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Abstract

This paper is devoted to the five parameters nonconforming finite element schemes with
moving grids for velocity-pressure mixed formulations of the nonstationary Stokes prob-
lem in 2-D. We show that this element has anisotropic behavior and derive anisotropic
error estimations in some certain norms of the velocity and the pressure based on some
novel techniques. Especially through careful analysis we get an interesting result on con-
sistency error estimation, which has never been seen for mixed finite element methods in
the previously literatures.
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1. Introduction

We usually apply the finite element methods to the spatial domain, but choose difference
methods with respect to the time variable for solving partial differential equations depending
on time. At the same time, different meshes of domain are used at different time level. As
we all know, the solutions may have weak regularity at the beginning, therefore, lower order
interpolation functions and the smaller meshes should be used. As the time goes on, the
regularity of the solution becomes better, the higher order interpolation functions and the
larger meshes can be used. That is the main idea of the finite element with moving grids.

Local interpolation error estimations for the finite element methods with moving grids are
developed in the literatures [2,3]. But these results are based on isotropic meshes at any time
and on any domain. In fact, many examples show that the solutions sometimes have anisotropic
behaviors [1,6] on boundary or interior layers. That means that the solution varies significiently
only in certain directions. In such cases it is an obvious idea to reflect this anisotropy in the
discretization by using anisotropic meshes with a small size in the direction of the rapid variation
of the solution and a larger mesh size in the perpendicular direction. That is, anisotropic meshes
are necessarily used.

Recently, there have appeared some studies on anisotropic meshes [1,8,14,15,16,18,19], but
most of all only considered the interpolation error estimation and conforming elements for ellip-
tic boundary problems. The nonconforming elements and Stokes problem on anisotropic meshes
are hardly treated, [9] studied the anisotropic error of Crouzeix-Raviart type elements and ap-
plied them to possion problem, [6] studied the quasi-wilson element under a new framework.
However, as to anisotropic meshes with moving grids there have been no articles published on
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this respect. Because of the restrictions of the BB conditions, nonconforming finite elements are
particularly interested in mixed methods for problems like the velocity-pressure type of Stokes
equations, which are advanced in simply structure, economic computing and matching of error
orders. The well-known examples include nonconforming Crouzeix-Raviart element [13], the ro-
tated Q1 element [4] and so on, but these elements can only be used to deal with Stokes equations
with moving grids under the regular assumption [10]. [5] developed a kind of nonconforming
rectangular element and gave the error estimation for stationary Stokes equations on isotropic
meshes. In this paper, we will first show that the element in [5] has anisotropic behavior , and
then we derive the error estimation of the stationary Stokes equations on anisotropic meshes.
Furthermore, with the idea of moving grids, we study the nonstationary Stokes equations and
address the anisotropic nonconforming error estimations based on some results of the stationary
problem and some novel approaches. At the same time, by careful analysis we will prove a very
interesting and more important result, that is , when the solution (u,p) € (H%(Q))? x HY(Q)
the consistency error is of order O(h?), one order higher than that of interpolation error which
is similar to the reports of [11] for the triangular quasi-conforming and generalized conforming
finite elements of fourth order plate bending problem, and the double set 12-parameter rec-
tangular element obtained in [12], and that of [16] for the quasi-wilson element for the second
order problems.

Throughout the paper we use the following concerning indices. For the sake of simplity,
let Q@ C R? be a rectangular domain with boundary 9 parallel to z-axis or y-axis. Let I'y

be a family of rectangular subdivisions, i.e., @ = |J K. Denote by hx the diameter of the
KeTy,

finite element K, and by px the supremum of the diameters of all balls contained in K. Then

the regularity assumption in the classical finite element theory is Z—;‘ < C,VK € T'y, (The

C is a positive constant independent of I', and of the function under consideration). This

assumption is no longer valid in the case of anisotropic meshes. Conversely, anisotropic element

K is characterized by Z—;{‘ — 00 where the limit can be considered as h — 0,h = max hi.

In this paper the C will also denote the positive constant, not necessarily the same at different
occurances which is independent of h—; and h. For the general element K, we denote the lenghths
of sides parallel to z-axis and y-axis by 2h, and 2h, respectively, and the central point of K

by (zx,yx). Let K be a reference element(see Fig.1.), and K = [—1,1] x [~1,1] with vertices
&\1 - (—1,—1),6/[\2 = (L_l)a&é = (Ll)v&:l = (_171)' Let l: = 62\152\271/; = C@d/;vl/; = &\3&:17[4\1 =
di@\l be the four sides of K. The transformation of Fy - K — K is defined by

T =xg + h&,
{ (1.1)
Yy =Yk + hyn.
n
da(—1,1) ds(1,1)
3
di(—1,-1) da(1,—1)

~

Fig.1. the reference element K
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2. Construction of the Nonconforming Five-parameter Rectangular
Element and Its Anisotropism

~ o~

We define a finite element (K, P,S) as follows:

~

P = span{1,&,n, (&), (n)},

5} = {01, 02, 03, Us, U5}
where
o(t) = (5t = 3t2) ,or o(t) = $(3t* = 1),
Uy = %hadg, i=1,2,34,

~ ~ 1/ 17
5—‘7<Tvad§d77, Yo € HY(K),
|l | = meas( ), |K| = meas(K).

Then we have the following lemma. R
Lemma 2.1P. Vo € Hl(K) there exists a unique interpolation operator I Hl(K) — P
such that ) R )

il liHvds:mhvds:vi, 1=1,2,3,4,

[Zi

L -~ /\A A: % AA = D

¥ fKHvds ¥ vadfdn Us
and

~ 1 =N 1 =N 1 =N = 1, ~ .
IIv = vs5 + 5(1)2 — )€ + §(U3 — 1)+ §(U2 + Uy — 205)p(§) + 5(1}3 + 701 — 205)p(n). (2.1)

Lemma 2.2. For any a = (a1,a2) and |a| = 1, we have

|D° (@ — o)l < C1D3], 2. (2:2)
Proof. Let o = (1,0), then
P | 1
D°TIv = 3—; = 5(52 —y) + 5(52 + Uy — 255)90/(5)-
Obviously, {1,¢/(€)} is a group of basis of D*P, i.e.,D*P = span{1, ¢'(£)}. Therefore,
D°TIo = B1 + B2 (6),
where )
B = 5(52 — ), [fo= (U2 + Uy — 205)
Rewrite 31, B2 as
B = 31, 3L mydn — f (=1 m)dn) = == [ 5 g,
~ )
Bz = 5Lf5, 0L m)dn + f, (=1, mydn — [5 0(& m)dédn) = = [ E5gdedn.
Then we define the operators Fj,j =1,2 as
Fy(@) = 7 [ @dgdn,
(2.3)

Fy(®) = & [z adédn, Vi € HY(K).

[
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It is easy to see that F; € (HY(K)),j=1,2.

Similarly, we can get the same result for the case o = (0,1). The proof is completed by
applying the fundamental anisotropism theory|6].
Remark 1. One can also check the anisotropy of the element by the method provided in [1].

3. The Anisotropic Error Estimation of the Stationary Stokes
Equations
We consider the following problem:
—vAu+ Vp = f, in Q,
divu = 0, in £, (3.1)
u =0, on 0,

where u = (uy,us2) is the velocity vector, p is the pressure, v > 0 is the coeffient of kinematic
viscosity, f = (f1, f2) is a given vector function. Then (3.1 )is equivalent to the following
variational problem: Find (u,p) € V' x M such that

a(u,v) + b(v,p) = f(v), Yo eV,
(3.2)
b(u,q) =0, Vg € M,
where
V= (Hs(Q)*, M ={qeL*Q); [,qdzdy =0},
a(u,v) =7 [, VuVudzdy,
b(v,q) = — [ qdivvdady,
f(v) = [ fodzdy, Yu,veV,Yge M.
The spaces V and M satisfy the BB condition [7], i.e., there exists a constant 8 > 0 such that

b
sup (v,q)
vev |vlv

= Bllallo.c- (3-3)

Let us define
Ep={vp;un|xg =00 Fgl,0 € P,VK €T},

Vi =Ep X En, My = {qn;qn|x is a constant, VK € T'; },

and
1
onln = (D |onli x)?. (3.4)
KeTly,
We have
Lemma 3.1. ||, is a norm of the finite element spaces Vj,.

Proof. We only show that vy, = 0 when |vg|p = 0, Vup € V.
Since vp|x =V o Flzl can be expressed as

1 1 1 1
Un|K = Uns + i(U}ﬂ —vpa)é+ 5(%3 —vp1)n+ i(vhz + Upa —20p5) (&) + 5(%3 +vp1 — 2uks5) ().

Consequently,

OuplK  Vno —Upa | Un2 + Uha — Uns ©)
b

ox 2h, 2h,
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Ovplk Uns —Un1 | Un3 + Uni — Uns
= + @' (n).

Ay 2h, 2h,, (37)

If [vnln = 0, then |vp|1c = 0,¥K € Ty, ie., 22le = 2%l — 0 WK € T, When K is an
element on upper-left corner of Q, we get vp3 = vpa = 0. Combining (3.5),(3.6),(3.7) with ¢’(€)
and ¢’'(n) being nonconstants, we obtain vy = vpe = vps = 0, therefore |v,|x = 0. Under the
influence of the function values on sides between neighbour elements, we derive v, = 0. The
proof is completed.

The approximation problem corresponding to (3.2) reads as: Find (up,pp) € Vi X M}, such

that

{ an(un, vn) + b (v, pr) = (f,vn), Vo € Vp, 58)
b(un, qn) =0, Van € Mp,
where
an(un,vn) =~ Y [ VupVupdady,
Kel'y,
br(vh, qn) = — [k andivopdzdy, Yy, € Vi, Ygn € My,
Kely,
Obviously, ax(+, ) is coercive on V}, x Vj,, i.e.,
an(vn,vn) > Yonlz,  Yun € Va. (3.9)
Let IIy, : V. — V4, is an interpolation operator such that, VK € I'y,
1 1 :
mﬁiHhUZszi”v i=1,2,3,4,
(3.10)

ﬁfknh”: ﬁfK”’

where l;,7 = 1,2,3,4 are sides of K which can be obtained from lAZ by the affine mapping
FK K — K,i.e.,FK(li) = li,i = 1,2,3,4.
Lemma 3.2. The interpolation operator Iy, satisfies

|v — Hpo|n < Clvl1,a,

(3.11)
|Hh’U|h < C|’U|LQ, Yv € H&(Q)

Proof. Define an operator
T: LA(K) — span{1,¢(£)},
Tw = Fi(w) + Fa(w)¢' (),

where F (w), F»(w) are defined in (2.3).
It is easy to see that Tw = w,Vw € 730(1?) Here and later we denote by ’ﬁt(f() the set of all
polynomials in two variables of degree < ¢ on element K. Hence, |w —Tw||, » < C || w |,

Yw € LQ(IA{ ). With the inequality above, we obtain

a(v — IIv) o o o
— | a=l—= =T =< —., =.
[ o lo.% H(95 a§|\o,K—CH5§Ho,K
Similarly,
o — v o
125, 2 < gl &
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Using the affine mapping (1.1) and Lemma 2.2, we have
o =Tl = 200205522 1 s+ 1 25 1.0
=;<h;2|\%ﬁ?>n2 + 222y,
< C;( 2215 ||2 =thy 2H@,,llf)K)h hy
< C|U|%,Q'

Therefore, the first inequality of Lemma 3.2 is derived.
Using the triangle inequality and the inequality above, we obtain the second inequality of
Lemma 3.2.
Remark 2. For vector functions v = (v1,v2)T € (HE(€))?, Lemma 3.2 also holds.
Lemma 3.3. The bilinear form by(-,-) satisfies BB condition on Vi, X My, i.e., there exists a
constant B* > 0 such that
bn(Vh, qn)

sup ————= > B%|qn|n,  Van € Mp. (3.12)
onevi  |nln

Proof. The operator II;, satisfies
br(pv, gn) = br(v,qn), Vv € V. (3.13)

In fact,
bp(v — v, qn) = — >, [p qudiv(v — pv)dady
Kel'y,
> an [y div(v — Iyv)dedy
KeTy,
> G [y div(v —ITyw) - nds
KeTy,
=0.

Applying (3.13), (3.11) and (3.3), we have

b (Vh,qn)
[vn|n

sup

by (o, : 1 bn (v,
2 o Sllnd —gup el > 2 up Bl > 7.
orEVh veV

H -
VeV [Tpv|p vev [v]n

where §* = g > (0. The proof of Lemma 3.3 is completed.

Due to (3.9) and (3.12), we know from the general theory of the mixed finite element methods
that the approximation problem (3.8) exists a unique solution (up,pn) € Vi, x M} and there
holds the following error estimation

an(u,vy) + bp(vn,p) — f(un
|u—uh|h+|p—ph|M§C( mf |u vh|h+ mf |p qn|am+ sup Ja ) (vn,p) = I )|)

v €Vh |Uh|h
(3.14)
If (u,p) € (H*(Q))? x H* (), then
mE/ |u —vpln < |u—yuls,
e (3.15)
onf |p—anla < |p— Fopla,

where Pyp|k = ﬁ [y pdxdy, YK € T,
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By the affine mapping F : : K — K and lemma 2. 2, we have

=y < Ju—Thul = 3 [ [(2l50e)2 4 (2w 2] gy

Kely
= ¥ (h;'h ||“—“h“||%+h hy 1||M||2 =)
Kely,

SC lh 2A+hh18U2A

Kg‘h( | | |877 17K)

2 2
<O 5 UG (I8 1k + 1435 8 s A (3.16)
h

2
hohy (| 2 22 + | S 13 sehidyh by

<Chn? > |u|2,K
KeTy,

= Ch2|u|§79.
Therefore,
inf |u—wvpl|p <Ju—pulp < Chlulag. (3.17)

VR EVR

We now turn to estimate inf |p—qn|ar. Let ]301’)\: £ J# pdédn. With the local interpo-
qn€Mp, |K| 7K

lation theory on the reference element K , we have

p—Popl3y = % [wp— Pop)’dady = 3 hohy [=(P— Pop)dédn

Kel'y, Kel'y,
<C 3 hgh |jﬂ
Kely, (318)
<C Y hohy [yl h2 S22 —I—h2( )]( chy) " tdady
Kely,
< Oh2|p|%,ﬂ
Hence,
. glf Ip —anlm < |p— Poplm < Chipli,q. (3.19)
h

In the following, we will estimate the consistency error. By the Green’s formula and the
equation (3.1), the consistency error can be written as

an(u,vp) + bu(vn,p) — f(vn)
= 3 (v [y VuVuvpdady — [, pdivopdady — [, fondady)

Kel'y, (320)

= Y (’yfaK %vhds—favah-nds)
Kel'y,

=T (u,vn) — Ta(p,vn), Von € Vi,

where

Ti(u,vp) = > faK anvhds
Kely,

To(p,vn) = > [y pon - nds.
KeTy,

Now, we set to deal with the first term of the right hand side of (3.20).

Ou ou ou ou
Ty (u,vp) = Z (—/l vha—ydz+/l2 vh%dy—k/la vha—ydz—/ vh%dy). (3.21)

Kel'y, 1
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For any element K, Vv € H(K), we define
Poiv = 53— [, vdx,i=1,3,
o= L P —
Poiv = 3hy fll vdy,1 = 2,4,
Pyv = \_zlq S5 vdady.
For vector function v = (v1,v2) € (H'(K))?, we can define
POiv = (POiUhPOiU2)7 Z = 1,2,3,4,
Po’U = (PQ’Ul, Po’Ug).

It is easy to see that all these operators mentioned above are affine equivalent, the corresponding

operators on the reference element K are read respectively Py;, Py,i = 1,2,3,4. Using the
definition of V},, we have Yoy, € Vj,,

Tl(u, ’Uh) = E fll Vp — POth)(c’)_y — PO dZE + fl Vp — Pogvh)(% - PO )d
Kel'y,

—l—fl vp — Pogvh)(— — PO dr — fl4(vh — P04vh)(% - P 8“)dy].

(3.22)
Let X .

Lv, = _I*(mzlg; I)PO2'Uh _ 1*(121}§:F I)PO4'Uh
= L(1+ &) Poa — (1 — &) Poas (3.23)
= Loy,

Nou, = U= (%Z hy) p 03U — y*(@éfg:rhx)Powh
= 3(1+n)Potn — 5(1 = ) PoaTh (3.24)
= N,

Obviously, L and N are the linear interpolation operators,which are affine equivalent. L and
N are the corresponding operators on the reference element K. We rewrite (3.22) as follows.

Ty (u,vn) = K;F {Ji 55 (on — No) (52 G dady
+ [ic 25 (vn — Lop) (52 — PoJ%)]dwdy} (3.25)
= > (Ak + Bk)
Ket,
where
A = [i & [(vn — Nva)(3% - )Jdzdy,
r

At first, we estimate A,
Ak = [ zyllon = Non)(Gy — Pogy)ldad
K K oy \Uh Uh 0 €ray,
= [ (vn — Nvp)$ dxdy—i—fK — Pyge )(%L; — ajg%)d:vdy

= AKl + AK27
where

Ak, :fK(”h_NUh)a dxdy,

Ay = [ic(8% — Poge) (G — 25n)dady.
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It can be seen that

0%u . ~
[ A, | <[ on = Now o 155 Ho K < Clhahy)® o), — Nonlo zlul2 k-

Note that N@& = W,V € ’PO(K ). Using the local interpolation theory on the reference element
K, we have

(%h 8'Uh

A, | < Clhahy)* [Onl, glulose < CU 50 I Bat | 5 I3 B) 2 lul.ic < Chlon]elul .
(3.26)
Consequently, we consider Ag,. Note that
ONwv 1 1 ovy, vy,
= — PQg’Uh — P01Uh = —dl‘d’y = Po—, 3.27
Ay th( ) K| /i 9y dy (3:27)
we have
8N’Uh 1 / 8vh 1 / 8’Uh 2 1 81)h
ok = = K7 <[ (52)2dady)? = | =20k 3.28
155 o = tr [y 11 < [ ()t = |52 (3.25)
Applying (3.28) to Ak, and letting % = w, we obtain
[Ara| < [lw = Powllor || 52 — 2522 llo.x
< 2|vh|1,1<|\@ - P0@||071?(h1hy)%
< Clopl1,x|w], A(hwhy)% (3.29)
< Clonlurw (15215 1ch2 + 15213, h3) ?
< Chlop|r,k|wl,x
< Chlvp |1,k |ul2, k-
Combining (3.29),(3.26) with Ak, we get
|[Ak| < Chlulz,k|vn|1,k- (3.30)
By analogy with the estimation of Ag,
|Bk| < Chlulz,k|vnl1 k. (3.31)
Subsitituting (3.30) and (3.31) into (3.25), we have
T (u, vp)| < Chlul2,0lvn |- (3.32)

In the following, we will estimate the second term on the right hand side of (3.20).
Ta(p,von)l = 3 (= [, poneda + [, popedz + [, pomdy — [, pomidy)

KGFh
[~ J,, (0 = Pop)(vn2 — Porvn2)dx + [, (p — Pop)(vaz — Pozvne)da

KGFh
+ 1, (0 = Pop)(vn1 — Poovna)dy — [, (p — Pop)(va1 — Poavn1)ldy

= X {fK e [(p— Pop)(th—thg)]da:dy—l—fK 8:5 (p — Pop)(vp1 — Lopy)]dxdy}
Kel'y,

Kel'y,

(3.33)



570 D.Y. SHI AND Y.R. ZHANG

where
Sk = [ a%[(]? — Pop)(vh2 — Nupg)]dady,

Tk = fK %[(p — Pyp)(vp1 — Lops)|dzxdy.

By analogy with the estimation in Ax and By of T1(u,vy), we conclude

Sk < Chlp|1, k|vn2|1 K (3.34)

Trx < Chlp|i,k|vni|1,k- (3.35)
Thus

|T2(p, o) < Chlpl1,alva|h- (3.36)

Combining (3.32), (3.36) and (3.20) yields

lan(w, vr) + bn(vh, p) = f(vn)| < Ch(lul2,0 + pl1o)|vnln, — Yon € Vi (3.37)
therefore
ap(u,vp) + bp(vp,p) — f(v
sup 1208 0n) ¥ bn(ons2) = JO| 14, 6 4 [pl ) (3.38)
vp EVY |Uh|h

Furthermore, combining (3.38),(3.17),(3.19) and (3.14) the following theorem is derived.
Theorem 3.4. Assume that (u,p) and (up,pp) are the solutions of Stokes problem (3.2) and
the corresponding finite element problem (3.8) respectively, if (u,p) € (H*(Q))? x H*(Q), then

|u —upln + [p— pulm < Ch(lulo,0 + |ph,0)- (3.39)

From now on, we will prove an interesting result on consistency error estimation in the
following.
Theorem 3.5. If (u,p) € (H3(2))? x H%(Q), then

|an (w, v) + ba (v, p) — f(un)] < CR(luls,o + pl2,0)[vnln,  Yon € Vi, (3.40)

Proof. From (3.21) we may rewrite T (u,vp,) as follows

Tl(u,vh) = Z (Il + I+ I3+ 14),
KeTy,

where
I = — [, (v = Porvn)(§% — Por§%)de,

I = [, (o — Poovp) (22 — Pya8%)dy,
Iy = [, (vn = Po3vh)(g—Z - Po3g—Z)d£E,
I =— fl4(vh — P04vh)(g—z — PM%)dy.
We consider firstly I1 + I5.
I + 13

= — fll (’Uh — PoWh)(?,—Z — P()l g—Z)d:v + fl3 (’Uh — P03’Uh)(g—Z — Pogg—Z)dw
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Note that %L; € {1,¢'(z)} and %Lyh € {1,¢'(y)}, we have
(vn — Porvn)li,
+ha
= vp(z, yx — hy) — i f;:hz vp(z, yx — hy)dz
i ;;(_hm [U(IE,yK - hy) - vh(ta Yk — hy)]dt

_ 1 T +he px vy,
=5 Jon. Ji 2(2yK — hy)dzdt

:ﬁ T +he zavh(z yK+h )dzdt

rrg—hy Jt

ha
= vp(z, yx + hy) — ﬁ f}fjhz vp(z, yx + hy)dz

= (v, — Posvn)lis-

Furthermore,
(ay P ay)|l1
_2 L poxthe B
_ 1 T +he rxr §2q
 2hy Jrx—h. Jt 8281}(‘2 Y — h )dZdt
Similarly,
9 o
(55 — Posy)lis
_ 1 Trx+he pxr 92
T 2hg Jzg—hy Jt azauy (ZvyK + hy)dZdt
So

I+ 13

+hg
= [ 0 (on = Pogvn)liy - [(5% = PosG)lis — (5% — Por §%)|i,]dz

1 Tx+he prx+he T pyx+hy 93
T 2hg Jrx—h, [me—hz t fykfhyy 8z87;/2 (Z’y)ddedt]

Tr+he
T —hg

Jon(z, yx + hy) — 2h vp(z, yr + hy)dx]de.

On the other hand,

1 T +he

lop (2, yx + hy) — T Jar—n. vn(z,yi + hy)dz|?

+ha
= 4}112 | fm: ha L aavzh (z,yK — hy)dzdt|?

| /\

1 f:EK+h

+hg
7 Jor—n. Ji |8”” (z,yx — hy)|2dzdt ff;:hz |x — t|dt,

hence,
ha ha
Jo 2 lon(eyxe + hy) = g [0 on(e, e + hy)daPde

x T —ha

< g Lo e S 1

g)2dzdt [T o — t]dt)da

4h? +he | O
S Tifzm;ih o 2dx

_ 2R rxx+the pyrthy Qv (2
3hy fw}(—hm Y —hy | | dCCdy

By (3.14) and Cauchy-Schwartz inequality we have

5’Uh
|11 + I3 <Ch2||a oy 2||0K| ok

571

(3.41)
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Similarly

Bu
I+ 1| < Ch?|| =——
[Ia + I4] < yHaxgayHO,K|

%|
Dy 0,K-

Combining the two inequalities above, we have
ou
Ty (u,vp) = / —pds < Ch2|u|37g|vh|h.
2 Juc o
By analogy with the estimate of T3 (u,vp,), we have

Tz(p;vn) = Z/ pon - nds < Ch?|pla.alvn|n-
= Jox

Therefore,

lan(u,v) + br(vn,p) — f(on)| < CR*(|uls,o + [pl2,0)[vnln,  Yon € Vi

4. The Nonconforming Five-parameter Anisotropic Finite Element
with Moving Grids of the Nonstationary Stokes Equations

We consider the following nonstationary Stokes equations
U _yAu+Vp=f, V(zt)eQx(0,T],

divu =0, V(z,t) € Qx (0,7,
(4.1)
u=0, V(z,t)ecdQx(0,T],

u|t:0 = U, Vz € Q.

Then (4.1) is equivalent to the following variational problem. Find (u,p) € V x M,Vt € (0,T)
such that

(8%,v) + a(u,v) — (p,divv) = (f,v), WweV,

(¢,divu) =0, Vqe M, (4.2)
Ulg=o = ug, Vx €9,

where (-, ) is an inner-product in L?(Q2) or (L?(£2))2.

Let {T's}r be a family of rectangular subdivisions without regular assumption or quasiuni-
form assumption [10],V}, and M}, be the approximation spaces of V' and M, respectively. The
approximation problem corresponding to (4.2) reads as: Find (up,prn) € Vi X M}, such that

(%,v) + ap(up,v) — (pp, divpv) = (f,v), Yo € Vp,
(¢, divpun) =0, Vg € My, (4.3)
Up|t=0 = ug, Va € €.

Where ug is an approximation problem of ug in Vj,, divy|x = dive, Vv € V},,VK € T'y. Now
we apply the idea of moving grids to (4.3) and develop the scheme of the nonconforming five-
parameter anisotropic finite element with moving grids. Let 0 = tg < t1 - <ty =T be a
partition of the time interval [0,T]. For any time level t,,, let{T', }1, be a family of rectangular
subdivisions for spatial domain at this time. We denote by V" and M/ the finite element spaces
on the spatial domain at the time level t,,, definitions of V; and M are the same as V}, and
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Mpy,. Due to Lemma 3.3, the spaces V,f and MZZ satisfy the BB condition, i.e., there exists a
constant 0* > 0 such that

, divpv N
sup LB 5 g, v e M (1.0
veVh |v|h
At the time point t,(n =0,1,2,-- -, N.),we let
Vi =A{v(z, tn);v eV}, M, ={qlz,tn);q € M}. (4.5)

We choose the approximations spaces S x Z of (u, p) in the following way: The approximation
solution u”(x,t) € S is the piecewise linear function with respect to the time subdivisions
0=ty <ty - <ty =T, its function value u"(z,t,) at the time level t, is the interpolation
function of the solution u on the finite element space V,f (n=0,1,2,---,N). The approximation
function p"(x,t) € Z can be obtained in the same way.

We introduce the five-parameter rectangular anisotropic finite element with moving grids
(see[2,3]) and determine the function values u” = u”(z,t,) and p = p"(x,t,) of the approxi-
mation solutions u”(z,t) and p”(z,t)(n = 1,2,-- -, N) as follows:

@h —ul v)y=0, Wve V,iﬂrl,for n>0, (4.6)
@h —up,v) =0, VweVl forn=0, (4.7)
(uZ_H - ﬂZ, v) + ah(u2+1,v)Atn — (pz+1,divhv)Atn = (fnt1,0)At,, Yo € V,fl_,_l, (4.8)

(q, divhuz_,_l) =0, Vgqe MS_H, (4.9)
where f, = f(z,t,).

(4.6) implies that @" = u” when V;* = V! . Furthermore, (4.6) is a L2-projection modifi-
cation scheme for the former space when the two spaces V;?and V', ; have different meshes or
different interpolation functions. (4.8) is the general trapezoid difference scheme. We get u’
from u” in (4.6) and get u”, ; from " in (4.8). ul, p" are uniquely from (4.6)-(4.9) by partial
differential equation theory.

5. Error Estimate of the Nonconforming Five-parameter Anisotropic
Approximation Scheme with Moving Grids

The main error between the solution u(z,t) and the approximation solution u”(z,t) consists
of three parts: the interpolation error with the finite element method, the difference error with
respect to the time, and the error of moving grids.

Firstly, we will prove the following Lemma 5.1 which plays an important role in our error
analysis.

Lemma 5.1. |lvpllo < Clopln, Yo € Vi
Proof. By using duality argument, we consider the following elliptic problem,

—Aw =g, mns)
w =0, ondfl.

Then by the regularity of the solution of the elliptic problem,(5.1) has a unique solution w €
H2(Q) N HE(Q) satifying ||w]|2 < C||gllo- Let

ow
E(w,vp) = / —upds, Y, € Vp,
2 o

due to the estimate of T1(u,vp,) in (3.21) — (3.32), we know
|E(w,vp)| < Chlwlz,alvnln- (5.2)

(5.1)
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Furthermore, by Green’s formula,
| [ gvndaxdy] = |— [, Awvpdedy| = |;fK VwVupdazdy — E(w,vp,)|
<|wl1,olvnln + Chlw|z.alvpln < Cllw|lz.olvnln,  Yon € V.
Therefore,

|/ gundzdy| < Cllgllo|valn-
Q

Let g = vy, we obtain ||vp|lo < Clop|n,  Yun € Vi,
Remark 3. The method used in this lemma is different from the conventional ones. Because
the meshes are anisotropic, the estimate of (5.2) (see section 3 of this paper) becomes more
difficult and complicated than that of the isotropic case . This is typical character of the
anisotropic elements.

Then we have the following lemma about the difference error.
Lemma 5.2. Let u, = u(x,t,), pn = p(x,t,), the following equation holds

(Unt+1 — Un, V) + ap(Unt1,0) Dty — (Prt1, divpv) Aty = (frg1,v) Aty + Eq(v),  Yov € Vthrl,

(5.3)
where
tnt1 1 Op 9 1 bn 1 3
B, ()] < C[( / 19 3y / 192 3y + </ 128 32 ) At E ol Ch Aol
tn tn tn
(5.4)
Proof. We get from (4.1),
0 .
(8—1;70) + an(u,v) — (p, divyw) = (f,v) + Th(u,p,v), Yo € Vi, (5.5)

where

n(u,p,v Z/ 7%—]971 Juds.

By use of (3.32) and (3.36), we obtain
Th(u,p,v) < Ch(lul2.0 + [plio)lvln, Yo € Vi

Using the regularity of solutions of the Stokes problem, i.e., |ulz.q + [plia < C|fllo, Yv €
VnhH, we get

Th(u, p, 0)| < Chl fllofv]n- (5.6)

Intergrating with ¢, <t <t,11 in (5.5) we know

tnt1 tnt1 tnt1 tnt1
(Upt1 — Un,v) + ah(/ udt, v) — (/ pdt, divpv) = (/ fdt,v) +/ Ty, (u, p,v)dt,
¢ ¢ ¢ ¢

n n n n (5.7)
thus, combining (5.3) and (5.7) we have

tnt1 tn41
Eﬂ(v) = (/t (f - fn-i—l)dt,’l)) + (‘/t (p —pn+1)dt, di’Uh’U)

n n

tni1 tnt1
—ah(/ (U — tUpi1)dt,v) + / Ty (u, p,v)dt (5.8)
t t

n n
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Using Cauchy-Schwartz inequality and Lemma (5.1) yields
|y (F = fasa)dt, o)) < CUL I GEIBAE)  (Atw) E o],

I( ,f;‘“(p Pns1)dt, divyv)| < C(, t““ 122 12dt)% (At) 2 0],

Jan (" (w = wnp1)dt, o)) < O 158 I7dE) (Dtn) E o],

| T, p,v)dt] < ChAE o],

Lemma 5.2 follows from the combination of above inequalities.
Introduce the Stokes projection (R,u, R,p) € V.* x M"(n =0,1,2,-- -, N.) which is deter-
mined by

an(u — Rpu,v) — (p — Rup, divyv) = T (u,p,v), Yo e VI, (5.9)

(¢, divp(u — Ryu)) =0,  Yqe M. (5.10)
And let f* = —yAu+ Vp,then (R,u, R,p) € V' x M satisfies
an(Rnpu,v) — (Rpp, divpv) = (f*,v), Yo eV
{ (¢, divp Ryu) = 0, Vg € M.

Obviously (R,u, R,p) € V,* x M! is the finite element approximation of (u,p) € V x M.
Using the duality argument and the techniques used in (3.20)- (3.39), there holds the following
interpolation estimates on anisotropic meshes

htlw— Ruullo + [u — Ryuln < CR™ Hullrq, (r=1or2), (5.11)
[p — Rupllo < Chllpl.q- (5.12)
Let
€o = 07 PO = 07
en —u — Rpug, Pn = Un — Rpttn, n=12--- N,
é\n:ﬂz—RnJrlun, ﬁn:un_Rn+lun, n=0,1,2,---, N,
:pZ_Rnpna é\n:pn_Ran TL:1,2,,N
We have
Lemma 5.3. VO < o < 1, there holds
(1 = @)llens+1llg = llenlls + (1 — @)an(ens1, ent1) Atn —Hpn pullg + On, (5.13)
where
e o [T Ou 2
oal < L UG+ IGE+ 15 st +0n [ | S dir O, (514)

Proof. In full analogy of Lemma 3 in the literature [2], Lemma 5.3 is completed.
Lemma 5.4. VL,1 < L < N.,the following estimation holds

L-1 L-1
| er ”?) + Z an(€nt1, ent1)Dtn < C{m(m +1) max pn — pn”g + Z On}, (5.15)
n=0 n=0

where m is the varying times of meshes.
Proof. Using Lemma 5.3 and by analogy with the proof of Lemma 3 in the literture [3],
Lemma 5.4 holds.



576 D.Y. SHI AND Y.R. ZHANG

Theorem 5.5. If the solution (u,p) of (4.1) and the right hand term f satisfy that
ou dp af

— € L*(0,T; (H*(Q L*(0,T; H'(Q)) and — € L*(0,T;
e 120, T (H(@)), 2 € 120, HY(9) and 5 € 12(0,T:9),
then there holds the following error estimation
N-1
max ||u — u, |2 + Z an(ul 1 — wppr,ult ) — upg1) Aty < C[(M2R? + 1A% + At?],  (5.16)
n=0

where At = max A\t,,.
Proof. Singe
luy = wnlld < C(ll e I + 1l pn 113)
and
ah(“ZH — Un+1, UZ+1 — un+t1) < Clan(ent1; €nt1) + an(pnt1, pnt1)],
using (5.11),(5.12) and Lemma (5.4), we may deduce the estimation (5.16).
Theorem 5.6. If the solution (u,p) of(4.1) and the right-hand term f satisfy that

Ou _ s 22y O o . of
5 € L0 T (HA(Q)%), 57 € LX0, T HY(Q)) and —
then the error estimation of the pressure reads as

N-1

> Pk = prsalBAt, < (R + AF2),

n=0

€ L?(0,T;9Q),

where At = max At,, mh and max At,,/ min At,, are given bounded and m 1is the varying times
n n n

of meshes.
Proof. Since % € L*(0,T; (H*(Q))?)
equation of (4.1) we know that

uge = yAug — Vg + fr € L*(0,T59Q),

T 2
0°u o
/0 ||w||odt§ C.

9 [2(0,T; H'())

) B 9 ¢ 12(0,T;9Q), from the first

Ot

that is

Now, we prove that

tn+1 a(u _ uh)
/ 12 Rar < oo, (5.17)
tn
In fact, let ¢ = 9%, t = (1 — 8)t,, + stpt1, ¢(z,t) = §(, s), then
n I(u— u‘ n u(z,tn u(T,tn
Sl | 2 2 = [ (G — e ) o) )2 g gy dy

= Jo S (G = S [l Suaty2dtdedy = [, dady [y (B — [, @ds)?ds(Aty)
< C Jodzdy fol 8_f|2dS(Atn) < C o dzdy ftt:H (52)%dt(At,)?
< C(A1)? [ [ (58)2dadydt

< O(L1)? ff:“ | G2 13t < () [y 115 13t < C(At).

Due to the BB condition of the discretization schemes, we deduce

‘(pn+1_Rn‘+1|1:1n+17d7/UhU)| At

HPZ-H — Ryg1pn+1llot, < C sup
veV

h .
— ,divpv R di
S C sup ‘(Pn+1 Pn+1 nv)| ftn C sup [(Pnt1—Rnt1Ppnt1,divey ‘At
VeV lvln VeV lvln
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By (5.11),(5.12) and (5.6), it follows

Ip" 1 — Rng1pns1 oAty

< C sup (P11 —Pn+1,divav)| At, +C sup lan (Unt1—Rnt1Unt1,v)] At, + ChAt (5.18)
= A ‘Ulh n f I’U‘h n n-
veVh veVh

Consequently, by using (4.7) and (5.3) we have

(Phy1 — Py, divpv) Aty (5.19)
= (uZ_H — ﬂﬁ, V) = (Upt1 — Un,v) + ah(ufH_l — Upt1,0) A, + E,(v), Vo€ Vnh_,_l

Furthermore,

~, tn u—u tn u—u
[(up g =4, ) = (Ung1 = un,0)| = [(f7 %dt v <C(f, |20 |2t

NI

(L)% 0],

|ah(u2+1 = Upt1,0) Dy | < C[ah( Up 41 un+1,u2+1 - un+1)]§Atn|U|hv
|ah(un+1 — Rn+1un+1,v)|Atn S ChAtn|1)|h
Combining the inequalities above with (5.18), we obtain

Pt 1 — RugapnsiloDty,
< C{(/; t"“ 120 1201)5 (At )3 + [ah(uZJrl — Ung1, Ul — Ung1)]E Aty + hAL, )

C[(ff:“ II%II%dt)%ﬂL(f A + (o 158 13de) 2] (Ata) .

Hence,

p" 1 — Rog1pns1 |30t
t’Vl
< C{f i ||8(u o ”(Q)dt + ah( Upt1 — Un+1, U n+1 = Unt1) Aty + thtn}

CLL (IGHIE + 152113 + 152 17)de) (At )?.

By using (5.16) and (5.17) and when mh is bounded, the estimation

Z ||pZ+1 - Rn+1pn+1||gAtn S O(h2 + Atz) (520)

holds.
Since ||p2+1 —pn+1||(2J < C(HPZH - Rn+1pn+1||(2J + | Rng1Pnt1 —Pn+1||%) and || Rp11Pn11 —
Pn+1]|2 < Ch?, by use of (5.20), it follows
N-1
D o lPhy = prsall§Ot, < C(R* + AF).
n=0
Which completes the proof.
Note that the energy norm of the velocity and error order of the pressure are optimal when
mh is bounded.
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