition of φ
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(c) 10 Newton iterations
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(d) 126 gradient iterations

Figure 2: A comparison Newton method with gradient descent method for the one-variable
model. (a) An old real newspaper. (b) A small partition of the convergent φ, it is a piecewise
constant function φ = 1 ∨ 2. (c) Segmented image using Newton method at 10 iterations,
β = 0.1. (d) Segmented image using gradient descent method at 108 iterations.

The next example is a numerical test on a car plate image. We want to challenge the
segmentation by adding a large amount Gaussian distributed noise to the real image and to
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take the polluted image in Fig.3(b) as the observation data. For the noise, we have SNR
≈1.7, which means the observation image is very noisy. We want to compare our proposed
algorithms with the Chan-Vese method(CVM) [8]. The results are displayed in Fig.3(d)(e)(f).
For Newton method, we have to get the initial values by Algorithm 1 because the noise is
so large that the simple scaling procedure (18) is not good enough to make it convergent.
The image in Fig.3(c), which is produced by gradient descent method at 288 iterations with
β = 0.65, r = 2 × 105,△t = 8 × 10−9, nλ = 1, is obtianed. The convergence rate of Newton
method is much faster than that of gradient descent method, though gradient descent method
and Newton method need nearly the same computational costs. The image produced by gradient
descent method and Newton method is also nearly the same. The CVM needs more iterations
and computing cost, which is also the case for tests with other images.
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(a) Original observation
car plate.
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(b) Noisy image
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(c) Initial value for New-
ton method
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(d) Segmented with New-
ton method
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(e) Segmented with gradi-
ent descent method
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(f) Segmented with CVM
.

Figure 3: A comparison of three algorithms for the segmentation of a car plate. (a) The original
observation for a car plate. (b) The noisy car plate with SNR ≈1.7. (c) The initial value of
φ for Newton method (d) Segmented image using Newton method. (e) Segmented image by
gradient descent method. (f) Segmented image with CVM.

In the last two examples, we apply our algorithms to some real images. One is a helicopter
(c.f. Fig.4(a)) taken in a cloudy day. The results produced by the two algorithms are shown
in Fig.4(b)(c). We have used β = 0.1, r = 107,△t = 1 × 10−8, nλ = 10 for the algorithms. The
other image is a photo for a field, see Fig.5(a). From the segmented image shown in Fig.5(b)(c),
we can easy to identify the boundary of the different parts of the field. The result is obtained by
using gradient descent method at 169 iterations using β = 0.1, r = 107,△t = 1× 10−8, nλ = 10
and using Newton method at 9 iterations. This image is rather complicated. We can see that
some objects only have a few pixels, even the density values of the image are not nearly constant
at each subregion. But it seems there is no problem for our model and algorithms to get a good
segmentation for this image.
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(a) A helicopter taken in a
cloudy day
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(c) 192 gradient iterations

Figure 4: (a) A helicopter taken in a cloudy day. (b) Segmented image using Newton method
at 12 iterations with β = 0.1. (c) Segmented image using gradient descent method at 192
iterations.
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(a) A Photo of a field
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Figure 5: (a) A Photo for a field. (b) Segmented image using Newton method at 9 iterations
with β = 0.1. (c) Segmented image using gradient descent method at 169 iterations.

5. Conclusion

We have also done many other tests for the proposed model with gradient descent method
and Newton method. Even the image is very complicated and the density values of the image
are not nearly constant inside each phase, or very noise, the proposed algorithms are able to
find the phases properly. Newton method is still very fast like that in [18]. We can use gradient
descent method to produce the initial segmentation for Newton method when the image u0 has
a large amount noise added.
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