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Abstract

In [4], Fletcher and Leyffer present a new method that solves nonlinear programming
problems without a penalty function by SQP-Filter algorithm. It has attracted much
attention due to its good numerical results. In this paper we propose a new SQP-Filter
method which can overcome Maratos effect more effectively. We give stricter acceptant
criteria when the iterative points are far from the optimal points and looser ones vice-versa.
About this new method, the proof of global convergence is also presented under standard
assumptions. Numerical results show that our method is efficient.
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1. Introduction

This paper is concerned with a new SQP-Filter method which not only has good convergence
properties but also shows encouraging numerical results. We consider the general nonlinear
programming problem(NLP)

min f(x)

s.t. ci(x) = 0, i = 1, . . . , me,

ci(x) ≥ 0, i = me + 1, . . . , m,

(1.1)

where f and ci(i = 1, 2, · · · , m) are twice continuously differentiable functions. Let c(x) =
(c1(x), c2(x), · · · , cm(x))T , cE = (ci)i∈E and cI = (ci)i∈I , where E = {1, . . . , me} and I =
{me + 1, . . . , m} denote the indices of equality and inequality constraints, respectively. With
these notations the Lagrangian function associated with (1.1) is given by

L(x, λ) = f(x) − λT c(x), (1.2)

where λ = (λT
E , λT

I ) ∈ ℜm, λI ≥ 0. We denote the gradients of f by g = g(x) = ∇f(x), the
Jacobian of the constraints by A(x) = ∇c(x)T , AE = AE(x) = ∇cT

E and AI = AI(x) = ∇cT
I

corresponding to the equality and inequality constraints respectively. Superscript (k) refers to
iterations indices and f (k) is taken to mean f(x(k)) etc. Quantities relating to a local solutions
x∗ of (1.1) are superscripted with a ∗.

In the pioneering work[4], Fletcher and Leyffer present the filter technique for the globaliza-
tion of SQP methods, which avoids the use of multipliers or penalty parameters. Instead, the
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acceptability of steps is determined by comparing the constraint violation and objective func-
tion value. The new iterative point is acceptable to the filter if either feasibility or objective
function value is sufficiently improved in comparison to all iterative points bookmarked in the
current filter. The promising numerical results in[4] led to a growing interest in filter methods
in recent years. By strengthening the acceptant criteria of the filter, the global convergence of
three variants of trust-region SQP-Filter methods is shown in Fletcher and Leyffer [4].

In this paper we propose a new SQP-Filter method that ensures global convergence. The
original SQP-Filter methods in [1, 5, 6] can be affected by the well known Marotos effect. In
fact, these methods use constraint violation and objective value in the filter. By the Marotos
effect a full SQP-step can lead to an increase of both these filter components even arbitrarily
close to a regular minimizer(see [15], P.539). This makes the full SQP-step unacceptable for the
filter and can prohibit fast local convergence. To avoid this, we use different filters and different
acceptant criteria by the measurement of constraint violation. And two obvious advantages
are that our method converges quickly when the points are far from the optimal points and
our method can prevent Marotos effect efficiently when the iterative points come closer to the
optimal points.

The paper is organized as follows. In section 2 we describe briefly the trust-region SQP-
Filter method of Fletcher, Leyffer and Toint[4]. In section 3 we present the main idea of our
new SQP-Filter method. In section 4 we give out the SQP-Filter algorithm and its convergence
analysis. Finally at section 5 we give some numerical results which show that our method is
very efficient.

2. Fletcher’s Trust-region SQP-Filter Method

In this section we recall the trust-region SQP-Filter method proposed by Fletcher and
Leyffer[4] for (1.1).

Given the current iterative point x(k) and a trust-region radius ρ(k), the computation of the
step is based on the approximate solution of the QP-subproblems QPFL(x(k), ρ(k))

min Ψ̂(k)(d) = 1
2dT W (k)d + dT g(k)

s.t. c
(k)
i + dT a

(k)
i = 0, i = 1, . . . , me,

c
(k)
i + dT a

(k)
i ≥ 0, i = me + 1, . . . , m,

‖d‖∞ ≤ ρ(k),

(2.1)

where W (k) = ∇2
L(x(k), λ) denotes the exact Hesse matrix of Lagrangian function at point

x(k). For convenience of description, Fletcher and Leyffer in [4] give the concepts of constraint
violation, dominance and filter as follows

Definition 2.1. For the nonlinear programming problem (1.1), we define its constraint violation
function h(c(x)) by

h(c(x)) =
∑

i∈E

|ci(x)| +
∑

i∈I

max{−ci(x), 0}. (2.2)

For simplicity, we use h(k) and f (k) to denote values of h(c(x)) and f(x) evaluated at point
x(k), respectively.

Definition 2.2. A pair (h(k), f (k)) is said to dominate another pair (h(l), f (l)) if and only if
both h(k) ≤ h(l) and f (k) ≤ f (l).

With this concept Fletcher and Leyffer give the definition of a filter, which will be used in
a trust-region type algorithm as criteris for accepting or rejecting a trial step.
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Definition 2.3. A filter is a list of pairs ((h(l), f (l))) such that no pair dominates any other.
A point (h(k), f (k)) is said to be acceptable for inclusion in the filter if it is not dominated by
any points in the filter.

From now on, we use F (k) to denote the set of iteration indices j(j < k) such that (h(j), f (j))
is an entry in the current filter. Since a local solution x̄ of (1.1) minimizes f locally under the
constraint h(c(x)) = 0, a promising trial step d should either reduce the constraint violation
h or the objective function value f . To ensure sufficient decrease of at least one of the two
criteria, in [3] Fletcher et al. strengthen the acceptant criteria, they call x acceptable to the
filter F (k) if for all (h(j), f (j)) ∈ F (k)

either h(c(x)) ≤ βh(j) or f(x) + γh(c(x)) ≤ f (j) (2.3)

is satisfied with constants 0 < γ < β < 1. To update the information in the filter appropriate
point x, which is acceptable to the filter, is added into the filter F (k). This operation means
that (h(c(x)), f(x)) is added into the set of pairs (h(j), f (j)) in F (k) and subsequently any old
pair that is dominated by the new pair (h(c(x)), f(x)) is removed from the filter.

The acceptance test (2.3) has the useful inclusion property that after adding a pair (h(c(x)),
f(x)) into the filter all unacceptable points of the old filter remain unacceptable for the new
filter(although dominated pairs are removed). This allows to show that the infeasibility tends
to zero for any infinite subsequence of iterates added into the filter.

The key idea of Fletcher et al. in [4] is a minimalistic approach to SQP. The main reason
for doing this lies in that the SQP method without any line search, penalty function or trust
region technique has shown encouraging numerical results. For instance, Zoppke-Donaldson in
[2] presents an SQP algorithm which does not require any penalty parameter or backtracking
as in the watchdog technique. Now we turn back to consider the QP-subproblem (2.1). After
getting the solution d(k) to the QP-subproblem (2.1), we decide to accept or reject the trial
step d by a certain acceptant criteria such as (2.3). The new trial point x(k+1) = x(k) + d(k) is
accepted by the filter if the corresponding pair (h(k+1), f (k+1)) is not dominated by any point
in the filter. Otherwise the step is rejected and the trust region radius ρ(k) is reduced. Thus
the usual criteria of descent in the merit function are replaced by the requirement that the new
point is acceptable to the filter. It is easily to see that the filter criteria are more looser than
the usual criteria of descent in the merit function which could lead a minimalistic approach
to SQP. Obviously, (2.1) may be inconsistent and if this case occurs the algorithm enters the
restoration phase.

The aim in the restoration phase is to find a point x(k+1) which both is acceptable to the
filter F (k) and makes the QP-subproblem is consistent. Various restoration algorithms can be
used and Fletcher et al. in [4] still suggest that the SQP-Filter method be used in this phase.
To learn the SQP-Filter method suggested by Fletcher and Leyffer in details, one can see [4].

3. The Main Idea of Our SQP-Filter Method

We notice that the acceptant criteria suggested by Fletcher and Leyffer are generally more
looser than line search conditions on penalty function which probably can decrease the number
of the computation of QP steps. But this also may invoke such a problem that the convergence
is very slow when the iterative points are far from the optimal point. The above disadvantage
is partly caused by the use of the same acceptant criteria which ignore the iterative points are
near to or far from the optimal point. For that reason we present a new SQP-Filter method.

The main idea of our SQP-Filter method is as follows. When the iterates are far from the
optimal points, the filter acceptant criteria are much stricter than those presented by Fletcher
and Leyffer which can impede the iterates come close to the optimal point more quickly; on the
other hand when iterates come nearer to the optimal points the criteria of our new method are
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much looser than those proposed by Fletcher and Leyffer which improves the local convergence
property. So we give different acceptant criteria according to the measurement of constraint
violation h(c(x)). We give three types of filters, that is to say, Fcoarse,Fmoderate and Ffine

corresponding to the situations that h(c(x)) is large, moderate and small respectively. In
different types of filters we decide to accept or reject a point by the criteria of the corresponding
filter. We call x acceptable to the filter F (k)(here F (k) is one type of filters described above )
if for all (h(j), f (j)) ∈ F (k), at least one of the following two inequalities

f(x) ≤ f (j) + tan(π/4 − θ(j))(h(c(x)) − βh(j)) − γh(c(x)), (3.1)

f(x) ≤ f (j) + tan(π/4 + θ(j))(h(c(x)) − βh(j)) − γh(c(x)), (3.2)

holds, where θ(j) adaptively adjusts by the measurement of constraint violation. Now we
describe the method that adjusts the parameter θ(j) in details.
(1) When h(c(x)) is small, firstly we use (2.3) to decide whether to accept the point x or not. If

x could be accepted by the fine filter(F
(k)
fine), then we let x(k+1) = x, possibly increase the trust

region radius ρ(k) and go to the next iteration. Otherwise we do not reject the point immediately
as Fletcher and Leyffer has done in [4]. We continue to compute a trial step d̂ at point x and

judge whether the point x + d̂ could be accepted by the fine filter. If x + d̂ could be accepted
then we let x(k+1) = x + d̂, and go to the next iteration. Otherwise we decrease the trust region
radius and solve the QP-subproblem (2.1) at point x(k) again. When the constraint violation is
small, the advantage of our method lies in it can accept the QP step at the greatest possibility.
This could partly overcome the slow local convergence near the optimal point.
(2) When the measurement of h(c(x)) is moderate, we choose θ(j) = π/4. In this case our filter
acceptant criteria are the same as those proposed by Fletcher and Leyffer.
(3) When the measurement of h(c(x)) is large, we choose θ(j) in the interval (π/4, π/2). In this
case our filter acceptant criteria are much stricter than those proposed by Fletcher and Leyffer
in [4]. This could prevent the iterative points from converging slowly to the optimal point when
they are far from the optimal points.

The filter acceptant criteria above are related to the measurement of constraint violation,
so now we are in the position to give some standards about how to measure the constraint
violation.
(1) If the constraint violation h(c(x)) is numerically small or it is relatively small to the initial
constraint violation h(0), that is to say h(c(x)) ≤ max{M ·ǫ, 0.01h(0)}, we consider the constraint
violation is small. Here ǫ is the tolerance of error and M > 0 is a big real number. For
convenience we use hbound1 to denote max{M · ǫ, 0.01h(0)}.
(2) If at point x the constraint violation h(c(x)) is no less than max{0.5h(0), 0.1ubd}, then we
consider that h(c(x)) is large. Here ”u” is defined as one upper bound of constraint violation
and is the same as the one defined in [4] by Fletcher and Leyffer. For convenience we use
hbound2 to denote max{0.5h(0), 0, 1u}.
(3) If the constraint violation h(c(x)) is in the interval (ubound1, ubound2), then we consider
the measurement of the constraint violation is moderate.
The different filters of our new SQP-Fiter method is illustrated in Figure 3.1.

Now we give definitions of dominance and a filter. Firstly we give the definition of domi-
nance.

Definition 3.1. A pair (h(k), f (k)) is said to dominate another pair (h(l), f (l)) if and only if
(1) If h(k) is small or moderate, then both h(k) ≤ βh(l) and f (k) ≤ f (l) − γh(k) hold. (2)
If h(k) is large, then both f (k) ≤ f (l) + tan(π/4 − θ(l))(h(k) − βh(l)) − γh(k)) and f (k) ≤
f (l) + tan(π/4 + θ(l))(h(k) − βh(l)) − γh(k)) hold.

Now we give the concept of the filter about our new method.
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Definition 3.2. A filter is a list of pairs ((h(l), f (l))) such that no pair dominates any other(Because
there are three types of filters, that is to say Fcoarse,Fmoderate and Ffine, the relationship of
dominance is considered in its own filter). A pair (h(k), f (k)) is said to be acceptable for inclu-
sion in the filter if it is not dominated by any point in the filter.

For convenience, from now on we use the point to replace the pair in a certain filter. For
instance, we use x(l) instead of the corresponding pair ((h(l), f (l))).

2

2
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(j)

,f
(j)

)

2

( h
(k)
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(k)
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hbound1 hbound2

Figure 3.1:An NLP Filter with slanting Envelope
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At the end of this section, we give an example to illustrate the difference between our new
SQP-Filter method and the SQP-Filter method proposed by Fletcher et al. in [4].
Example 3.1(see [15], P.539)

min f(u, v) = 3v2 − 2u

s.t. c(u, v) = u − v2 = 0
(3.3)

It is easily to know that there is only one optimal solution x∗ = (0, 0)T of the problem (3.3).
We consider the point x̄(ε) = (u(ε), v(ε))T = (ε2, ε)T which is close to the optimal solution
x∗ if ε is sufficiently small. We choose ∇L(x∗, λ∗) as Hessian matrix, so the QP-subproblem
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corresponding to the point x̄(ε) has the following form

min dT

(

−2

6ε

)

+ 1
2dT

(

0 0

0 2

)

d,

s.t. dT

(

1

−2ε

)

= 0,

‖d‖∞ ≤ ρ(0),

(3.4)

where d ∈ ℜ2 and ρ(0) is the trust region radius. We can know that the solution of QP-
subproblem (3.4) is

d̄(ε) =

(

−2ε2

−ε

)

(3.5)

We know that d̄(ε) is a superlinearly convergent step. At point x̄(ε) + d̄(ε), both the objective
function value and the constraint violation become larger than those corresponding to the
point x̄(ε). So this superlinearly convergent step d̄(ε) will be rejected by the filter criteria
presented in [4]. But this superlinearly convergent step could be accepted by our method
because h(c(x̄(ε) + d̄(ε))) is small.

4. The Algorithm and Its Convergence Results

4.1 The Algorithm of the New SQP-Filter Method

Suppose that the initial point x(0) is given, how can we solve the NLP problem (1.1) with the
SQP-Filter method? First of all, the SQP-Filter method still use SQP to solve the SQP-Filter
method. Hence the first step is to give out the following QP-subproblem

min Ψ(k)(d) = 1
2dT B(k)d + dT g(k)

s.t. c
(k)
i + dT a

(k)
i = 0, i = 1, . . . , me,

c
(k)
i + dT a

(k)
i ≥ 0, i = me + 1, . . . , m,

‖d‖∞ ≤ ρ(k).

(4.1)

From now on we use QP (x(k), ρ(k)) to denote the QP-subproblem above. There is a slight
difference between (2.1) and (4.1), that is to say, the Hessian matrix in (4.1) is not an exact
Hessian matrix but an approximate matrix updated by the BFGS formulae presented by Powell
in [11, 12] or presented by Stoer in [14]. The new Hessian matrix B(k+1) is just relevant to
B(k), y(k) and the solution d(k), where the vector y(k) is defined as follows

y(k) = ∇xL(x(k+1), λ(k))) −∇xL(x(k), λ(k))). (4.2)

In general we let the unit matrix as the initial Hesse and B(k+1) =
∏

(B(k), ŷ(k), d(k)), where
ŷ(k) and

∏

(B, y, d) are defined as follows

∏

(B, y, d) = B +
yyT

yT d
−

BddT B

dT Bd
, (4.3)

{

ŷ(k) = y(k), if d(k)T ŷ(k) > 0,

ŷ(k) = y(k) + 0.1d(k), if d(k)T ŷ(k) = 0.
(4.4)

And we let B(k+1) equal to B(k) if (ŷ(k))T d(k) is less than 0.
When we try to solve the QP-subproblem (4.1), the following two cases need to be considered.

(1) The QP-subproblem (4.1) is consistent. In this case we can get the solution d(k) of (4.1).
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If this trial step could be accepted by our new filter acceptant criteria then we let x(k+1) =
x(k) +d(k), increase the trust region radius and solve the QP-subproblem (4.1) at the new point
again. Otherwise we would decrease the trust region radius and solve the QP-subproblem (4.1)
again.
(2) The QP-subproblem (4.1) is inconsistent. The algorithm will enter the restoration phase to
find a point x(k+1) at which both the QP-subproblem (4.1) is consistent and x(k+1) is acceptable
to F (k). And we solve the QP-subproblem (4.1) at the new point again.

For the restoration algorithm plays an important part in the SQP-Filter method, now we
describe our restoration algorithm in details. When the QP-subproblem (4.1) is inconsistent,
the QP-solver will exit with a feasible solution d(k) of the following Phase II subproblem

min
∑

i∈J
(k)
E

|dT a
(k)
i | −

∑

i∈J
(k)
I

dT a
(k)
i

s.t. c
(k)
i + dT a

(k)
i = 0, i ∈ J

(k)
E

⊥

,

c
(k)
i + dT a

(k)
i ≥ 0, i ∈ J

(k)
I

⊥

,

‖d‖∞ ≤ ρ(k),

(4.5)

where J
(k)
E

⊥

= {i||c
(k)
i + d(k)T a

(k)
i | ≤ ε, i ∈ E}, J

(k)
E

= E \ J
(k)
E

⊥

, J
(k)
I

⊥

= {i|c
(k)
i + d(k)T a

(k)
i >

0, i ∈ I} and J
(k)
I = I \ J

(k)
I

⊥

.

Because the aim of the restoration phase is to find a point x(k+1) such that the QP-
subproblem (4.1) is consistent at that point, we now turn to consider the following problem

min
∑

i∈J
(k)
E

(±)ci(x) −
∑

i∈J
(k)
I

ci(x)

s.t. ci(x) = 0, i ∈ J
(k)
E

⊥

,

ci(x) ≥ 0, i ∈ J
(k)
I

⊥

,

‖d‖∞ ≤ ρ(k).

(4.6)

”+” or ”−”in the first term of objective function is decided by c
(k)
i + d(k)T a

(k)
i greater or no

more than 0 respectively. We also use the SQP-Filter method to solve (4.6), that is to say, we
solve (4.6) by solving a sequence of the following QP-subproblems(l = 0, 1, · · · )

min
∑

i∈J
(k)
E

(±)dT a
(k,l)
i −

∑

i∈J
(k)
I

dT a
(k,l)
i + 1

2dT B
(k,l)
res d

s.t. c
(k,l)
i + dT a

(k,l)
i = 0, i ∈ J

(k)
E

⊥

c
(k,l)
i + dT a

(k,l)
i ≥ 0, i ∈ J

(k)
I

⊥

‖d‖∞ ≤ ρ(k,l),

(4.7)

where the matrix B
(k,l)
res is the Hessian matrix of the restoration phase and can be updated by

the BFGS formulae.

We judge the consistency of the following LP-subproblem at point x(k,l+1) = x(k,l) + d(k,l)

when we have successfully gotten the solution d(k,l) of (4.7)

dT a
(k,l+1)
i + c

(k,l+1)
i = 0, i ∈ E ,

dT a
(k,l+1)
i + c

(k,l+1)
i ≥ 0, i ∈ I,

‖d‖∞ ≤ ρ(k,l).

(4.8)
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If the subproblem (4.8) is consistent and x(k,l+1) is acceptable to the normal(Phase I) filter, the
algorithm return to the normal SQP. Otherwise we judge whether the point x(k,l+1) could be
accepted by the restoration phase (Phase II) filter or not. If x(k,l+1) could be accepted by the
Phase II filter, then the Phase II would be updated and the restoration algorithm continues to
solve (4.7) at the point x(k,l+1). Otherwise we decrease the trust region radius and continue to
solve (4.7) at the point x(k,l). The process above would be repeated until the subproblem (4.8)
is consistent.

For convenience we give some notations
∆Ψ(k) = Ψ(k)(0) − Ψ(k)(d) = −dT g(k) − 1

2dT B(k)d,

∆f (k) = f(x(k)) − f(x(k) + d).
The complete algorithm of our new SQP-Filter method and the restoration algorithm can be
stated as follows.

Algorithm 4.1. (A new SQP-Filter method )

Step 0 Given x(0) ∈ ℜn, ρ(0) > 0, ubd, tt, tolerance of error ǫ, σ ∈ (0, 1), B(0) ∈
ℜn×n symmetric, numberhsmall = 0, compute f(x(0)) and ci(x

(0)), i =

1, 2, · · · , m. Let u = max{ubd, tt · h(0)} and F
(0)
coarse = {(u,−∞)}, F

(0)
fine =

F
(0)
moderate = ∅, k := 0;

Step 1 compute g(k) = ∇f(x(k)), a
(k)
i = ∇ci(x

(k)), i = 1, 2, · · · , m, generate the
Hesse B(k) by the BFGS formulae if k is greater than 0;
generate the QP-subproblem (4.1);

Step 2 Try to solve QP-subproblem (4.1);
If QP-subproblem (4.1) is inconsistent then

if numberhsmall does not equal to 1, then add (h(k), f (k)) into the filter
and enter the restoration phase (see Algorithm 4.2), return to normal SQP
when x(k+1) is found where the subproblem (4.8) is feasible, initialize ρ = ρ0

and go to Step 1;

else ρ(k) = ρ(k)/2, x(k) =tempx, numberhsmall = 0, go to Step 2;

Else go to the Step 3;

Step 3 Use d to denote the solution of (4.1);
if d = 0, then the KT point of (1.1) has been found, stop;
otherwise compute f(x(k) +d), h(c(x(k) +d)), judge whether to accept x(k) +d
in its own filter (according to the measurement of h(c(x(k) + d)) to decide
which filter would be used);
if x(k) + d could be accepted,go to Step 4; otherwise go to Step 5;

Step 4 If ∆f < σ∆Ψ and ∆Ψ > 0 then goto step 5;
else let d(k) = d, x(k+1) = x(k) + d(k);
add x(k+1) in corresponding filter while ∆Ψ ≤ 0 and update the filter;
initialize trust region radius as ρ(0), k := k + 1 and go to Step 1;

Step 5 If h(c(x(k) + d)) ≤ hbound1 then go to step 6;
else let ρ(k) = ρ(k)/2, numberhsmall = 0, go to Step 2;

Step 6 If numberhsmall equals to 1 then let x(k) =tempx, h(k) =temph, f (k) =tempf ,
ρ(k) = ρ(k)/2, numberhsmall = 0, go to Step 2;
else let numberhsmall = numberhsmall + 1, temph = h(k), tempf = f (k),
tempx = x(k), go to Step 2;
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The algorithm above can also be given in the following diagram(the loop in the dashed line
is inner loop).

no

 Inner

 Loop

Inner  Loop 

 no 

yes

yes

yes

no

no

Initialize

no

yes

yes Solution

d

incompatible

Enter restorstion phase to find a point x
(k)

both can be acceptable

and make QP(x
(k)

, )compatible for , initialize  . 

Solve QP(x
(k)

, )
Does number-

hsmall equal to 1?

If d=0 then finish (KT point)

x
(k)

=tempx

numberhsmall=0,

k=k+1

Compute f(x
(k)

d), h(x
(k)

d)

n

Is x
(k)

d acceptable to the filter and( h
(k)

, f
(k)
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Figure  4.1 

Algorithm 4.2. (The algorithm of restoration phase )

Step 0 Let x(k,0) = x(k), ρ(k,0) = ρ(k), c
(k,0)
i = c

(k)
i , a

(k,0)
i = ∇c

(k)
i ;

get sets J
(k)
E

⊥

, J
(k)
E , J

(k)
I

⊥

and J
(k)
I ;

give out the approximate Hesse B
(k,0)
res and let F

(k,0)
res = {x(k)}, l := 0 ;
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Step 1 Solve the QP-subproblem (4.7) of restoration phase;
use d to denote the solution and temporarily let x(k,l+1) = x(k,l) + d;

for i = 1, · · · , m, compute c
(k,l+1)
i = ci(x

(k,l+1)) and a
(k,l+1)
i = ∇ci(x

(k,l+1));

Step 2 Judge feasibility of the subproblem (4.8);
if (4.8) is feasible then remove all elements in Phase II filter and return to
the normal SQP phase;
otherwise go to Step 3;

Step 3 If x(k,l+1) could be accepted by the Phase II filter, then add it to the filter
and update the filter, increase the trust region radius, update the approximate
Hesse B(k,l+1) by the BFGS formulae and let l := l + 1, go to Step 1;
Otherwise compute the second order correction step d̂(k,l) and let x̂(k,l+1) =
x(k,l) + d + d̂(k,l), go to Step 4;

Step 4 If x̂(k,l+1) could be accepted by the Phase II filter, then add it to the filter
and update the filter, let x(k,l+1) = x̂(k,l+1), increase the trust region radius,
update the approximate Hesse B(k,l+1) by the BFGS formulae and let l :=
l + 1, go to Step 1;
Otherwise let x(k,l+1) = x(k,l) and decrease the trust region radius, l := l + 1,
go to step 1;

4.2 Convergence Results of the New Algorithm

In the section we will give some convergence results about our new SQP-Filter algorithm.
First of all we give some assumptions.

Assumption 4.3. (Standard Assumptions)

1. All points x that are sampled by our algorithm lie in a nonempty closed and bounded set
X;

2. The objective function and constraint functions ci(x)(i = 1, · · · , m) are twice continuously
differentiable on an open set containing X;

3. There exists an M̄ > 0 such that the Hessian matrices B(k) satisfy ‖B(k)‖2 ≤ M̄ for all
k.

To prove the convergence results, we give some lemmas at first.

Lemma 4.4. (inclusion property) If a pair (h, f) is acceptable to the filter, then the area rejected
by the new filter includes the one rejected by the old filter.

Proof. We consider three conditions, that is, the measurement of h is small, moderate
and large. We use F̄new and F̄old to denote the area rejected by the new and the old filter
respectively. We will give proof to these three situations in the following. (1) The measurement
of h is large. In this case the constraint violation h is in the interval (hbound2, u) and the filter
acceptant criteria of our new method are that (3.1) holds or (3.2) holds. Suppose that (a, b)
belongs to F̄old, then there exists a pair (h(l), f (l)) ∈ Fold such that both

b > f (l) + tan(π/4 − θ)(a − βh(l)) − γa (4.9)

and

b > f (l) + tan(π/4 + θ)(a − βh(l)) − γa (4.10)
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hold, where θ ∈ (π/4, π/2) is a constant. Now if (h(l), f (l)) ∈ Fnew, then obviously (a, b) ∈ F̄new

holds and the lemma is true. So we just need to consider the case that the pair (h(l), f (l)) does
not belong to Fnew. Because we only add one pair (h, f) into Fold which leads to (h(l), f (l)) be
removed from Fold. We can conclude that the pair (h(l), f (l)) is dominated by (h, f), i.e., both

f (l) > f + tan(π/4 − θ)(h(l) − βh) − γh(l) (4.11)

and
f (l) > f + tan(π/4 + θ)(h(l) − βh) − γh(l) (4.12)

hold. From (4.9) and (4.11) we know that
b > {f + tan(π/4 − θ)(h(l) − βh) − γh(l)} + tan(π/4 − θ)(a − βh(l)) − γa
= {f + tan(π/4 − θ)(a − βh) − γa} + {tan(π/4 − θ)(h(l) − βh(l)) − γh(l)}.

Because θ ∈ (π/4, π/2) we know that tan(π/4 − θ) < 0 which leads to
tan(π/4 − θ)(h(l) − βh(l)) − γh(l) < 0.

So we know that
b > f + tan(π/4 − θ)(a − βh) − γa.

Similarly we can get
b > f + tan(π/4 − θ)(a + βh) − γa.

The above two inequalities imply that (a, b) ∈ F̄new.
(2) The measurement of h is moderate. In this case the constraint violation h is in the
interval(hbound1, hbound2) and the filter acceptant criteria of our new method are the same
as those proposed by Fletcher et al.[4]. Suppose that (a, b) belongs to F̄old, then there exists a
pair (h(l), f (l)) ∈ Fold such that both a > βh(l) and b > f (l) − γh(l) hold. If (h(l), f (l)) ∈ Fnew,
then obviously (a, b) ∈ F̄new holds and the lemma is true. So we just need to consider the case
that the pair (h(l), f (l)) does not belong to Fnew. Because we only add one pair (h, f) into Fold

which leads to (h(l), f (l)) be removed from Fold. We can conclude that the pair (h(l), f (l)) is
dominated by (h, f), i.e.,

h ≤ βh(l) and f ≤ f (l) − γh(l).
It is easily seen from the above inequalities that the following equalities hold

a > βh(l) > h > βh,
b > f (l) − γh(l) > f > f − γh.

These imply that the pair (a, b) belongs to F̄new.
(3) h is small. In this case the proof is similar to the case (2).

Before giving the main convergence theorem we will give some lemmas and theorems.

Theorem 4.5. If f(x) is bounded below on Fcoarse generated by Algorithm 4.1, Fcoarse is finite.

Proof. We suppose that Fcoarse = {(h(l1), f (l1)), · · · , (h(lk), f (lk)), (h(lk+1), f (lk+1)), · · · }. We
know that either (3.1) or (3.2) holds for the elements in Fcoarse. They are equivalent to one of
the following three conditions
(1) both hbound2 ≤ h(lk+1) ≤ βh(lk) and f (lk) − γh(lk+1) ≤ f (lk+1) ≤ f (lk) − γh(lk+1) +
tan(π/4 + θ(lk))(h(lk+1) − βh(lk)),
(2) both h(lk+1) ≤ βh(lk) and f (lk+1) ≤ f (lk) − γh(lk+1),
(3) both u ≥h(lk+1) ≥ βh(lk) and f (lk+1) ≤ f (lk) − γh(lk+1) + tan(π/4 − θ(lk))(h(lk+1) −
βh(lk)).
According to (1), we know that h(lk+1) ≤ βh(lk) hold; About (3), according to h(lk+1) ≥ βh(lk)

and tan(π/4 − θ(lk)) < 0, we can conclude that
f (lk+1) ≤ f (lk) − γh(lk+1) + tan(π/4 − θ(lk))(h(lk+1) − βh(lk)) ≤ f (lk) − γh(lk+1).

So for all (h(lk), f (lk)) ∈ Fcoarse, either h(lk+1) ≤ βh(lk) or f (lk+1) ≤ f (lk) − γh(lk+1) holds.
Now if Fcoarse is infinite, then exact one of the following two conclusions holds

(I) The sequence Fcoarse has one accumulation point,
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(II) The sequence Fcoarse has no accumulation points.
If (I) holds and we suppose that one accumulation point is η(≥ hbound2 > 0), we can find an
infinite subsequence {x(lk)}lk∈Q ⊆ Fcoarse on which

|h(lk) − η| < (
1 − β

1 + β
)η. (4.13)

Let l+k denote the successor to lk in Q. It follows that h(l+
k

) > 2ηβ/(1 + β) and h(lk) <

2η/(1 + β) and hence h(l+
k

) > βh(lk). Because the pair (h(l+
k

), f (l+
k

)) is added into the filter, it is
a consequence of the inclusion property that it is acceptable to (h(lk), f (lk)), even if the latter

pair has been deleted from the filter on an intermediate iteration. According to h(l+
k

) > βh(lk)

we know that f (lk) − f (l+
k

) ≥ γh(l+
k

) > 0. Thus f (lk) is monotonically decreasing for all lk ∈ Q.
Summing over all indices lk ∈ Q contradicts the fact that f (lk) is bounded below. So (I) does
not hold.
If (II) holds then it follows that we can find an infinite subsequence {x(lk)}lk∈Q ⊆ Fcoarse on
which h(lk) > η is monotonically increasing, where η > 0 is a constant. So it follows that

f (lk) − f (l+
k

) ≥ γh(l+
k

) ≥ γη, with the same conclusion. So (II) does not hold.
Consequently, the assumption that Fcoarse is infinite does not hold.

Similar to Theorem 4.5, we can get the following results.

Theorem 4.6. If f(x) is bounded below on Fmoderate and Ffine generated by Algorithm 4.1,
then
(1) Fmoderate is finite ;
(2) If Ffine is infinite, we can get that h(k) → 0, for (h(k), f (k))∈ Ffine.

Proof. The proof of case (1) is similar to that of Theorem 4.5. Now we just give a proof to
case (2). If it were not true, {h(lk)}lk∈Ffine

would have an accumulation point η > 0. Define

Q and l+k as in Theorem 4.5. Because the pair (h(l+
k

), f (l+
k

)) is added into the filter, it is a
consequence of the inclusion property that it is acceptable to (h(lk), f (lk)), even if the latter

pair has been deleted from the filter on an intermediate iteration. We know that h(l+
k

) > βh(lk) is

not satisfied, and hence that f (lk) − f (l+
k

) ≥ γh(l+
k

) > 0. Thus f (lk) is monotonically decreasing
for all lk ∈ Q. Summing over all indices lk ∈ Q contradicts the fact that f (lk) is bounded
below. There is also the possibility that {h(lk)} has no accumulation points. In this situation
we can find an infinite subsequence {x(lk)}lk∈Q ⊆ Fcoarse on which h(lk) > η is monotonically

increasing, where η > 0 is a constant. So we know that f (lk) − f (l+
k

) ≥ γh(l+
k

) ≥ γη, with the
same conclusion. So we know f (lk) → 0 for lk ∈ Ffine.

A common feature in a trust region algorithm for unconstrained minimization is the use of
a sufficient reduction criterion

∆f ≥ σ∆Ψ (4.14)

where ∆Ψ is positive, and σ ∈ (0, 1) is a preset parameter. However, in an NLP algorithm, ∆Ψ
may be negative or even 0, in which case this test is no longer appropriate. A feature of our
algorithm that it uses (4.14) only when ∆Ψ is greater than 0.

For a trial step d(k) which could be accepted by the filter, we call it an f-type step if both
(4.14) and ∆Ψ > 0 hold and this iteration is called an f-type iteration; we call it an h-type step if
either ∆Ψ ≤ 0 holds or QP-subproblem (4.1) is inconsistent and this iteration is called an h-type
iteration. As the trust region radius is reduced in the inner loop, the value of ∆Ψ is reduced.
Thus the status test ∆Ψ > 0 may go from true to false, but not vice-versa. Consequently,
the inner loop always samples the possibility for an f-type iteration before that of an h-type
iteration.
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We notice that not all points that could be accepted by the filter are added into the filter
but only those that are generated by h-type iterations. One direct result is that the following
lemma holds.

Lemma 4.7. For any (h(j), f (j)) in the current filter F (k), it follows that h(j) > 0.

Proof. We suppose that the conclusion is false, then there exists a pair (h(l), f (l)) ∈ F (k)

such that h(l) equals to 0. As d = 0 is a feasible solution of QP-subproblem (4.1), QP-
subproblem (4.1) is always consistent. Thus if x(l) is not a KT point then ∆Ψ(l) is greater then
0. Consequently, the successive iteration is an f-type iteration by the fact that h(l) equals to 0
and x(l) could not been added into the filter. This leads to a contradiction. Thus, the lemma
is true.

For convenience, we also give the following notation as Fletcher et al. has done in [6]

τ (k) = min
j∈F(k)

h(j) > 0.

We notice that only h-type iterations can reset τ (k). Now we list two lemmas presented in [6].

Lemma 4.8. Consider minimizing a quadratic function φ(α)(ℜ → ℜ) on the interval α ∈ [0, 1],
when φ

′

(0) < 0. A necessary and sufficient condition for the minimizer to be at α = 1 is
φ

′′

+ φ
′

(0) ≤ 0. In this case it follows that φ(0) − φ(1) ≥ − 1
2φ

′

(0).

Lemma 4.9. If Assumption 4.3 holds, and let d 6= 0 be a feasible point of QP (x(k), ρ). It then
follows that

∇f ≥ ∇Ψ − nρ2M̄,

|ci(x
(k) + d)| ≤ 1

2nρ2M̄, i = 1, . . . , me,

ci(x
(k) + d) ≤ 1

2nρ2M̄, i = me + 1, . . . , m.

(4.15)

About Algorithm 4.1, we can get the following conclusion.

Lemma 4.10. If the inner loop does not terminate finitely, it follows that the trust region
radius ρ → 0.

Proof. (1) If d equals to 0, then the inner loop terminates(a KT point is found).
(2) If the point x(k)+d could be accepted by (h(k), f (k)) and F (k), then the inner loop terminates.
(3) If the point x(k)+d could not be accepted by (h(k), f (k)) and F (k), then in the two successive
iterations, there is at least one iteration which makes ρ be halved. So if we consider every two
steps as one iteration, then there is at least one step which makes ρ be halved.

From above we know that the trust region radius ρ → 0.

Lemma 4.11. If Assumption 4.3 holds, then there exists a ρ0 such that for any ρ ≤ ρ0, if d
solves QP (x(k), ρ), then x(k) + d is acceptable to the filter.

Proof. According to the definition of constraint violation and Lemma 4.9, we know the
following inequality

h(c(x(k) + d)) ≤ m · 1
2nρ2M̄ = mnρ2M̄

2

holds. From above we can see if mnρ2M̄
2 ≤ βτ (k) holds, then x(k) + d is acceptable to the filter.

We denote ρ0 ,

√

2βτ (k)

mnM̄
. The condition mnρ2M̄

2 ≤ βτ (k) is equivalent to ρ ≤ ρ0.

So we can conclude that for any ρ ≤ ρ0, if d solves QP (x(k), ρ), then x(k) + d is acceptable
to the filter.

Lemma 4.12. If Assumption 4.3 holds, then the inner loop terminates finitely.
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Proof. (1) x(k) is a KT point, then d = 0 is the solution of QP-subproblem (4.1). So the
inner loop terminates.
(2) x(k) is not a KT point. In this case if the inner loop does not terminate finitely, then by
Lemma 4.10 we know it follows that ρ → 0. The remaining part of this proof is the same with
Lemma 6 in [6].

Our global convergence theorem concerns Kuhn-Tucker(KT) necessary condition under a
Mangasarian-Fromowitz constraint qualification (MFCQ)(see [9]). Now we give the definition
of Mangasarian-Fromowitz constraint qualification.

Definition 4.13. (Mangasarian-Fromowitz constraint qualification) A feasible point of problem
(1.1) satisfies MFCQ if and only if both (i)the vectors a0

i , i ∈ E are linearly independent, and
(ii)there exists a direction s that satisfies sT a0

i = 0, i ∈ E and sT a0
i > 0, i ∈ A0, where A0 ⊂ I

denotes the set of active inequality constraints at x0.

Theorem 4.14. If Assumption 4.3 holds and let x0 ∈ X be a feasible point of problem (1.1)
at which MFCQ holds, but which is not a KT point. Then there exists a neighborhood N 0 of
x0 such that QP (x, ρ) is feasible for any x ∈ N 0, ρ ∈ [δh(c(x)), b0], where b0 and δ > 0 are
constants.

Proof. For x0 is a feasible point but not a point of problem (1.1) at which MFCQ holds, we
can get the following conclusion by the definition of MFCQ and one order optimal condition
(1) the vectors a0

i , i ∈ E are linearly independent,

(2) the set {s0|s0T
g0 < 0, s0T

a0
i = 0, i = 1, 2, · · · , me, s

0T
a0

i > 0, i ∈ A0} 6= ∅, i.e., there exists

a vector s0 ∈ ℜn such that s0T
g0 < 0, s0T

a0
i = 0, i = 1, 2, · · · , me and s0T

a0
i > 0, i ∈ A0 hold.

We notice that for any α ∈ [0, 1], αρs0 is a feasible point of QP (x0, ρ). Since s0 does not
equal to 0, for convenience we can suppose that ‖s0‖2 = 1. According to (1) and (2) we can
conclude that card(E) < n. Now we give a illustration for the reason. If card(E) = n, then
s0 could be linearly expressed by a0

i , i ∈ E , i.e., that there exist constants li(i ∈ E) such that

s0 =
∑

i∈E

lia
0
i . We know that s0T

s0 =
∑

i∈E

lis
0T

a0
i =

∑

i∈E

li · 0 = 0. So s0 equals to 0 and this

contradicts the fact that ‖s0‖2 equals to 1.
(AT A)−1AT is a general inverse of matrix A and we denote A+ , (AT A)−1AT . We use

AE to denote the matrix whose columns are formed by the vectors ai(x) = ∇ci(x)(i ∈ E).
Since (1) holds and ∇ci(x)(i ∈ E) are continuously differentiable, we know that there exists a
neighborhood N 1 of x0 such that for any x ∈ N 1 the matrix A+

E is bounded.

We notice that −A+
E

T
cE satisfies equality constraints of problem QP (x0, ρ). Let P =

−A+T
E cE , p = ‖P‖2 and if E = ∅ then let P = 0, p = 0. Because αρs0(∀α ∈ [0, 1]) are feasible

solutions of problem QP (x0, ρ) and constraint functions are twice continuously differentiable,
we can get a feasible solution of problem QP (x, ρ). Let s = (I−AEA+T

E
)s0/‖(I−AEA+T

E
)s0‖2.It

is obvious that s belongs to Null(AT
E ). If E = ∅, then we let s = s0.

Because the objective and constraint functions are twice continuously differentiable and (2)
holds, we know there exist a neighborhood N 2 of x0 and a positive constant such that

both sT g ≤ −ε and sT∇ci(x) ≥ −ε
for all x ∈ N 2. If we let N 0 = N 1 ∩ N 2, then for any x ∈ N 0, all formulae above hold. By
definition of P it follows that p = O(h(c)) ⇒ h(c) ≥ b1p, where b1 is a positive constant. So if
δb1 is no less than 1, which just needs δ sufficiently large, then ρ ≥ δh(c(x)) ≥ (δb1)p ≥ p holds
for all x ∈ N 0.

Let dθ = P + θ(ρ − p)s, where ρ > p is a constant and θ ∈ [0, 1] which is used to adjust
the norm of d. By the analysis above we know that dθ satisfies cE + AT

E d = 0. As A+
E

satisfies
A+

E AEA+
E = A+

E , PT s = −cT
E (A+

E −A+
E AEA+

E )s0/‖(I−AEA+T
E )s0‖2 = 0 holds. For all θ ∈ [0, 1],

‖dθ‖2 =
√

p2 + θ2(ρ − p)2 ≤
√

p2 + (ρ − p)2 = ‖d1‖2 =
√

(ρ2 + 2p(p − ρ)) ≤ ρ. It
follows that dθ satisfies the trust region constraint.
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In the following we will prove that dθ satisfies the inequality constraints. First of all we
consider the inactive constraints, i.e., i ∈ I \ A0. For any x ∈ N 0, because the constraint
functions are twice continuously differentiable, we know that there exist positive constants
const1 and const2 such that

both ci(x) ≥ const1 and ‖∇ci(x)‖2 ≤ const2.
From the inequalities above we know

ci(x) + dT
θ ai(x) ≥ const1 − ρ · const2.

So if ρ < const1/const2 holds, then we can conclude that const1−ρ ·const2 > 0, i.e., dθ satisfies
the inactive constraints.

Now we consider the active constraints, i.e., i ∈ A0. For all x ∈ N0 and dθ, where θ ∈ (0, 1],
the following inequality

ci(x) + dT
θ ai(x) = ci + PT ai + θ(ρ − p)sT ai ≥ ci + PT ai − θ(ρ − p)ε ≥ 0

holds if
θρε ≤ θpε + ci + PT∇ci ⇔ ρ ≤ p+(ci+P T

∇ci)
θε .

By the definition of P , we know p = O(h(c)) and p+(ci+P T
∇ci)

θε = O(h(c)). So if we choose δ
sufficiently large it will follow that ci(x) + dT

θ ∇ci(x) ≥ 0.
By the discussion above we know that if we let b0 = const1/const2, then there a neighbor-

hood of x0 such that for all x ∈ N 0 and ρ ∈ [δh(c(x)), b0], dθ is a feasible solution of problem
QP (x, ρ), where θ belongs to (0, 1] and δ is a positive constant.

Lemma 4.15. Let ε0 > 0. If 0 < a < ε0/2, b < −ε0, then |a + b| ≥ ε0/2.

Proof. Because 0 < a < ε0/2, b < −ε0, it follows that a + b ≤ −ε0/2. Thus the lemma is
true.

Theorem 4.16. Under the assumptions of Theorem 4.14, it follows that both ∆Ψ ≥ 1
16ρε and

∆f ≥ σ∆Ψ hold. Furthermore, the actual reduction ∆f satisfies the following inequality, i.e.,
∆f ≥ γh(c(x + d)).

Proof. By Theorem 4.14, we know that both d1/2 and d1 are feasible solutions of problem
QP (x, ρ), where x ∈ N0 and ρ ∈ [δh(c(x)), b0]. As a consequence
2∆Ψ ≥ |(Ψ(0) − Ψ(d1/2)) − (Ψ(0) − Ψ(d1))|

= |Ψ(d1) − Ψ(d1/2)|

= |12 (P + (ρ − p)s)B(P + (ρ − p)s) − 1
2 (P + 1

2 (ρ− p)s)B(P + 1
2 (ρ− p)s) + 1

2 (ρ − p)gT s|
= |12 (ρ − p){sT BP + 3

4 (ρ − p)sT Bs + gT s}|
= |38ρ2sT Bs + 1

2ρgT s| + O(p)
= 1

2ρ|34ρsT Bs + gT s| + O(p).
Because gT s ≤ −ε, it follows that 3

4ρsT Bs ≤ 3
4M̄ρ ≤ 1

2ε when ρ ≤ 2ε
3M̄

. If we replace b0 in

Theorem 4.14 with min{b0,
2ε
3M̄

}, then it follows that both gT s ≤ −ε and 3
4ρsT Bs ≤ ε/2 hold,

for all x ∈ N0, ρ ∈ [δh(c(x)), b0]. According to Lemma 4.15, we know that
2∆Ψ ≥ 1

2ρ|34ρsT Bs + gT s| + O(p)
≥ 1

4ρε + O(p).
It follows from the above inequality that ∆Ψ ≥ 1

8ρε + O(p). Because p = O(h(c)), there exists
a sufficiently large positive ζ which is irrelevant to ρ such that

∆Ψ ≥ 1
8ρε + O(h(c)) ≥ 1

8ρε − ζh(c) ≥ 1
16ρε,

if ρ ≥ 16ζ
ε h(c). It is obvious that if we let δ presented in Theorem 4.14 equal to max{δ, 16ζ/ε},

then all conditions above could be satisfied.
By Lemma 4.9 we know that

∆f/∆Ψ ≥ 1 − nρ2M̄/∆Ψ ≥ 1 − 16nρM̄/ε ≥ σ,
if ρ ≤ (1 − ρ)ε/(16nM̄). Let b0 = min{b0, (1 − ρ)ε/(16nM̄)}, it follows that

∆f ≥ σ∆Ψ.
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Now we can conclude that ∆f ≥ γh(c(x + d)) holds.
∆f − γh(c(x + d)) ≥ 1

16σρε − γh(c(x + d))
≥ 1

16σρε − 1
2nmγρ2M̄ (By Lemma 4.9).

So it follows that ∆f ≥ γh(c(x + d)) if ρ ≤ σε/(8mnγM̄) which could be satisfied by letting
b0 = min{b0, σε/(8mnγM̄)}.

We have a main theorem similar to the one presented in [6] by Fletcher et al..

Theorem 4.17. If Assumption 4.3 holds, the outcome of applying Algorithm 4.1 is one of the
followings
(1)The restoration phase fails to find a point x which is both acceptable to the filter and for
which QP (x, ρ) is compatible for some ρ ≥ ρ0.
(2)A KT point of problem (1.1) is found(d = 0 solves QP (x(k), ρ) for some k).
(3)Any accumulation point is feasible, and is either a KT point or fails to satisfy MFCQ.

Proof. We just need to consider the case in which neither (1) nor (2) occurs. By Lemma 4.12
we know that inner loop terminates finitely and by Assumption 4.3 we know that the sequence
{x(k), k = 1, 2, · · · } generated by Algorithm 4.1 lies in a bounded set X . According to Theorem
4.5 and Theorem 4.6 we can conclude that h(c(x̂)) → 0 for any accumulation point x̂, i.e., any
accumulation point is a feasible point.

Now we consider the proposition(to be contradicted)that there exists some accumulation
point which is a feasible point of (1.1) and at which MFCQ holds, but it is not a KT point
point of (1.1). First of all we will prove that there does not exist an infinite subsequence which
is formed by h-type iterations. were it not for the above case, there exists an infinite indices
set K such that all points x(k)(k ∈ K) are h-type iterations and h(k) → 0. By the definition
of τ (k) we know τ (k) → 0. Because τ (k) → 0 and it only can be reset by an h-type iteration,
there exists a subsequence {x(k), k ∈ K1 ⊆ K} ⊂ {x(k), k ∈ K} such that for this subsequence,
τ (k+1) = h(k) < τ (k) holds.

As {x(k), k ∈ K1} ⊆ X is bounded we know there exists a subsequence {x(k), k ∈ K2 ⊆ K1}
such that x(k) → x∞ and h(k) → 0 hold. Because of the feasibility of (1.1) at x∞, if we suppose
that MFCQ hold at x∞ then x∞ is not a KT point of (1.1). By discussion above we know the
following two conditions hold
(i) The vectors ∇ci(x

∞), i ∈ E are linearly independent,
(ii)There exists a vector s ∈ ℜn such that sT∇ci(x

∞) = 0, i ∈ E and sT∇ci(x
∞) > 0, i ∈ A∞ ⊆

I hold. Furthermore, if k is sufficiently large, then x(k) ∈ N∞, where the definition of N∞ is
the same as that definition in Theorem 4.14 or Theorem 4.16.

By Theorem 4.14 or Theorem 4.16 we know that problem QP (x(k), ρ) is consistent and the
solution d of which satisfy the following inequalities

∆Ψ ≥ 1
16ρε,

∆f ≥ σ∆Ψ,
∆f ≥ γh(c(x + d)).

So d satisfy all conditions of an f-type step and by Lemma 4.11 we know that x(k)+d is acceptable

to the filter if ρ ≤
√

2βτ (k)

mnM̄
holds. If ρ ∈ [δh(k), min{

√

2βτ (k)

mnM̄
, b0}], where b0 is independent

with ρ, then d satisfy all conditions of an f-type step and x(k) + d is acceptable to the filter.

Now we will prove that ρ will lie in the interval [δh(k), min{
√

2βτ (k)

mnM̄
, b0}] because of the inner

loop. Since τ (k) → 0, if k ∈ K2 is sufficiently large then the range δh(k) ≤ ρ ≤ min{
√

2βτ (k)

mnM̄
, b0}

becomes δh(k) ≤ ρ ≤
√

2βτ (k)

mnM̄
. In this case, since h(k) → 0, h(k) < τ (k), there exists a sufficiently

large k2 such that if k satisfies k2 < k ∈ K2 then
√

2βτ (k)

mnM̄
≥ δh(k). In fact this only need

h(k) ≤ β/(mnM̄δ2). At the beginning of the inner loop, ρ = ρ̄ ≥ ρ0 is given and ρ >
√

2βτ (k)

mnM̄
.
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But the successive iterations of inner loop, ρ at least will be halved at every two steps, which
will lead one of the two following conditions occurs

(a) ρ enters the interval[δh(k),
√

2βτ (k)

mnM̄
], (b) ρ >

√

2βτ (k)

mnM̄
still holds.

The case (a) will result an f-type iteration and the case (b) also could not result an f-type
iteration because ∆Ψ will decrease whilst ρ decreases and ρ ≥ δh(k). If k ∈ K2 is sufficiently
large, an f-type iteration will be generated which leads to a contradiction. So if there exists
some accumulation point which is a feasible point of (1.1) and at which MFCQ holds, but it
is not a KT point point of (1.1), then we can conclude that the main iterative sequence only
contains a finite of h-type iterations. From that we know that there exists a k3 such that while
k ≥ k3, all iterations are f-type iterations.

According to Assumption 4.3, f(x) is twice continuously differentiable on set X which is
bounded. So

∑

k∈K̄

∆f (k) converges on any infinite set K̄. Since (h(k+1), f (k+1)) is not dominated

by (h(k), f (k)) we know that h(k) → 0, i.e., any accumulation point is a feasible point, according
to Theorem 4.5 and Theorem 4.6. Now we consider such an accumulation point x∞ which is
not a KT point but at which MFCQ holds. For any infinite subsequence {x(k), k ∈ K̄, k ≥ k3},
all successive iterations are f-type iteration because of k ≥ k3 which leads to no new points are
added into the filter. So the value of τ is not reset, i.e., for any k ≥ k3, τ (k) = τ (k3) holds. For
convenience, we can suppose that all points {x(k), k ∈ K̄} lie in the neighborhood of N∞. Thus

if δh(k) ≤ ρ ≤ min{
√

2βτ (k3)

mnM̄
, b0} , ρ̂ then some f-type step is accepted, where ρ̂ is positive

and independent with ρ. According to h(k) → 0, ρ̂ ≥ 2δh(k) holds for sufficiently large k. So in
the successive series iterations of the inner loop, also only the case (a) or (b) occurs. We can
always guarantee that ρ(k) ≥ min{ρ̂/2, ρ0}. By Theorem 4.16, we can get the following result

∆f ≥ σ∆Ψ ≥ 1
16σρε ≥ 1

16σεmin{ρ̂/2, ρ0},

which is contradicted with the result that
∑

k∈K̄

∆f (k) converges. The contradiction implies that

the theorem is true.

5. Numerical Results

This section presents some numerical results obtained by an implementation of our new
method. There are many standard test sets for nonlinear programming problems, such as
CUTE of I.BongartZ et al. in [7], test set of J.J.Moré in [10], etc. In our numerical test, the
test problems are taken from W.Hock and K.Schittkowski[8].

In our numerical test, the exact first order derivatives of objective functions and constraint
functions are used. All routines are written in Visual Fortran. The QP solver used is QL0001
which is distributed by A.L.Tits and J.L.Zhou of University of Maryland. For the initial trust
region radius we choose ρ = 10 and the tolerance is set to ǫ = 1.0E − 8. Initially we set
β = 0.99, γ = 0/01, UBD = 100, tt = 1.25, and the upper bound of constraint violation
u = max{UBD, tt · h(0)}. Hessian matrices are updated by the BFGS formulae and the initial
Hessian matrices are set to the identity matrices.

The test problems are classified by objective functions and constraint functions as fol-
lows. (1) simple boundary constraints, equality constraints, equality mixed with inequality
constraints, linear constraints and nonlinear constraints; (2) linear and nonlinear objective
functions. The scale of test problem is small, where m ≤ 100, n ≤ 100, and objective functions
and constraint functions are all smooth.

5.1 Comparison to NLPQL in [13] and Our New SQP-Filter Method on Pro-

gramming with Simple Boundary Constraints

We compare our method to NLPQL presented by K.Schittkowski in [13] on programming
just with boundary constraints. The results about the two method is given in Table 5.1.
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Table 5.1 (Testing results about NLP problems just with boundary constraints)
TP N M NEF FEX F DFX DGX

3 NFT 2 0 301 0.00000000E+00 0.66935221E-03 0.67E-03 0.00E+00
HS** 2 0 90 0.00000000E+00 0.16103740E-19 0.16E-19 0.00E+00

4 NFT** 2 0 7 0.26666667E+01 0.26666667E+01 0.00E+00 0.00E+00
HS 2 0 18 0.26666667E+01 0.26666667E+01 0.00E+00 0.00E+00

5 NFT** 2 0 55 -0.19132230E+01 -0.19132222E+01 0.79E-06 0.00E+00
HS 2 0 56 -0.19132230E+01 -0.19132230E+01 0.11E-10 0.00E+00

25 NFT** 3 0 233 0.00000000E+00 0.72953587E-05 0.73E-05 0.00E+00
HS 3 0 251 0.00000000E+00 0.57804601E-02 0.58E-02 0.00E+00

38 NFT 4 0 501 0.00000000E+00 0.59461998E-05 0.59E-05 0.00E+00
HS** 4 0 459 0.00000000E+00 0.29634809E-07 0.30E-07 0.00E+00

45 NFT** 5 0 121 0.10000000E+01 0.10000000E+01 0.00E+00 0.00E+00
HS 5 0 168 0.10000000E+01 0.10000000E+01 0.00E+00 0.00E+00

110 NFT** 10 0 271 -0.45778470E+02 -0.45778469E+02 0.40E-06 0.00E+00
HS 10 0 290 -0.45778470E+02 -0.45778470E+02 0.28E-09 0.00E+00

201 NFT** 2 0 11 0.00000000E+00 0.00000000E+00 0.00E+00 0.00E+00
HS 2 0 29 0.00000000E+00 0.45089348E-17 0.45E-17 0.00E+00

110 NFT** 10 0 271 -0.45778470E+02 -0.45778469E+02 0.40E-06 0.00E+00
HS 10 0 290 -0.45778470E+02 -0.45778470E+02 0.28E-09 0.00E+00

201 NFT** 2 0 11 0.00000000E+00 0.00000000E+00 0.00E+00 0.00E+00
HS 2 0 29 0.00000000E+00 0.45089348E-17 0.45E-17 0.00E+00

204 NFT 2 0 75 0.18360100E+00 0.18363583E+00 0.35E-04 0.00E+00
HS** 2 0 55 0.18360100E+00 0.18360120E+00 0.11E-05 0.00E+00

207 NFT** 2 0 178 0.00000000E+00 0.40667874E-04 0.41E-04 0.00E+00
HS 2 0 118 0.00000000E+00 0.27034955E-07 0.27E-07 0.00E+00

210 NFT 2 0 289 0.00000000E+00 0.44579570E-05 0.45E-05 0.00E+00
HS** 2 0 47 0.00000000E+00 0.39924439E-05 0.40E-05 0.00E+00

213 NFT 2 0 295 0.00000000E+00 0.29861841E-05 0.30E-05 0.00E+00
HS** 2 0 145 0.00000000E+00 0.15179672E-06 0.15E-06 0.00E+00

256 NFT** 4 0 501 0.00000000E+00 0.39098840E-06 0.39E-06 0.00E+00
HS 4 0 697 0.00000000E+00 0.91827889E-07 0.92E-07 0.00E+00

258 NFT 4 0 417 0.00000000E+00 0.21183635E-05 0.21E-05 0.00E+00
HS** 4 0 395 0.00000000E+00 0.20582604E-07 0.21E-07 0.00E+00

260 NFT 4 0 101 0.00000000E+00 0.36199999E-01 0.36E-01 0.00E+00
HS** 4 0 395 0.00000000E+00 0.20582607E-07 0.21E-07 0.00E+00

261 NFT** 4 0 481 0.00000000E+00 0.17657579E-07 0.18E-07 0.00E+00
HS 4 0 547 0.00000000E+00 0.58742233E-07 0.59E-07 0.00E+00

267 NFT 5 0 571 0.00000000E+00 0.17420919E-01 0.17E-01 0.00E+00
HS** 5 0 675 0.00000000E+00 0.15955255E-04 0.16E-04 0.00E+00

272 NFT** 6 0 623 0.00000000E+00 0.15243581E-01 0.15E-01 0.00E+00
HS 6 0 804 0.00000000E+00 0.56556841E-02 0.57E-02 0.00E+00

274 NFT 2 0 284 0.00000000E+00 0.47576904E-11 0.48E-11 0.00E+00
HS** 2 0 46 0.00000000E+00 0.35247538E-22 0.35E-22 0.00E+00

275 NFT 4 0 497 0.00000000E+00 0.32239150E-04 0.32E-04 0.00E+00
HS** 4 0 69 0.00000000E+00 0.13975486E-06 0.14E-06 0.00E+00

276 NFT 6 0 689 0.00000000E+00 0.13891247E-02 0.14E-02 0.00E+00
HS** 6 0 201 0.00000000E+00 0.13183587E-10 0.13E-10 0.00E+00

287 NFT** 20 0 2101 0.00000000E+00 0.14181070E-06 0.14E-06 0.00E+00
HS 20 0 2187 0.00000000E+00 0.14817396E-06 0.15E-06 0.00E+00

289 NFT 30 0 1901 0.00000000E+00 0.57394416E-08 0.57E-08 0.00E+00
HS** 30 0 848 0.00000000E+00 0.10087201E-09 0.10E-09 0.00E+00

290 NFT** 2 0 55 0.00000000E+00 0.10139202E-09 0.10E-09 0.00E+00
HS 2 0 155 0.00000000E+00 0.10788891E-06 0.11E-06 0.00E+00

291 NFT** 10 0 1031 0.00000000E+00 0.13378455E-05 0.13E-05 0.00E+00
HS 10 0 1709 0.00000000E+00 0.11976216E-04 0.12E-04 0.00E+00

294 NFT** 6 0 701 0.00000000E+00 0.46525950E-03 0.47E-03 0.00E+00
HS 6 0 1654 0.00000000E+00 0.39714708E-07 0.40E-07 0.00E+00

295 NFT** 10 0 1101 0.00000000E+00 0.90823797E-03 0.91E-03 0.00E+00
HS 10 0 4272 0.00000000E+00 0.22913957E-07 0.23E-07 0.00E+00

296 NFT** 16 0 1701 0.00000000E+00 0.15129161E-02 0.15E-02 0.00E+00
HS 16 0 2015 0.00000000E+00 0.15280757E-02 0.15E-02 0.00E+00

297 NFT** 30 0 3101 0.00000000E+00 0.29039802E-02 0.29E-02 0.00E+00
HS 30 0 3993 0.00000000E+00 0.29172835E-02 0.29E-02 0.00E+00
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298 NFT** 50 0 5101 0.00000000E+00 0.48856172E-02 0.49E-02 0.00E+00

HS 50 0 6633 0.00000000E+00 0.48981547E-02 0.49E-02 0.00E+00

299 NFT** 100 0 8081 0.00000000E+00 0.98401575E-02 0.98E-02 0.00E+00

HS 100 0 13233 0.00000000E+00 0.98482202E-02 0.98E-02 0.00E+00

307 NFT 2 0 277 0.00000000E+00 0.61679140E-01 0.62E-01 0.00E+00

HS** 2 0 132 0.00000000E+00 0.12373060E-04 0.12E-04 0.00E+00

309 NFT 2 0 271 -0.39871708E+01 -0.39871048E+01 0.66E-04 0.00E+00

HS** 2 0 94 -0.39871708E+01 -0.39871708E+01 -0.19E-08 0.00E+00

312 NFT** 2 0 291 0.00000000E+00 0.22251541E-01 0.22E-01 0.00E+00

HS 2 0 298 0.00000000E+00 0.59232518E-03 0.59E-03 0.00E+00

314 NFT 2 0 293 0.16904000E+00 0.16906186E+00 0.22E-04 0.00E+00

HS** 2 0 56 0.16904000E+00 0.16904268E+00 0.16E-04 0.00E+00

328 NFT** 2 0 50 0.17441520E+01 0.17441520E+01 0.56E-08 0.00E+00

HS 2 0 99 0.17441520E+01 0.17441520E+01 0.17E-07 0.00E+00

357 NFT** 4 0 6 0.35845660E+00 0.36733387E+00 0.89E-02 0.00E+00

HS 4 0 170 0.35845660E+00 0.35845711E+00 0.14E-05 0.00E+00

368 NFT** 8 0 254 -0.75000000E+00 -0.75000000E+00 0.74E-11 0.00E+00

HS 8 0 297 -0.75000000E+00 -0.75000000E+00 0.92E-09 0.00E+00

379 NFT** 11 0 981 0.40137700E-01 0.49532121E-01 0.94E-02 0.00E+00

HS 11 0 2401 0.40137700E-01 0.40137773E-01 0.18E-05 0.00E+00

Remarks.

The notations about some expressions in the Table 5.1 are given as follows
TP—test problem number, N—number of variables, M—number of constraints,
NF—number of objective function evaluations,
NDF—number of gradient evaluations of objective function,
NEF— number of equivalent function evaluations, i.e., NF plus number of function calls needed
for gradient computation,
FEX—exact objective function values, F—computed objective function values,
DFX—relative error in objective function,
DGX—sum of constraint violations,
HS—results which are gotten by the method in [13],
NFT—results which are gotten by our new SQP-Filter method,
∗∗—superscript ∗∗ denotes that corresponding method has a better behavior.

For the 39 test problems above, total number of objective function evaluations of our new
method is 33799 while total number of objective function evaluations of NLPQL presented in
[13] is 45801. The results illustrate that our method use less computation of objective function
values. Our new method behaves better than NLPQL on 23 test problems of all 39 test problems
and NLPQL behaves better than our new method on 16 test problems of all 39 test problems.
The performance of our new method is satisfactory.

5.2 Comparison to Fletcher’s SQP-Filter and Our New SQP-Filter Method on

General Nonlinear Programming

Next, our new SQP-Filter method is compared with Fletcher’s SQP-Filter method on 161
general general nonlinear programming problems. Our new method fails on 31 test problems
and Fletcher’s method fails on 34 test problems of all 161 test problems. Table 5.2 and table
5.3 give the results of our new method and Fletcher’s method respectively.
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Table 5.2( Testing results about NLP problems by using our new SQP-Filter method)
TP N ME M NF NDF NG NDG FEX F DFX DGX

6 2 1 1 20 10 20 10 0.00000000E+00 0.29677103E-16 0.30E-16 0.00E+00

7 2 1 1 16 11 16 11 -0.17320508E+01 -0.17320508E+01 0.18E-14 0.00E+00

8 2 2 2 9 7 11 8 -0.10000000E+01 -0.10000000E+01 0.00E+00 0.00E+00

9 2 1 1 7 6 7 6 -0.50000000E+00 -0.50000000E+00 0.22E-15 0.35E-09

10 2 0 1 13 12 15 12 -0.10000000E+01 -0.10000000E+01 0.13E-14 0.27E-14

11 2 0 1 9 8 9 8 -0.84984642E+01 -0.84984642E+01 0.36E-14 0.18E-14

12 2 0 1 11 8 11 8 -0.30000000E+02 -0.30000000E+02 0.00E+00 0.18E-14

13 2 0 1 34 34 35 34 0.10000000E+01 0.10000031E+01 0.31E-05 0.00E+00

14 2 1 2 7 6 7 6 0.13934650E+01 0.13934650E+01 0.44E-15 0.22E-15

15 2 0 2 4 3 4 3 0.30650001E+01 0.30650000E+01 0.57E-07 0.00E+00

18 2 0 2 11 7 11 7 0.50000000E+01 0.49991497E+01 0.85E-03 0.43E-02

19 2 0 2 18 17 18 17 -0.69618137E+00 -0.69618137E+00 0.28E-14 0.12E-12

20 2 0 3 5 4 5 4 0.38198730E+02 0.38198730E+02 0.71E-14 0.11E-15

21 2 0 1 18 17 18 17 -0.99959998E+00 -0.99959998E+00 0.89E-11 0.00E+00

22 2 0 2 6 5 6 5 0.10000000E+01 0.10000000E+01 0.00E+00 0.11E-15

23 2 0 5 7 6 7 6 0.20000000E+01 0.20000000E+01 0.53E-13 0.00E+00

24 2 0 3 14 13 14 13 -0.10000000E+01 -0.10000000E+01 0.22E-15 0.00E+00

26 3 1 1 101 95 101 95 0.00000000E+00 0.10526016E-07 0.11E-07 0.00E+00

27 3 1 1 48 31 48 31 0.40000000E+01 0.44401929E+01 0.44E+00 0.00E+00

28 3 1 1 8 7 8 7 0.00000000E+00 0.52520811E-17 0.53E-17 0.00E+00

29 3 0 1 13 12 13 12 -0.22627417E+02 -0.22627417E+02 0.14E-11 0.20E-11

30 3 0 1 19 18 19 18 0.10000000E+01 0.10000000E+01 0.58E-10 0.00E+00

31 3 0 1 76 43 76 43 0.60000000E+01 0.60906429E+01 0.91E-01 0.68E-10

32 3 1 2 5 4 5 4 0.10000000E+01 0.10000000E+01 0.00E+00 0.00E+00

34 3 0 2 9 8 9 8 -0.83403245E+00 -0.83403245E+00 0.11E-15 0.22E-14

35 3 0 1 8 7 8 7 0.11111111E+00 0.11111111E+00 0.17E-15 0.00E+00

36 3 0 1 3 2 3 2 -0.33000000E+04 -0.33000000E+04 0.00E+00 0.00E+00

37 3 0 2 11 10 11 10 -0.34560000E+04 -0.34560000E+04 0.45E-12 0.00E+00

39 4 2 2 23 22 23 22 -0.10000000E+01 -0.10000000E+01 0.78E-12 0.15E-13

40 4 3 3 26 25 26 25 -0.25000000E+00 -0.25000000E+00 0.61E-11 0.27E-13

41 4 1 1 9 8 9 8 0.19259259E+01 0.19259259E+01 0.22E-15 0.18E-12

42 4 2 2 21 14 21 14 0.13857864E+02 0.13857864E+02 0.18E-14 0.28E-12

43 4 0 3 16 13 16 13 -0.44000000E+02 -0.44000000E+02 0.17E-09 0.16E-11

44 4 0 6 9 8 9 8 -0.15000000E+02 -0.15000000E+02 0.00E+00 0.00E+00

46 5 2 2 51 27 51 27 0.00000000E+00 0.29482983E-03 0.29E-03 0.00E+00

48 5 2 2 11 10 11 10 0.00000000E+00 0.15430416E-15 0.15E-15 0.00E+00

49 5 2 2 51 32 51 32 0.00000000E+00 0.41189117E-01 0.41E-01 0.00E+00

50 5 3 3 51 50 51 50 0.00000000E+00 0.15175060E-07 0.15E-07 0.00E+00

51 5 3 3 8 7 8 7 0.00000000E+00 0.13946477E-17 0.14E-17 0.00E+00

53 5 3 3 41 37 41 37 0.40930233E+01 0.40930233E+01 0.13E-10 0.00E+00

56 7 4 4 101 100 101 100 -0.34560000E+01 -0.34559868E+01 0.13E-04 0.11E-09

59 2 0 3 23 24 25 24 -0.78042263E+01 -0.78042360E+01 0.96E-05 0.11E-12

60 3 1 1 12 11 12 11 0.32568200E-01 0.32568200E-01 0.38E-11 0.00E+00

62 3 1 1 29 28 29 28 -0.26272514E+05 -0.26272514E+05 0.18E-07 0.00E+00

64 3 0 1 35 33 37 33 0.62998424E+04 0.62998424E+04 0.29E-06 0.11E-15

65 3 0 1 24 18 24 18 0.95352886E+00 0.97168149E+00 0.18E-01 0.00E+00

66 3 0 2 14 13 14 13 0.51816327E+00 0.51816327E+00 0.23E-10 0.86E-13

71 4 1 2 8 7 8 7 0.17014017E+02 0.17014017E+02 0.34E-09 0.13E-13

72 4 0 2 49 48 49 48 0.72767938E+03 0.72767936E+03 0.18E-04 0.14E-16

73 4 1 3 6 5 6 5 0.29894378E+02 0.29894378E+02 0.18E-08 0.89E-15

76 4 0 3 10 9 10 9 -0.46818182E+01 -0.46818182E+01 0.18E-11 0.00E+00

78 5 3 3 9 8 9 8 -0.29197004E+01 -0.29197004E+01 0.15E-09 0.00E+00

79 5 3 3 20 19 20 19 0.78776821E-01 0.78776821E-01 0.17E-10 0.00E+00
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80 5 3 3 8 7 8 7 0.53949848E-01 0.53949848E-01 0.79E-11 0.00E+00

81 5 3 3 12 11 12 11 0.53949848E-01 0.53949848E-01 0.46E-11 0.00E+00

83 5 0 6 6 5 6 5 -0.30665539E+05 -0.30665539E+05 0.83E-07 0.00E+00

84 5 0 6 22 18 22 18 -0.52803351E+02 -0.52803351E+02 0.15E-08 0.58E-10

88 2 0 1 22 20 22 20 0.13626568E+01 0.13626907E+01 0.34E-04 0.21E-14

89 3 0 1 32 31 32 31 0.13626568E+01 0.13626907E+01 0.34E-04 0.24E-14

90 4 0 1 39 28 39 28 0.13626568E+01 0.13626907E+01 0.34E-04 0.00E+00

91 5 0 1 44 34 49 34 0.13626568E+01 0.13626907E+01 0.34E-04 0.83E-15

92 6 0 1 38 28 38 28 0.13626568E+01 0.13626907E+01 0.34E-04 0.26E-14

95 6 0 4 3 2 3 2 0.15619514E-01 0.15619525E-01 0.11E-07 0.00E+00

96 6 0 4 3 2 3 2 0.15619513E-01 0.15619525E-01 0.12E-07 0.00E+00

104 8 0 6 101 100 101 100 0.39511634E+01 0.39512151E+01 0.52E-04 0.49E-09

111 10 3 3 101 100 101 100 -0.47761090E+02 -0.47761071E+02 0.19E-04 0.00E+00

112 10 3 3 32 31 32 31 -0.47761086E+00 -0.47761090E+00 0.38E-07 0.00E+00

113 10 0 8 76 75 76 75 0.24306209E+02 0.24306209E+02 0.42E-08 0.12E-12

215 2 0 1 8 7 8 7 0.00000000E+00 -0.33832439E-17 0.34E-17 0.34E-17

216 2 1 1 18 17 18 17 0.10000000E+01 0.99937529E+00 0.62E-03 0.00E+00

217 2 1 2 9 8 9 8 -0.80000000E+00 -0.80000000E+00 0.22E-13 0.89E-13

221 2 0 1 22 21 22 21 -0.10000000E+01 -0.10000000E+01 0.00E+00 0.00E+00

222 2 0 1 7 6 7 6 -0.15000000E+01 -0.15000000E+01 0.00E+00 0.00E+00

223 2 0 2 9 8 9 8 -0.83403245E+00 -0.83403245E+00 0.43E-12 0.10E-10

224 2 0 4 38 37 38 37 -0.30400000E+03 -0.30400000E+03 0.88E-11 0.00E+00

225 2 0 5 7 6 7 6 0.20000000E+01 0.20000000E+01 0.53E-13 0.00E+00

226 2 0 2 11 10 11 10 -0.50000000E+00 -0.50000000E+00 0.24E-12 0.69E-12

227 2 0 2 8 7 8 7 0.10000000E+01 0.10000000E+01 0.00E+00 0.00E+00

228 2 0 2 8 7 8 7 -0.30000000E+01 -0.30000000E+01 0.00E+00 0.00E+00

230 2 0 2 23 21 23 21 0.37500000E+00 0.37500000E+00 0.00E+00 0.00E+00

232 2 0 3 8 7 8 7 -0.10000000E+01 -0.10000000E+01 0.22E-15 0.00E+00

234 2 0 1 101 100 101 100 -0.80000000E+00 -0.80000000E+00 0.40E-10 0.00E+00

237 2 0 3 19 20 21 20 -0.58903436E+02 -0.58903436E+02 0.90E-08 0.00E+00

238 2 0 3 17 18 19 18 -0.58903436E+02 -0.58903436E+02 0.90E-08 0.00E+00

239 2 0 1 21 21 22 21 -0.58903435E+02 -0.58903436E+02 0.13E-05 0.00E+00

248 3 1 2 15 14 15 14 -0.80000000E+00 -0.80000000E+00 0.85E-13 0.35E-12

249 3 0 1 19 18 19 18 0.10000000E+01 0.10000000E+01 0.58E-10 0.00E+00

250 3 0 2 3 2 3 2 -0.33000000E+04 -0.33000000E+04 0.00E+00 0.00E+00

251 3 0 1 11 10 11 10 -0.34560000E+04 -0.34560000E+04 0.45E-12 0.00E+00

252 3 1 1 37 36 37 36 0.40000000E-01 0.40000000E-01 0.00E+00 0.00E+00

253 3 0 1 9 8 9 8 0.69282032E+02 0.69282032E+02 0.30E-06 0.00E+00

254 3 2 2 19 18 19 18 -0.17320508E+01 -0.17320508E+01 0.22E-15 0.00E+00

262 4 1 4 7 6 7 6 -0.10000000E+02 -0.10000000E+02 0.00E+00 0.30E+01

263 4 2 4 35 34 35 34 -0.10000000E+01 -0.10000000E+01 0.44E-12 0.97E-12

264 4 0 3 20 19 20 19 -0.43999999E+00 -0.43999999E+00 0.37E-13 0.22E-11

269 5 3 3 40 39 40 39 0.40930233E+01 0.40930233E+01 0.98E-11 0.31E+00

270 5 0 1 9 8 9 8 -0.10000000E+01 -0.10000000E+01 0.36E-14 0.32E-13

277 4 0 4 101 100 101 100 0.50761905E+01 0.50744526E+01 0.17E-02 0.47E-02

278 6 0 6 101 100 101 100 0.78385281E+01 0.78850365E+01 0.47E-01 0.57E-02

280 10 0 10 5 5 5 5 0.13375428E+02 0.13376555E+02 0.11E-02 0.00E+00

315 2 0 3 11 10 11 10 -0.80000000E+00 -0.80000000E+00 0.00E+00 0.22E-15

322 2 1 1 24 24 25 24 0.49996001E+03 0.49996001E+03 0.20E-05 0.10E+01

323 2 0 2 93 92 93 92 0.37989446E+01 0.37989446E+01 0.48E-07 0.77E-12

325 2 1 3 7 6 7 6 0.37913415E+01 0.37913414E+01 0.51E-07 0.00E+00

326 2 0 2 9 8 9 8 -0.79807821E+02 -0.79807821E+02 0.15E-06 0.56E-14

327 2 0 1 101 100 101 100 0.30646306E-01 0.30646302E-01 0.38E-08 0.00E+00

329 2 0 3 7 6 7 6 -0.69618139E+04 -0.69618139E+04 0.24E-04 0.68E-13
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330 2 0 1 11 10 11 10 0.16205833E+01 0.16205833E+01 0.22E-07 0.67E-14

331 2 0 1 101 100 101 100 0.42580000E+01 0.43156000E+01 0.58E-01 0.00E+00

336 3 2 2 26 27 51 35 -0.33789573E+00 -0.33848594E+00 0.59E-03 0.00E+00

337 3 0 1 12 11 12 11 0.60000000E+01 0.60000000E+01 0.89E-15 0.44E-15

339 3 0 1 13 12 13 12 0.33616797E+01 0.33616797E+01 0.11E-07 0.00E+00

340 3 0 1 12 11 12 11 -0.54000000E-01 -0.54000000E-01 0.13E-13 0.11E-15

341 3 0 1 13 12 13 12 -0.22627417E+02 -0.22627417E+02 0.20E-08 0.20E-11

342 3 0 1 13 12 13 12 -0.22627417E+02 -0.22627417E+02 0.20E-08 0.20E-11

343 3 0 2 6 5 6 5 -0.56847825E+01 -0.56847825E+01 0.36E-14 0.23E-12

344 3 1 1 12 11 12 11 0.32568200E-01 0.32568200E-01 0.26E-09 0.11E-15

345 3 1 1 24 17 24 17 0.32568200E-01 0.32568200E-01 0.26E-09 0.00E+00

346 3 0 2 6 5 6 5 -0.56847825E+01 -0.56847825E+01 0.36E-14 0.23E-12

347 3 0 1 3 2 3 2 0.17374625E+05 0.17374625E+05 0.27E-03 0.00E+00

353 4 1 3 3 2 3 2 -0.39933673E+02 -0.39933673E+02 0.47E-06 0.00E+00

361 5 0 6 31 30 31 30 -0.77641212E+06 -0.77641212E+06 0.47E-02 0.00E+00

375 10 9 9 35 34 48 46 -0.15160000E+02 -0.15623819E+02 0.46E+00 0.00E+00

396 2 1 1 4 4 6 5 0.00000000E+00 0.00000000E+00 0.00E+00 0.00E+00

397 2 1 1 18 18 21 20 0.00000000E+00 0.22015327E-11 0.22E-11 0.00E+00

Table 5.3 (Testing results about NLP problems by using Fletcher’s SQP-Filter method)
TP N ME M NF NDF NG NDG FEX F DFX DGX

6 2 1 1 13 12 13 12 0.00000000E+00 0.12263679E-14 0.12E-14 0.00E+00

7 2 1 1 10 9 10 9 -0.17320508E+01 -0.17320508E+01 0.00E+00 0.00E+00

8 2 2 2 7 6 7 6 -0.10000000E+01 -0.10000000E+01 0.00E+00 0.00E+00

9 2 1 1 7 6 7 6 -0.50000000E+00 -0.50000000E+00 0.22E-15 0.61E-10

10 2 0 1 13 12 13 12 -0.10000000E+01 -0.10000000E+01 0.36E-14 0.71E-14

11 2 0 1 9 8 9 8 -0.84984642E+01 -0.84984642E+01 0.36E-14 0.18E-14

12 2 0 1 10 9 10 9 -0.30000000E+02 -0.30000000E+02 0.27E-12 0.53E-12

13 2 0 1 34 34 35 34 0.10000000E+01 0.10000031E+01 0.31E-05 0.00E+00

14 2 1 2 7 6 7 6 0.13934650E+01 0.13934650E+01 0.44E-15 0.22E-15

15 2 0 2 4 3 4 3 0.30650001E+01 0.30650000E+01 0.57E-07 0.00E+00

18 2 0 2 11 10 11 10 0.50000000E+01 0.50000000E+01 0.00E+00 0.00E+00

19 2 0 2 18 17 18 17 -0.69618137E+00 -0.69618137E+00 0.28E-14 0.12E-12

20 2 0 3 5 4 5 4 0.38198730E+02 0.38198730E+02 0.71E-14 0.11E-15

21 2 0 1 18 17 18 17 -0.99959998E+00 -0.99959998E+00 0.89E-11 0.00E+00

22 2 0 2 6 5 6 5 0.10000000E+01 0.10000000E+01 0.00E+00 0.11E-15

23 2 0 5 7 6 7 6 0.20000000E+01 0.20000000E+01 0.53E-13 0.00E+00

24 2 0 3 14 13 14 13 -0.10000000E+01 -0.10000000E+01 0.22E-15 0.00E+00

26 3 1 1 101 98 101 98 0.00000000E+00 0.82782422E-03 0.83E-03 0.00E+00

27 3 1 1 47 46 47 46 0.40000000E+01 0.41002731E+01 0.10E+00 0.00E+00

28 3 1 1 8 7 8 7 0.00000000E+00 0.52520811E-17 0.53E-17 0.00E+00

29 3 0 1 13 12 13 12 -0.22627417E+02 -0.22627417E+02 0.14E-11 0.20E-11

30 3 0 1 19 18 19 18 0.10000000E+01 0.10000000E+01 0.58E-10 0.00E+00

31 3 0 1 13 12 13 12 0.60000000E+01 0.60000000E+01 0.44E-14 0.78E-15

32 3 1 2 5 4 5 4 0.10000000E+01 0.10000000E+01 0.00E+00 0.00E+00

34 3 0 2 9 8 9 8 -0.83403245E+00 -0.83403245E+00 0.11E-15 0.22E-14

35 3 0 1 8 7 8 7 0.11111111E+00 0.11111111E+00 0.17E-15 0.00E+00

36 3 0 1 3 2 3 2 -0.33000000E+04 -0.33000000E+04 0.00E+00 0.00E+00

37 3 0 2 11 10 11 10 -0.34560000E+04 -0.34560000E+04 0.45E-12 0.00E+00

39 4 2 2 23 22 23 22 -0.10000000E+01 -0.10000000E+01 0.78E-12 0.15E-13
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40 4 3 3 26 25 26 25 -0.25000000E+00 -0.25000000E+00 0.61E-11 0.27E-13

41 4 1 1 9 8 9 8 0.19259259E+01 0.19259259E+01 0.22E-15 0.18E-12

42 4 2 2 13 12 13 12 0.13857864E+02 0.13857864E+02 0.20E-11 0.28E-12

43 4 0 3 18 17 18 17 -0.44000000E+02 -0.44000000E+02 0.82E-12 0.54E-12

44 4 0 6 9 8 9 8 -0.15000000E+02 -0.15000000E+02 0.00E+00 0.00E+00

46 5 2 2 101 98 101 98 0.00000000E+00 0.87462215E-03 0.87E-03 0.40E+01

48 5 2 2 11 10 11 10 0.00000000E+00 0.15430416E-15 0.15E-15 0.00E+00

49 5 2 2 101 100 101 100 0.00000000E+00 0.25433534E-06 0.25E-06 0.00E+00

50 5 3 3 64 63 64 63 0.00000000E+00 0.60718749E-10 0.61E-10 0.00E+00

51 5 3 3 8 7 8 7 0.00000000E+00 0.13946477E-17 0.14E-17 0.00E+00

52 5 3 3 101 100 101 100 0.53266476E+01 0.53276119E+01 0.96E-03 0.00E+00

53 5 3 3 40 39 40 39 0.40930233E+01 0.40930233E+01 0.98E-11 0.00E+00

56 7 4 4 101 100 101 100 -0.34560000E+01 -0.34559868E+01 0.13E-04 0.11E-09

59 2 0 3 23 24 25 24 -0.78042263E+01 -0.78042360E+01 0.96E-05 0.11E-12

60 3 1 1 12 11 12 11 0.32568200E-01 0.32568200E-01 0.38E-11 0.00E+00

62 3 1 1 29 28 29 28 -0.26272514E+05 -0.26272514E+05 0.18E-07 0.00E+00

64 3 0 1 8 5 8 5 0.62998424E+04 0.36192633E+05 0.30E+05 0.15E+02

65 3 0 1 19 18 19 18 0.95352886E+00 0.95352886E+00 0.48E-10 0.14E-13

66 3 0 2 14 13 14 13 0.51816327E+00 0.51816327E+00 0.23E-10 0.86E-13

71 4 1 2 8 7 8 7 0.17014017E+02 0.17014017E+02 0.34E-09 0.13E-13

72 4 0 2 49 48 49 48 0.72767938E+03 0.72767936E+03 0.18E-04 0.14E-16

73 4 1 3 6 5 6 5 0.29894378E+02 0.29894378E+02 0.18E-08 0.89E-15

76 4 0 3 10 9 10 9 -0.46818182E+01 -0.46818182E+01 0.18E-11 0.00E+00

78 5 3 3 9 8 9 8 -0.29197004E+01 -0.29197004E+01 0.15E-09 0.00E+00

79 5 3 3 20 19 20 19 0.78776821E-01 0.78776821E-01 0.17E-10 0.00E+00

80 5 3 3 8 7 8 7 0.53949848E-01 0.53949848E-01 0.79E-11 0.00E+00

81 5 3 3 12 11 12 11 0.53949848E-01 0.53949848E-01 0.46E-11 0.00E+00

83 5 0 6 6 5 6 5 -0.30665539E+05 -0.30665539E+05 0.83E-07 0.00E+00

84 5 0 6 3 1 3 1 -0.52803351E+02 -0.23512435E+02 0.29E+02 0.00E+00

88 2 0 1 24 23 24 23 0.13626568E+01 0.13626907E+01 0.34E-04 0.19E-14

89 3 0 1 32 31 32 31 0.13626568E+01 0.13626907E+01 0.34E-04 0.24E-14

95 6 0 4 3 2 3 2 0.15619514E-01 0.15619525E-01 0.11E-07 0.00E+00

96 6 0 4 3 2 3 2 0.15619513E-01 0.15619525E-01 0.12E-07 0.00E+00

104 8 0 6 101 100 101 100 0.39511634E+01 0.39512151E+01 0.52E-04 0.49E-09

111 10 3 3 101 100 101 100 -0.47761090E+02 -0.47761071E+02 0.19E-04 0.00E+00

112 10 3 3 32 31 32 31 -0.47761086E+00 -0.47761090E+00 0.38E-07 0.00E+00

113 10 0 8 76 75 76 75 0.24306209E+02 0.24306209E+02 0.42E-08 0.12E-12

215 2 0 1 8 7 8 7 0.00000000E+00 -0.33832439E-17 0.34E-17 0.34E-17

216 2 1 1 18 17 18 17 0.10000000E+01 0.99937529E+00 0.62E-03 0.00E+00

217 2 1 2 9 8 9 8 -0.80000000E+00 -0.80000000E+00 0.22E-13 0.89E-13

221 2 0 1 22 21 22 21 -0.10000000E+01 -0.10000000E+01 0.00E+00 0.00E+00

222 2 0 1 7 6 7 6 -0.15000000E+01 -0.15000000E+01 0.00E+00 0.00E+00

223 2 0 2 9 8 9 8 -0.83403245E+00 -0.83403245E+00 0.43E-12 0.10E-10

224 2 0 4 38 37 38 37 -0.30400000E+03 -0.30400000E+03 0.88E-11 0.00E+00

225 2 0 5 7 6 7 6 0.20000000E+01 0.20000000E+01 0.53E-13 0.00E+00

226 2 0 2 11 10 11 10 -0.50000000E+00 -0.50000000E+00 0.24E-12 0.69E-12

227 2 0 2 8 7 8 7 0.10000000E+01 0.10000000E+01 0.00E+00 0.00E+00

228 2 0 2 8 7 8 7 -0.30000000E+01 -0.30000000E+01 0.00E+00 0.00E+00

230 2 0 2 101 100 101 100 0.37500000E+00 -0.25978641E-19 0.38E+00 0.10E+01

232 2 0 3 8 7 8 7 -0.10000000E+01 -0.10000000E+01 0.22E-15 0.00E+00

234 2 0 1 101 100 101 100 -0.80000000E+00 -0.80000000E+00 0.40E-10 0.00E+00

237 2 0 3 19 20 21 20 -0.58903436E+02 -0.58903436E+02 0.90E-08 0.00E+00

238 2 0 3 17 18 19 18 -0.58903436E+02 -0.58903436E+02 0.90E-08 0.00E+00
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239 2 0 1 21 21 22 21 -0.58903435E+02 -0.58903436E+02 0.13E-05 0.00E+00

248 3 1 2 15 14 15 14 -0.80000000E+00 -0.80000000E+00 0.85E-13 0.35E-12

249 3 0 1 19 18 19 18 0.10000000E+01 0.10000000E+01 0.58E-10 0.00E+00

250 3 0 2 3 2 3 2 -0.33000000E+04 -0.33000000E+04 0.00E+00 0.00E+00

251 3 0 1 11 10 11 10 -0.34560000E+04 -0.34560000E+04 0.45E-12 0.00E+00

252 3 1 1 37 36 37 36 0.40000000E-01 0.40000000E-01 0.00E+00 0.00E+00

253 3 0 1 9 8 9 8 0.69282032E+02 0.69282032E+02 0.30E-06 0.00E+00

254 3 2 2 19 18 19 18 -0.17320508E+01 -0.17320508E+01 0.22E-15 0.00E+00

262 4 1 4 7 6 7 6 -0.10000000E+02 -0.10000000E+02 0.00E+00 0.30E+01

263 4 2 4 35 34 35 34 -0.10000000E+01 -0.10000000E+01 0.44E-12 0.97E-12

264 4 0 3 20 19 20 19 -0.43999999E+00 -0.43999999E+00 0.37E-13 0.22E-11

269 5 3 3 40 39 40 39 0.40930233E+01 0.40930233E+01 0.98E-11 0.53E-14

270 5 0 1 9 8 9 8 -0.10000000E+01 -0.10000000E+01 0.36E-14 0.32E-13

277 4 0 4 101 100 101 100 0.50761905E+01 0.50744526E+01 0.17E-02 0.47E-02

278 6 0 6 101 100 101 100 0.78385281E+01 0.78850365E+01 0.47E-01 0.57E-02

280 10 0 10 5 5 5 5 0.13375428E+02 0.13376555E+02 0.11E-02 0.00E+00

315 2 0 3 11 10 11 10 -0.80000000E+00 -0.80000000E+00 0.00E+00 0.22E-15

322 2 1 1 24 24 25 24 0.49996001E+03 0.49996001E+03 0.20E-05 0.10E+01

323 2 0 2 93 92 93 92 0.37989446E+01 0.37989446E+01 0.48E-07 0.77E-12

325 2 1 3 7 6 7 6 0.37913415E+01 0.37913414E+01 0.51E-07 0.00E+00

326 2 0 2 9 8 9 8 -0.79807821E+02 -0.79807821E+02 0.15E-06 0.56E-14

327 2 0 1 101 100 101 100 0.30646306E-01 0.30646302E-01 0.38E-08 0.00E+00

329 2 0 3 7 6 7 6 -0.69618139E+04 -0.69618139E+04 0.24E-04 0.68E-13

330 2 0 1 11 10 11 10 0.16205833E+01 0.16205833E+01 0.22E-07 0.67E-14

331 2 0 1 101 100 101 100 0.42580000E+01 0.43156000E+01 0.58E-01 0.00E+00

336 3 2 2 31 7 37 7 -0.33789573E+00 0.41999998E+02 0.42E+02 0.00E+00

337 3 0 1 12 11 12 11 0.60000000E+01 0.60000000E+01 0.89E-15 0.44E-15

339 3 0 1 13 12 13 12 0.33616797E+01 0.33616797E+01 0.11E-07 0.00E+00

340 3 0 1 12 11 12 11 -0.54000000E-01 -0.54000000E-01 0.13E-13 0.11E-15

341 3 0 1 13 12 13 12 -0.22627417E+02 -0.22627417E+02 0.20E-08 0.20E-11

342 3 0 1 13 12 13 12 -0.22627417E+02 -0.22627417E+02 0.20E-08 0.20E-11

343 3 0 2 6 5 6 5 -0.56847825E+01 -0.56847825E+01 0.36E-14 0.23E-12

344 3 1 1 12 11 12 11 0.32568200E-01 0.32568200E-01 0.26E-09 0.11E-15

345 3 1 1 27 23 27 23 0.32568200E-01 0.32568200E-01 0.26E-09 0.00E+00

346 3 0 2 6 5 6 5 -0.56847825E+01 -0.56847825E+01 0.36E-14 0.23E-12

347 3 0 1 3 2 3 2 0.17374625E+05 0.17374625E+05 0.27E-03 0.00E+00

353 4 1 3 3 2 3 2 -0.39933673E+02 -0.39933673E+02 0.47E-06 0.00E+00

361 5 0 6 31 30 31 30 -0.77641212E+06 -0.77641212E+06 0.47E-02 0.00E+00

375 10 9 9 35 34 35 34 -0.15160000E+02 -0.15161044E+02 0.10E-02 0.00E+00

396 2 1 1 5 7 8 7 0.00000000E+00 0.20173323E-53 0.20E-53 0.00E+00

397 2 1 1 35 40 41 40 0.00000000E+00 0.29145294E-23 0.29E-23 0.00E+00

Remarks.

(1) Notations about some expressions in Table 5.2 and 5.3 are given as follows.
ME—number of equality constraints, NG—number of constraint function evaluations,
NDG—number of gradient evaluations of constraint function.
(2) TP397 is the example that we have given in section 3 and it is a classical example to
illustrate the Marotos effect. Our new SQP-Filter method can overcome the Marotos effect
more effectively than Fletcher’s. Furthermore, 31 test problems which our new method fails to
solve are not given in Table 5.2 and 34 test problems which Fletcher’s method fails to solve are
not given in Table 5.3(mainly caused by the failure of restoration algorithm).

The majority(98 test problems) of all 130 test problems which have been successfully solved(
including TP90, TP91 and TP92 which have successfully been solved by our new method but
not Fletcher’s method) have the same numerical behavior. The main reason for this may lie in
the distance between the initial points and the optimal points is moderate, i.e., not too long
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or too short. 5 test problems show almost the same numerical behavior about using these two
methods, i.e., the number of function evaluations and gradient evaluations is almost the same,
although they are not completely uniform. 17 test problems show much difference in numerical
and the reason may be as follows.
(1) When the initial points are far from the optimal points as our new method gives an estima-
tion for that in advance, our new method will exclude much more points and this would fasten
the global convergence;
(2) For some test problems, the initial points are near to the optimal point. But our method
still reject much more points and this could lead to a slow convergence.
(3) Some test problems converge slowly when the iterative points are nearer to optimal points.
As our method still use two-step criterion to judge whether points could be accepted by the
filter, it will make the convergence slower.
(4) For test problems which are typical examples to illustrate Marotos effect, as we use two-step
criterion to judge whether points could be accepted by the filter, it will prohibit this effect.

In the following we will give a table to illustrate the compositive behavior of the two methods
which are used to solve NLP test problems in [8](see Table 5.4).

In conclusion, the results of this paper show that our new SQP-Filter method behaves at
least the same as the one proposed by Fletcher and Leyffer in [4]. We not only give some
results of convergence but also test these two methods on a large test set presented by W.Hock
and K.Schittkowski in [8]. And the numerical results also show that our method is effective in
solving nonlinear programming problems.

Table 5.4

our new method behaves slightly better 18, 88

Fletcher’s method behaves slightly better 7, 8, 42

our new method behaves 27, 43, 46, 49, 50, 64, 84, 90,

obviously better 91, 92, 230, 336, 345, 396, 397

Fletcher’s method behaves obviously better 31, 65

two methods behave almost the same the remaining 98 test problems
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