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Abstract

This paper is concerned with the numerical solution of functional-differential and func-
tional equations which include functional-differential equations of neutral type as special
cases. The adaptation of general linear methods is considered. It is proved that A-stable
general linear methods can inherit the asymptotic stability of underlying linear systems.
Some general results of numerical stability are also given.
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1. Introduction

Neutral functional differential equations with one state-independent time delay are usually
formulated in the form

y′(t) = f(t, y(t), y(φ(t)), y′(φ(t))), t ≥ 0, (1.1)

where f and φ are given functions with φ(t) ≤ t for t ≥ 0.
In contrast to (1.1) there are neutral functional differential equations of the form

[z(t) − g(t, z(φ(t)))]′ = f(t, z(t), z(φ(t))), t ≥ 0, (1.2)

where f, g and φ are given functions with φ(t) ≤ t for t ≥ 0. To distinguish (1.2) from (1.1), Liu
[17] calls (1.1) an explicit neutral equation and (1.2) an implicit neutral equation. It is obvious
that (1.1) and (1.2) are equivalent to

{

y′(t) = f(t, y(t), y(φ(t)), z(φ(t))),
z(t) = f(t, y(t), y(φ(t)), z(φ(t))),

t ≥ 0 (1.3)

and
{

y′(t) = f(t, y(t) + g(t, z(φ(t))), z(φ(t))),
z(t) = y(t) + g(t, z(φ(t))),

t ≥ 0, (1.4)

respectively.
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The numerical solution for neutral functional-differential equations (1.1) has been studied
extensively in recent years (cf. [1, 7, 12, 13, 19, 22]). There seems to be little difference between
solving (1.1) numerically and solving (1.3) numerically. However, the situation with the implicit
neutral equation (1.2) is very different. Even in the case where (1.2) can be transformed into
the form of (1.1), there are certain advantages in solving it by formulating numerical schemes
based on its equivalent form (1.4). This has been discussed by Liu [17].

More general form than (1.3) and (1.4) is

{

y′(t) = f(t, y(t), y(φ(t)), z(φ(t))),
z(t) = g(t, y(t), y(φ(t)), z(φ(t))),

t ≥ 0. (1.5)

It is easily seen that

{

y′(t) = f(t, y(t), z(t), y(φ(t)), z(φ(t))),
z(t) = g(t, y(t), y(φ(t)), z(φ(t))),

t ≥ 0 (1.6)

can be transformed into the form of (1.5). Systems of the form (1.5) are sometimes called
hybrid systems [11] or systems of functional-differential and functional equations [18]. The
form of (1.5) includes functional-differential equations of neutral type (1.1) and (1.2) as special
cases.

In order to investigate the linear stability of numerical methods to (1.5), Liu [18] considers
the following test problems

{

y′(t) +A1y(t) +A2y(t− τ) +B1z(t− τ) = 0,
z(t) +A3y(t) +A4y(t− τ) +B2z(t− τ) = 0,

t ≥ 0, (1.7a)

with the initial conditions
y(t) = ϕ(t), z(t) = ψ(t), t ≤ 0, (1.7b)

where τ > 0, and A1, A2 ∈ Cd1×d1 , A3, A4 ∈ Cd2×d1 , B1 ∈ Cd1×d2 , B2 ∈ Cd2×d2 are the
coefficient matrices, ϕ, ψ are given vectors of complex functions that satisfy the consistency
condition

ψ(0) +A3ϕ(0) +A4ϕ(−τ) +B2ψ(−τ) = 0.

We introduce some notations. σ(A), ρ(A) and α(A) for a matrix A designate the spectrum,
spectral radius and maximal real parts of the eigenvalues of A, respectively,

P (z, ξ) =

∣

∣

∣

∣

zId1
+A1 +A2ξ B1ξ

A3 +A4ξ Id2
+B2ξ

∣

∣

∣

∣

.

Other notation include

C+ = {z ∈ C
∣

∣Rez > 0}, C0 = {z ∈ C
∣

∣Rez = 0}, C− = {z ∈ C
∣

∣Rez < 0},
D = {z ∈ C

∣

∣|z| < 1}, Γ = {z ∈ C
∣

∣|z| = 1}.

In [18], it is shown that the initial-value problem (1.7) is asymptotically stable for every
τ > 0 if and only if

ρ(B2) < 1, (1.8a)

P (z, ξ) 6= 0 for all z ∈ C0 \ {0} and ξ ∈ Γ, (1.8b)

α(B1(Id2
+B2)

−1(A3 +A4) −A1 −A2) < 0. (1.8c)

Moreover, the asymptotical stability of (1.7) implies the following are true [18]:
(1)α(−A1) < 0,
(2)P (z, ξ) 6= 0 for all z ∈ C0 and ξ ∈ D,
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(3)P (z, ξ) 6= 0 for all z ∈ C+ and ξ ∈ D ∪ Γ.

Further, it is easy to obtain the following result:

Lemma 1.1[8]. The conditions (1.8) implies

(1) σ(A1 +A2ξ −B1ξ(Id2
+B2ξ)

−1(A3 +A4ξ)) ⊂ C+ for all ξ ∈ D,

(2) σ(A1 +A2ξ −B1ξ(Id2
+B2ξ)

−1(A3 +A4ξ)) ⊂ C+ ∪ {0} for all ξ ∈ Γ.

The stability of difference formulas for the system of functional-differential and functional
equations (1.7) has been studied by several authors. Recently, Liu [18] investigated the numeri-
cal stability of Runge-Kutta-Collocation methods with a constrained grid and linear θ−methods
with a uniform grid for linear systems of the form (1.7). Huang and Chang [8, 9] considered the
adaptation of linear multistep methods, one-leg methods and Runge-Kutta methods to (1.7)
and investigated the linear stability of these methods. In this paper, the adaptation of general
linear methods to (1.7) is considered. It is proved that A-stable general linear methods can
inherit the asymptotic stability of underlying linear systems. Some general results of numerical
stability are also given. General linear methods [2, 3, 15] contain not only Runge-Kutta meth-
ods, one-leg methods, linear multistep methods, multistep Runge-Kutta methods, but also a
wide range of hybrid methods. Specializing Theorem 3.1 and Theorem 3.6 in this paper to linear
multistep methods, one-leg methods and Runge-Kutta methods, our results are in accord with
those obtained by Huang and Chang [8, 9]. Moreover, the sufficient and necessary condition
of stability of multistep Runge-Kutta methds is also given.

2. Adaptation of General Linear Method to the System (1.7)

An adaptation of r−step and s−stage general linear method to the system (1.7) leads to
the following numerical process:

y
(n)
i =

r
∑

j=1

c22ij y
(n−1)
j + h

s
∑

j=1

c21ij f
(n)
j , i = 1, 2, · · · , r, (2.1a)

z
(n)
i =

s
∑

j=1

c̄21ij g
(n)
j , i = 1, 2, · · · , r, (2.1b)

f
(n)
i +A1(

r
∑

j=1

c12ij y
(n−1)
j + h

s
∑

j=1

c11ij f
(n)
j ) +A2Ȳ

(n)
i +B1Z̄

(n)
i = 0, i = 1, 2, · · · , s, (2.1c)

g
(n)
i +A3(

r
∑

j=1

c12ij y
(n−1)
j + h

s
∑

j=1

c11ij f
(n)
j ) +A4Ȳ

(n)
i +B2Z̄

(n)
i = 0, i = 1, 2, · · · , s, (2.1d)

Ȳ
(n)
i =

ν
∑

k=−µ

Lk(δ)(
r
∑

j=1

c12ij y
(n−1−m+k)
j + h

s
∑

j=1

c11ij f
(n−m+k)
j ), i = 1, 2, · · · , s, (2.1e)

Z̄
(n)
i =

ν
∑

k=−µ

Lk(δ)g
(n−m+k)
i , i = 1, 2, · · · , s, (2.1f)

where h > 0 is the fixed stepsize, (c11ij ) , C11 ∈ Rs×s, (c12ij ) , C12 ∈ Rs×r, (c21ij ) , C21 ∈

Rr×s, (c̄21ij ) , C̄21 ∈ Rr×s, (c22ij ) , C22 ∈ Rr×r, f
(n)
i and g

(n)
i are approximations of y′(tn +µih)

and z(tn +µih), respectively, y
(n)
i and z

(n)
i are approximations of Hi(tn +νih) and Gi(tn +νih),

respectively, where Hi(t + νih) and Gi(t + νih) denote a piece of information about the true
solutions y(t) and z(t), respectively, tn = nh, µi and νi are some real constants (let µ̄ =

(µ1, µ2, · · · , µs)
T , ν̄ = (ν1, ν2, · · · , νr)

T ), Ȳ
(n)
i and Z̄

(n)
i are approximations of y(tn + µih − τ)

and z(tn + µih − τ), respectively. Ȳ
(n)
i and Z̄

(n)
i are obtained by initial conditions ϕ and ψ
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whenever tn + µih− τ ≤ 0,

Li(δ) =

ν
∏

q=−µ

q 6=i

(δ − q

i− q

)

, δ ∈ [0, 1), i = −µ,−µ+ 1, · · · , ν (2.2)

and
τ = (m− δ)h, (2.3)

m is a positive integer, δ ∈ [0, 1), µ, ν are nonnegative integers and ν+1 ≤ m. f
(n)
i and g

(n)
i are

obtained by the initial conditions ϕ and ψ, respectively, whenever tn +µih ≤ 0, y
(n)
i is obtained

by the initial condition ϕ whenever tn + νih ≤ 0. We assume m ≥ ν + 1 so as to guarantee

that, in the interpolation procedure, no unknown values f
(l)
i and g

(l)
i with l ≥ n are used.

Lemma 2.1[10,20].
∣

∣

ν
∑

i=−µ

Li(δ)z
µ+i

∣

∣ ≤ 1 (whenever |z| = 1, 0 ≤ δ < 1) if and only if µ ≤ ν ≤

µ+ 2.

Lemma 2.2[10,20]. If µ ≤ ν ≤ µ+ 2, µ+ ν > 0,|z| = 1, 0 < δ < 1, then
∣

∣

ν
∑

i=−µ

Li(δ)z
µ+i

∣

∣ = 1 if

and only if z = 1.
Lemma 2.3[4]. For any matrices H ∈ Ci×j and G ∈ Cp×q, there exist permutation matrices
P (i, p) ∈ Cip×ip, P (j, q) ∈ Cjq×jq such that

G⊗H = P (i, p)T (H ⊗G)P (j, q)

holds, where P (I, J) only depends on the dimensions I and J and satisfies

P (I, J) = P (J, I)T = P (J, I)−1.

Application of general linear methods in the case of the following scale test problem

{

w′(t) = λw(t), Reλ < 0,
w(0) = w0, w0 ∈ C,

yields
w(n) = Φ(h̄)w(n−1) = Φn(h̄)w(0), (2.4)

where h̄ = hλ,w(n) = (w
(n)
1 , w

(n)
2 , · · · , w

(n)
r )T (w

(n)
i ∼ w(tn + νih)),

Φ(h̄) = C22 + h̄C21(Is − h̄C11)
−1C12. (2.5)

By (2.5) and matrix theory in [14], we have the following lemma
Lemma 2.4. A general linear method

[

C11 C12

C21 C22

]

is A-stable if and only if (Is − h̄C11) is nonsingular and ρ[Φ(h̄)] < 1 for Reh̄ < 0.

3. Stability Analysis

Theorem 3.1. Assume µ ≤ ν ≤ µ+2, the system (1.7) satisfies (1.8), and one of the following
conditions holds:

(i) det(zIr − C22) 6= 0 for all z ∈ Γ \ {1},
(ii) δ 6= 0 and µ+ ν > 0.
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Then difference equation (2.1) is asymptotically stable if and only if the underlying general
linear method for ordinary differential equations is A-stable.

Proof. Let

xn = (y
(n)T

1 , y
(n)T

2 , · · · , y(n)T

r , f
(n)T

1 , f
(n)T

2 , · · · , f (n)T

s , g
(n)T

1 , g
(n)T

2 , · · · , g(n)T

s )T .

We can express (2.1) in matrix form





Ir ⊗ Id1
−h(C21 ⊗ Id1

) 0
0 Is ⊗ Id1

+ h(C11 ⊗A1) 0
0 h(C11 ⊗A3) Is ⊗ Id2



xn +





−C22 ⊗ Id1
0 0

C12 ⊗A1 0 0
C12 ⊗A3 0 0



 xn−1+

ν
∑

i=−µ

Li(δ)





0 0 0
0 h(C11 ⊗A2) Is ⊗B1

0 h(C11 ⊗A4) Is ⊗B2



xn−m+i

+
ν
∑

i=−µ

Li(δ)





0 0 0
C12 ⊗A2 0 0
C12 ⊗A4 0 0



 xn−m+i−1 = 0,

(3.1)

where the symbol ⊗ denote the Kronecker product.
The characteristic equation of the above difference equation turns out to be

z(m+µ−1)(rd1+sd1+sd2)+sd1+sd2det(Q(z)) = 0, (3.2)

where

Q(z) =





(Ir ⊗ Id1
)z − C22 ⊗ Id1

−h(C21 ⊗ Id1
) 0

C12 ⊗ (A1 + q(z)A2) Is ⊗ Id1
+ hC11 ⊗ (A1 + q(z)A2) q(z)(Is ⊗B1)

C12 ⊗ (A3 + q(z)A4) hC11 ⊗ (A3 + q(z)A4) Is ⊗ (Id2
+ q(z)B2)



 ,

q(z) =
ν

∑

i=−µ

Li(δ)z
−m+i.

First, we consider the ’if’ part. We will prove by contradiction that the characteristic
equation (3.2) has no solution outside the open unit disc D. Suppose that there exists ẑ ∈ C

such that det(Q(ẑ)) = 0 and |ẑ| ≥ 1. We note that m ≥ ν + 1, therefore, lim
z→∞

q(z) = 0. By

Lemma 2.1 and maximum modulus principle, we have

|q(ẑ)| ≤ 1. (3.3)

The condition (1.8a) implies that the matrix Id2
+ q(ẑ)B2 is nonsingular. Let

S = A1 + q(ẑ)A2 − q(ẑ)B1(Id2
+ q(ẑ)B2)

−1(A3 + q(ẑ)A4). (3.4)

Since




Ir ⊗ Id1
0 0

0 Is ⊗ Id1
−q(ẑ)Is ⊗ (B1(Id2

+ q(ẑ)B2)
−1)

0 0 Is ⊗ Id2



Q(ẑ)

=





ẑIr ⊗ Id1
− C22 ⊗ Id1

−hC21 ⊗ Id1
0

C12 ⊗ S Is ⊗ Id1
+ hC11 ⊗ S 0

C12 ⊗ (A3 + q(ẑ)A4) hC11 ⊗ (A3 + q(ẑ)A4) Is ⊗ (Id2
+ q(ẑ)B2)



 ,

therefore,

det

[

ẑIr ⊗ Id1
− C22 ⊗ Id1

−hC21 ⊗ Id1

C12 ⊗ S Is ⊗ Id1
+ hC11 ⊗ S

]

= 0. (3.5)
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On the other hand, using(3.3), (3.4) and Lemma 1.1, we obtain that σ(S) ⊂ C+ ∪ {0}. In
view of A-stability of the method and Lemma 2.4, we have σ(C11) ⊂ C+ ∪ C0. Therefore,
Is ⊗ Id1

+ hC11 ⊗ S is nonsingular. Consequently, we have

[

Ir ⊗ Id1
(hC21 ⊗ Id1

)(Is ⊗ Id1
+ hC11 ⊗ S)−1

0 Is ⊗ Id1

][

ẑIr ⊗ Id1
− C22 ⊗ Id1

−hC21 ⊗ Id1

C12 ⊗ S Is ⊗ Id1
+ hC11 ⊗ S

]

=

[

ẑIr ⊗ Id1
− C22 ⊗ Id1

+ (hC21 ⊗ Id1
)(Is ⊗ Id1

+ hC11 ⊗ S)−1(C12 ⊗ S) 0
C12 ⊗ S Is ⊗ Id1

+ hC11 ⊗ S

]

,

which shows

det(ẑIr ⊗ Id1
− C22 ⊗ Id1

+ (hC21 ⊗ Id1
)(Is ⊗ Id1

+ hC11 ⊗ S)−1(C12 ⊗ S)) = 0. (3.6)

It follows from (3.6) and Lemma 2.3 that

det(ẑId1
⊗ Ir − Id1

⊗ C22 + h(Id1
⊗ C21)(Id1

⊗ Is + hS ⊗ C11)
−1(S ⊗ C12)) = 0. (3.7)

Let J denote Jordan’s normal form of matrix S, i.e., there exists a nonsingular matrix T

such that S = T−1JT . It follows from (3.7) that

det((Id1
⊗ Ir)ẑ − Id1

⊗ C22 + h(Id1
⊗ C21)(Id1

⊗ Is + hJ ⊗ C11)
−1(J ⊗ C12)) = 0, (3.8)

which yields
d1
∏

i=1

det(ẑIr − C22 + hλiC21(Is + hλiC11)
−1C12) = 0, (3.9)

where λi(i = 1, 2, · · · , d1) are the eigenvalues of S. By (3.9), there exists at least one λi ∈
σ(S) ⊂ C+ ∪ {0} such that

det(ẑIr − Φ(−hλi)) = 0. (3.10)

If |ẑ| > 1 then (3.10) contradicts A-stability of the methods. Therefore,

|ẑ| = 1. (3.11)

If Reλi > 0 then it also contradicts A-stability. Therefore,

λi = 0. (3.12)

On the other hand, if |q(ẑ)| < 1, It follows from Lemma 1.1 that σ(S) ⊂ C+, It contradicts
(3.12). Therefore,

|q(ẑ)| = 1. (3.13)

If condition (ii) holds, then from (3.11), (3.13) and Lemma 2.2, we have

ẑ = 1, (3.14)

which gives
q(ẑ) = 1. (3.15)

If condition (i) holds, then from (3.10), (3.11) and (3.12), we also get (3.14). Therefore, we
have q(ẑ) = 1 and

0 = λi ∈ σ(S) = σ(A1 +A2 −B1(Id2
+B2)

−1(A3 +A4)). (3.16)

This contradicts the assumption (1.8c). Consequently, the characteristic equation (3.2) has no
solution outside the open unit disc D. From the theory of difference equation it follows that
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lim
n→∞

xn = 0, accordingly, lim
n→∞

y(n) = 0. By (2.1b), we also have lim
n→∞

z(n) = 0. Therefore,

difference equation (2.1) is asymptotically stable.
The ’only if’ part follows directly from setting d1 = 1, A2 = 0, B1 = 0, A3 = 0, A4 = 0, B2 =

0 in (2.1).
Remark 3.2. In view of A-stability of the method and Lemma 2.4, we have σ(C11) ⊂ C+∪C0.
We also note that α(−A1) < 0. Therefore, Is ⊗ Id1

+ hC11 ⊗A1 is nonsingular. Consequently,
(2.1c) possesses an unique solution. Hence, the system (2.1) possesses an unique solution.
Remark 3.3. Specializing Theorem 3.1 to linear multistep methods, one-leg methods and
Runge-Kutta method, we can obtain the numerical stability results obtained by [8, 9]. Es-
pecially, in the case of Runge-Kutta methods, condition (i) automatically holds. Further,
according to the prove process of Theorem 3.1, the condition (ii) is not necessarily required in
the case of Runge-kutta methods. Therefore, the conditions (i) and (ii) can be removed in the
case of Runge-Kutta methods. Our results are accordant with that obtained by [8, 9]

Let α = (α1, α2, · · · , αr)
T , γ = (γ1, γ2, · · · , γs)

T , ν1 = 1, ν2 = 2, · · · , νr = r,

C22 =

[

0 Ir−1

αT

]

, C21 =

[

0
γT

]

.

Specializing Theorem 3.1 to the case of multistep Runge-Kutta methods, we can obtain imme-
diately the following result
Corollary 3.4. Assume µ ≤ ν ≤ µ+2, the system (1.7) satisfies (1.8), and one of the following
conditions holds:

(I) α1 + α2z + . . .+ αrz
r−1 − zr 6= 0 for all z ∈ Γ \ {1},

(II) δ 6= 0 and µ+ ν > 0.

Then the adaptation of multistep multistep Runge-Kutta methods to (1.7), i.e. the corresponding
difference equation of (2.1), is asymptotically stable if and only if the underlying multistep
Runge-Kutta method for ordinary differential equations is A-stable.
Remark 3.5. Condition (i) in the assumptions of Theorem 3.1 is very weak. In fact, in addition
to Runge-Kutta methods, multistep methods of Admas type and BDF methods, there are
many methods which satisfy the assumption, such as many of multistep Runge-Kutta methods
appeared in [15, 16].

For general case of general linear methods, we have the following result.
Theorem 3.6. Suppose µ ≤ ν ≤ µ+2, ρ(B2) < 1 and σ(h(B1ξ(Id2

+B2ξ)
−1(A3 +A4ξ)−A1 −

A2ξ)) ⊂ SGLM for all ξ ∈ D ∪ Γ, then the difference equation (2.1) is asymptotically stable.
Where

SGLM = {h̄ ∈ C s.t. the matrix (Is − h̄C11) is regular and ρ[Φ(h̄)] < 1}.

Proof. We only need to prove that the matrix Q(z) is nonsingular for any z ∈ C, |z| ≥ 1.
In fact, for any z ∈ C, |z| ≥ 1, we have

|q(z)| ≤ 1. (3.17)

Let S = A1 + q(z)A2 − q(z)B1(Id2
+ q(z)B2)

−1(A3 + q(z)A4). In view of (3.17) and the
assumptions of the theorem, we have

σ(−hS) ⊂ SGLM . (3.18)

This shows that, for every λi ∈ σ(S),

det(zIr − Φ(−hλi)) 6= 0,
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which yields
d1
∏

i=1

det(zIr − C22 + hλiC21(Is + hλiC11)
−1C12) 6= 0.

It follows from (3.18) that Is ⊗ Id1
+ hC11 ⊗ S is nonsingular. Similar to the reverse process

from (3.5) to (3.9), we have

det(Q(z)) 6= 0 for any z ∈ C, |z| ≥ 1

Therefore, the matrix Q(z) is nonsingular for any z ∈ C, |z| ≥ 1.
Specializing Theorem 3.6 to the case of functional-differential equations of neutral type, we

obtain immediately
Corollary 3.7. Consider the methods (2.1) applied to the system

y′(t) +A1y(t) +A2y(t− τ) +B1z(t− τ) = 0,
z(t) +A1y(t) +A2y(t− τ) +B1z(t− τ) = 0,

(3.19)

i.e., functional-differential equations of neutral type

y′(t) +A1y(t) +A2y(t− τ) +B1y
′(t− τ) = 0.

Suppose µ ≤ ν ≤ µ+2, ρ(B1) < 1 and σ(h(Id2
+B1ξ)

−1(−A1−A2ξ)) ⊂ SGLM for all ξ ∈ D∪Γ.
Then the corresponding difference equation is asymptotically stable.
Remark 3.8. Specializing Theorem 3.6 to linear multistep methods, one-leg methods and
Runge-Kutta method, we can obtain the numerical stability results obtained by [9]. Further-
more, specializing Corollary 3.7 to linear multistep methods and Runge-Kutta methods, our
results are in accord with the those presented in the literature [1, 5, 6, 7, 19, 21, 23]

4. Numerical Results

In order to illustrate the results of this paper obtained in Section 3, we consider the following
problem

{

y′(t) + y(t) + y(t− 1) + z(t− 1) = 0,
z(t) + y(t) + 0.5y(t− 1) +B2z(t− 1) = 0,

t ≥ 0, (4.1)

with the initial conditions

y(t) = sint, z(t) = t+
B2 + 0.5sin1

1 +B2
, t ≤ 0

where B2 6= −1 is a parameter. It is obvious that the initial functions satisfy the consistency
condition: z(0) + y(0) + 0.5y(−1) + B2z(−1) = 0. We can easily verify that the initial value
problem (4.1) satisfies conditions (1.8) for B2 = 0.5 and doesn’t for B2 = 1.5. Therefore,
problem (4.1) with B2 = 0.5 is asymptotically stable.

Consider 2 step 1 stage Runge-Kutta methods[15]:















C11 = (c), C12 = ( 2a
1+a

, 1−a
1+a

), C21 =

(

0
1 + a

)

,

C22 =

(

0 1
a 1 − a

)

, µ̄ = (u), ν̄ = (1, 2)T ,

(4.2)

where 0 < a ≤ 1, c = 1+3a
2(1+a) and u = c + 1−a

1+a
. The methods have order 2 and are alge-

braically stable[15], therefore, they are A-stable. It is easily verified that the methods satisfy
the assumption condition (i) in Theorem 3.1.
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Table 1. IMR for problem (4.1) with B2 = 0.5

t 5 10 20 30 50 100
h = 0.2 y 5.5×10−3 -1.4×10−4 -1.4×10−7 -1.4×10−10 -1.3×10−16 -1.2×10−31

z -2.2×10−2 6.5×10−4 6.4×10−7 6.2×10−10 5.9×10−16 5.3×10−31

t 6 12 24 36 60 99.9
h = 0.3 y -1.7×10−3 -2.1×10−5 -2.0×10−9 -1.3×10−13 -7.1×10−23 1.4×10−35

z 4.2×10−3 2.9×10−5 3.4×10−10 -1.2×10−13 -1.6×10−21 1.0×10−35

Table 2. MRK for problem (4.1) with B2 = 0.5

t 5 10 20 30 50 100
h = 0.2 y 5.3×10−3 -1.3×10−4 -1.4×10−7 -1.3×10−10 -1.3×10−16 -1.1×10−31

z -1.8×10−2 5.3×10−4 5.2×10−7 5.1×10−10 4.8×10−16 4.3×10−31

t 6 12 24 36 60 99.9
h = 0.3 y -2.1×10−3 -2.4×10−5 -2.2×10−9 -1.6×10−13 -1.7×10−22 1.6×10−35

z 3.4×10−3 1.6×10−5 -1.0×10−9 -2.2×10−13 -1.7×10−21 2.0×10−35
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Fig. 1: Numerical results of IMR with δ = 0

We can write implicit midpoint rule[3] as general linear method with

C11 = (
1

2
) ∈ R1, C12 = C21 = C22 = (1) ∈ R1, µ̄ = ν̄ =

1

2
.

It is well known that implicit midpoint rule has order 2 and is A-stable. It also satisfies the
assumption condition (i) in Theorem 3.1.

We apply the multistep Runge-Kutta methods (4.2)(MRK) and implicit midpoint rule
(IMR) to the problems (4.1), respectively, where the delay terms are evaluated using linear
interpolation procedure (i.e., µ = 0, ν = 1). In addition to starting values y(0) and z(0), we
require the other starting values for MRK, which are evaluated using implicit midpoint rule.
Numerical results of IMR and MRK(a=0.5) are shown in Fig. 1-4 and Table 1-2.
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Fig. 2: Numerical results of IMR with δ 6= 0
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Fig. 3: Numerical results of MRK with δ = 0

For B2=0.5, the numerical results of IMR and MRK are displayed in left pictures of Fig.
1-4. The related data is listed in Table 1-2. The pictures and the tables show that IMR and
MRK inherit the asymptotic stability of problem (4.1), and confirm theorem 3.1. Meanwhile,
we note that the problem (4.1) and the both methods satisfy the assumption conditions in
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Fig. 4: Numerical results of MRK with δ 6= 0

Theorem 3.6. The results mentioned above also confirm Theorem 3.6.
For B2=1.5, problem (4.1) doesn’t satisfy the conditions (1.8). The numerical solutions of

(4.1) are displayed in right pictures of Fig.1-4. The pictures show that the numerical solutions
are unlikely to be asymptotically stable.
Acknowledgement. The authors are grateful to the anonymous referees for their useful
comments.
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