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Abstract

In this paper, the numerical solutions of heat equation on 3-D unbounded spatial do-
main are considered. An artificial boundary Γ is introduced to finite the computational
domain. On the artificial boundary Γ, the exact boundary condition and a series of approx-
imating boundary conditions are derived, which are called artificial boundary conditions.
By the exact or approximating boundary condition on the artificial boundary, the original
problem is reduced to an initial-boundary value problem on the bounded computational
domain, which is equivalent or approximating to the original problem. The finite difference
method and finite element method are used to solve the reduced problems on the finite
computational domain. The numerical results demonstrate that the method given in this
paper is effective and feasible.
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1. Introduction

Numerical solutions of heat equation on unbounded 3-D spatial domains are considered.
This kind of problems originate from the heat transfer, fluid dynamics, astrophysics, finance or
other areas of applied mathematics. Because of the unboundedness of the physical domains,
how to numerically solve these problems efficiently is real a challenge.

Strain [14] developed a method to solve the parabolic equations on unbounded domains,
which combines the fast Gauss transform with an adaptive refinement scheme. This method
can solve heat equation with large timesteps, especially for highly nonuniform or discontinuous
initial data.

Artificial boundary method [3, 4, 10, 11] is a powerful tool of the numerical solution for
the boundary-valued problems on unbounded domains. By introducing an artificial boundary,
the domain is divided into two parts, a finite computational domain and an infinite domain.
A suitable boundary condition is imposed on the artificial boundary, such that the solution
of the problem with the suitable boundary condition on the artificial boundary on the finite
computational domain is a good approximation of the original problem.

For the elliptic problems on unbounded domains, there are many approaches to construct
artificial boundary condition to solve them [5, 10, 11, 12], but for the parabolic problems on
unbounded domains there are only a few results related to the artificial boundary conditions.
L. Halpern and J. Rauch[7] proposed a family of artificial boundary conditions for parabolic
equations on unbounded domains, which are local in time, and there are many auxiliary func-
tions involved in the artificial boundary conditions. C. J. Zhu and Q. K. Du [15] studied the
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parabolic problem on an unbounded domain by a semi-discrete approach in time. On each time
step, they used the nature boundary element method to solve an elliptic problem on unbounded
domain. Recently, H. Han and Z. Huang [8, 9] gave the exact boundary conditions for the heat
problems on unbounded domains in one dimension and in two dimensions. Furthermore, a
series of artificial boundary conditions are given. Han and Zheng [13] derived the nonreflecting
boundary conditions for acoustic problems in three dimensions.

In this paper, the exact boundary condition is derived on the given artificial boundary Γ for
the parabolic problem on unbounded three dimensional spatial domain, that is, the relationship
between ∂u

∂n

∣

∣

Γ
and ∂u

∂t

∣

∣

Γ
is given. Moreover, a series of artificial boundary conditions with high

accuracy are obtained. By the artificial boundary conditions, a family of approximate problems
of the original problem on the bounded computational domain are constructed. The stability
of the approximate problem is proved. Finally, numerical examples manifest the feasibility and
effectiveness of the given method.

2. The Artificial Boundary Condition

Let D ⊂ R
3 denote a bounded domain, namely D ⊂ B(0, a) = {x ∈ R

3 | ||x|| ≤ a} with
a > 0. Suppose

Dc = R
3\D, ΩTc = Dc × (0, T ], Γ0 = ∂D × (0, T ].

Consider the following initial-boundary value problem:

∂u

∂t
−4u = f(x, t), (x, t) ∈ ΩTc (2.1)

u
∣

∣

∣

Γ0

= g(x, t), (x, t) ∈ Γ0, (2.2)

u
∣

∣

∣

t=0
= u0(x), x ∈ Dc, (2.3)

u→ 0, when ||x|| → +∞, (2.4)

where f(x, t), g(x, t) and u0(x) are given smooth functions and f(x, t), u0(x) vanish outside the
ball B(0, a), namely

f(x, t) = 0, u0(x) = 0, if ||x|| ≥ a.

We introduce an artificial boundary Γ = {(x, t) | ||x|| = b, 0 < t ≤ T } with b > a to divide
domain ΩTc into two parts,

ΩTb = {(x, t) | x ∈ Dc and ||x|| < b, 0 < t < T },
ΩTe = {(x, t) | ||x|| ≥ b, 0 < t ≤ T }.

If we can seek a suitable boundary condition on Γ, problem (2.1)-(2.4) can be reduced to a
problem on the bounded computational domain ΩTi . In the sphere coordinate, the restriction
of the solution u(r, θ, φ, t) of problem (2.1)-(2.4) on the unbounded domain ΩTe satisfies

∂u

∂t
=

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2
1

sin θ

∂

∂θ
(sin θ

∂u

∂θ
) +

1

r2 sin2 θ

∂2u

∂φ2
, (r, θ, φ, t) ∈ ΩTe , (2.5)

u|r=b = u(b, θ, φ, t), (2.6)

u|t=0 = 0, (2.7)

u → 0, when r → +∞, (2.8)

where ΩTe = {r > b, θ ∈ [0, π], φ ∈ [0, 2π], t ∈ [0, T ]}.
Since u(b, θ, φ, t) is unknown, problem (2.5)-(2.8) is an uncompleted posed problem; it can’t

be solved independently. If u(b, θ, φ, t) is given, problem (2.5)-(2.8) is well posed, so the solution
u(r, θ, φ, t) of (2.5)-(2.8) can be given by u(b, θ, φ, t).
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Let

u(b, θ, φ, t) =
a00(t)

2
+

∞
∑

n=1

{

an0(t)

2
P 0
n(cos θ)

+
n

∑

m=1

Pmn (cos θ)
(

anm(t) cosmφ+ bnm(t) sinmφ
)

}

, (2.9)

where Pmn (cos θ), (n = 1, 2, · · · ,m = 1, 2, · · · , n) are the Associate Legendre functions[1] and

anm(t) =
(2n+ 1)(n−m)!

2π(n+m)!

∫ 2π

0

∫ π

0

u(b, ξ, ψ, t)Pmn (cos ξ) cosmψ sin ξdξdψ, (2.10)

bnm(t) =
(2n+ 1)(n−m)!

2π(n+m)!

∫ 2π

0

∫ π

0

u(b, ξ, ψ, t)Pmn (cos ξ) sinmψ sin ξdξdψ. (2.11)

Let the solution of problem (2.5)–(2.8), u(r, θ, φ, t), be

u(r, θ, φ, t) =
u00(r, t)

2
+

∞
∑

n=1

{

un0(r, t)

2
P 0
n(cos θ)

+

n
∑

m=1

Pmn (cos θ)
(

unm(r, t) cosmφ+ vnm(r, t) sinmφ
)

}

. (2.12)

Substituting (2.12) into (2.5), we obtain:
(i) u00(r, t) satisfies the following initial-boundary value problem:

∂u00

∂t
=

∂2u00

∂r2
+

2

r

∂u00

∂r
, r > b, 0 < t ≤ T, (2.13)

u00|r=b = a00(t), (2.14)

u00|t=0 = 0, (2.15)

u00 → 0, when r → +∞. (2.16)

(ii) unm(r, t) (or vnm(r, t)) satisfies the following initial-boundary value problem:

∂G

∂t
=

∂2G

∂r2
+

2

r

∂G

∂r
− n(n+ 1)

r2
G, r > b, 0 < t ≤ T, (2.17)

G|r=b = anm(t)(or bnm(t)), (2.18)

G|t=0 = 0, (2.19)

G→ 0, when r → +∞. (2.20)

In [2], we have the solution u00(r, t) of problem (2.13)–(2.16), which is given by:

u00(r, t) =
2b

r
√
π

∫

∞

r−b

2
√

t

a00(t−
(r − b)2

4µ2
)e−µ

2

dµ, (2.21)

and
∂u00

∂r
(b, t) = −1

b
u00|r=b −

1√
π

∫ t

0

∂a00(λ)

∂λ

1√
t− λ

dλ. (2.22)

We now consider the initial-boundary value problem (2.17)–(2.20). First consider the fol-
lowing simplified problem:

∂Gn
∂t

=
∂2Gn
∂r2

+
2

r

∂Gn
∂r

− n(n+ 1)

r2
Gn, r > b, 0 < t ≤ T, (2.23)

Gn|r=b = 1, (2.24)

Gn|t=0 = 0, (2.25)

Gn → 0, when r → +∞. (2.26)
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Let
Gn(r, t) = e−µ

2tw(r). (2.27)

Substituting (2.27) into (2.23), we have

∂2w

∂r2
+

2

r

∂w

∂r
+ (µ2 − n(n+ 1)

r2
)w = 0. (2.28)

Equation (2.28) has two independent solutions:

w1(µr) =
√

π
2µrJn+1/2(µr),

w2(µr) =
√

π
2µrYn+1/2(µr).







(2.29)

Let

G∗(r, t) =
2

π

∫

∞

0

e−µ
2tw1(µr)w2(µb) − w1(µb)w2(µr)

w2
1(µb) + w2

2(µb)

dµ

µ
. (2.30)

It is straight to check that G∗(r, t) satisfies equation (2.23) and

G∗(r, t)|r=b = 0,

G∗(r, t)|t=0 = lim
t→+0

G∗(r, t)

=
2

π

∫

∞

0

w1(µr)w2(µb) − w1(µb)w2(µr)

w2
1(µb) + w2

2(µb)

dµ

µ

=
2

π

(

b

r

)1/2 ∫

∞

0

Jn+1/2(µr)Yn+1/2(µb) − Yn+1/2(µr)Jn+1/2(µb)

J2
n+1/2(µb) + Y 2

n+1/2(µb)

dµ

µ

= −
(

b

r

)n+1

, r > b.

The last equality is from [[6], formula 6.542]. Let

Gn(r, t) =

(

b

r

)n+1

+G∗(r, t), (2.31)

then Gn(r, t) is the solution of problem (2.23)–(2.26). By Duhamel’s theorem we obtain the
solution unm(r, t) (or vnm(r, t)) of problem (2.17)–(2.20)

unm(r, t) =

∫ t

0

anm(λ)
∂

∂t
Gn(r, t− λ)dλ

= −
∫ t

0

anm(λ)
∂

∂λ
Gn(r, t− λ)dλ

= −anm(λ)Gn(r, t− λ)
∣

∣

∣

λ=t

λ=0
+

∫ t

0

danm(dλ)

λ
Gn(r, t− λ)dλ

=

∫ t

0

danm(λ)

dλ
Gn(r, t− λ)dλ. (2.32)

Similarly we have

vnm(r, t) =

∫ t

0

dbnm(λ)

dλ
Gn(r, t− λ)dλ. (2.33)

Furthermore we get

∂unm
∂r

∣

∣

∣

r=b
=

∫ t

0

danm(λ)

dλ

∂Gn(r, t− λ)

∂r
dλ

∣

∣

∣

r=b
(2.34)

= −n+ 1

b
anm(t) − 4

π2b

∫ t

0

danm(λ)

dλ

[

∫

∞

0

e−µ
2(t−λ) dµ

µ[J2
n+1/2(µb) + Y 2

n+1/2(µb)]

]

dλ(2.35)
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On the other hand,

4
√
t

π2b

∫

∞

0

e−µ
2t

µ[J2
n+1/2(µb) + Y 2

n+1/2(µb)]
dµ =

4

π2

√
t

b

∫

∞

0

e−ξ
2t/b2

J2
n+1/2(ξ) + Y 2

n+1/2(ξ)

dξ

ξ

≡ Hn+1/2(t/b
2). (2.36)

Combining (2.35) and (2.36), we have

∂unm
∂r

∣

∣

∣

r=b
= −n+ 1

b
anm(t) −

∫ t

0

∂anm(λ)

∂λ

Hn+1/2(
t−λ
b2 )√

t− λ
dλ. (2.37)

Similarly we obtain

∂vnm
∂r

∣

∣

∣

r=b
= −n+ 1

b
bnm(t) −

∫ t

0

∂bnm(λ)

∂λ

Hn+1/2(
t−λ
b2 )√

t− λ
dλ. (2.38)

From (2.12), we have the exact boundary condition on Γb:

∂u

∂r

∣

∣

∣

r=b
=

1

2

∂u00

∂r

∣

∣

∣

r=b

+

∞
∑

n=1

[

1

2

∂un0

∂r
P 0
n(cos θ) +

n
∑

m=1

Pmn (cos θ)

(

∂unm
∂r

cosmφ+
∂vnm
∂r

sinmφ

)

]

r=b

= − 1

2b
a00(t) −

1

2
√
π

∫ t

0

∂a00(λ)

∂λ

1√
t− λ

dλ

+

∞
∑

n=1

{

1

2

[

−n+ 1

b
an0(t) −

∫ t

0

dan0(λ)

dλ

Hn+1/2(
t−λ
b2 )√

t− λ
dλ

]

P 0
n(cos θ)

+
n

∑

m=1

[

−n+ 1

b

(

anm(t) cosmφ+ bnm(t) sinmφ
)

−
∫ t

0

(

danm(λ)

dλ
cosmφ+

dbnm(λ)

dλ
sinmφ

)

Hn+1/2(
t−λ
b2 )√

t− λ
dλ

]

Pmn (cos θ)

}

≡ Φ∞

(

u
∣

∣

Γ
,
∂u

∂t

∣

∣

Γ

)

. (2.39)

where Γ = {(x, t) | ||x|| = b, 0 < t ≤ T }. By the addition theorem of Legendre functions [6]:

Pn(cos γ) = P 0
n(cos ξ)P 0

n(cos θ) + 2
n

∑

m=1

(n−m)!

(n+m)!
Pmn (cos ξ)Pmn (cos θ) cosm(ψ − φ),

where

cos γ = cos ξ cos θ + sin ξ sin θ cos(ψ − φ),

we can simplify the formula in (2.39) into:

∂u

∂r

∣

∣

∣

r=b
= − 1

4πb

∫

S

u(b, ξ, ψ, t)dSξ,ψ − 1

4π3/2

∫ t

0

∫

S

∂u(b, ξ, ψ, λ)

∂λ
dSξ,ψ

1√
t− λ

dλ

−
∞
∑

n=1

{

(n+ 1)(2n+ 1)

4πb

∫

S

u(b, ξ, ψ, t)Pn(cos γ)dSξ,ψ

+
2n+ 1

4π

∫ t

0

∫

S

∂u(b, ξ, ψ, λ)

∂λ
Pn(cos γ)dSξ,ψ

Hn+1/2(
t−λ
b2 )√

t− λ
dλ

}

≡ Φ∞

(

u
∣

∣

Γ
,
∂u

∂t

∣

∣

Γ

)

. (2.40)
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This is the exact boundary condition satisfied by the solution of problem (2.1)-(2.4). Therefore,
problem (2.1)-(2.4) is equivalent to the following initial-boundary value problem on the bounded
domain ΩTi = {(r, θ, φ, t) ∈ ΩTi | r < b} with Ωi = {(r, θ, φ) ∈ Dc, r < b}.

∂u

∂t
=

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
1

sin θ

∂

∂θ
(sin θ

∂u

∂θ
) +

1

r2 sin2 θ

∂2u

∂φ2
, (r, θ, φ, t) ∈ ΩTi (2.41)

u|Γ0 = g(θ, φ, t), (2.42)

∂u

∂r

∣

∣

∣

r=b
= Φ∞

(

u
∣

∣

Γ
,
∂u

∂t

∣

∣

Γ

)

, (2.43)

u|t=0 = 0. (2.44)

If we take the first few terms of the above summation, namely for N = 0, 1, 2, · · ·

∂u

∂r

∣

∣

∣

r=b
= − 1

4πb

∫

S

u(b, ξ, ψ, t)dSξ,ψ − 1

4π3/2

∫ t

0

∫

S

∂u(b, ξ, ψ, λ)

∂λ
dSξ,ψ

1√
t− λ

dλ

−
N

∑

n=1

{

(n+ 1)(2n+ 1)

4πb

∫

S

u(b, ξ, ψ, t)Pn(cos r)dSξ,ψ

+
2n+ 1

4π

∫ t

0

∫

S

∂u(b, ξ, ψ, λ)

∂λ
Pn(cos r)dSξ,ψ

Hn+1/2(
t−λ
b2 )√

t− λ
dλ

}

≡ ΦN

(

u
∣

∣

Γ
,
∂u

∂t

∣

∣

Γ

)

. (2.45)

Using boundary condition (2.45) instead of (2.43), we obtain a series of approximate problems.

3. Stability Analysis of the Reduced Problems on the Bounded

Computational Domain

We firstly concentrate on the approximate problem for N = 0, 1, 2, · · · ,
∂u

∂t
= 4u, (x, t) ∈ ΩTb , (3.1)

u|Γ0 = g(θ, φ, t), (3.2)

∂u

∂r

∣

∣

∣

r=b
= ΦN

(

u
∣

∣

Γ
,
∂u

∂t

∣

∣

Γ

)

, (3.3)

u|t=0 = u0(x). (3.4)

Suppose that u(r, θ, φ, t) is a solution of problem (3.1)-(3.4), then

Lemma 3.1. The following inequality holds:

∫ t

0

∫ 2π

0

∫ π

0

ΦN

(

u
∣

∣

Γ
,
∂u

∂t

∣

∣

Γ

)

u
∣

∣

Γ
b2 sin θdθdφdτ ≤ 0. (3.5)

Proof. Recall that

u(b, θ, φ, t) =
a00(t)

2
+

∞
∑

n=1

{

an0(t)

2
P 0
n(cos θ)

+

n
∑

m=1

Pmn (cos θ)
(

anm(t) cosmφ+ bnm(t) sinmφ
)

}

. (3.6)
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Substituting (3.6) into (2.45), we can get

ΦN (u
∣

∣

Γ
,
∂u

∂t

∣

∣

Γ
) ≡ − 1

2b
a00(t) −

1

2
√
π

∫ t

0

∂a00(λ)

∂λ

1√
t− λ

dλ

+

N
∑

n=1

{

1

2

[

−n+ 1

b
an0(t) −

∫ t

0

dan0(λ)

dλ

Hn+1/2(
t−λ
b2 )√

t− λ
dλ

]

P 0
n(cos θ)

+

n
∑

m=1

[

−n+ 1

b

(

anm(t) cosmφ+ bnm(t) sinmφ
)

−
∫ t

0

(

danm(λ)

dλ
cosmφ+

dbnm(λ)

dλ
sinmφ

)

Hn+1/2(
t−λ
b2 )√

t− λ
dλ

]

Pmn (cos θ)

}

≡ W0(a00) +

N
∑

n=1

Wn(an0(t))

2
P 0
n(cos θ) +

N
∑

n=1

n
∑

m=1

{

Wn(anm(t)) cosmφ+Wn(bnm(t)) sinmφ
}

Pmn (cos θ), (3.7)

with

W0(f(t)) = − 1

2b
f(t) − 1

2
√
π

∫ t

0

∂f(λ)

∂λ

1√
t− λ

dλ,

Wn(f(t)) = −n+ 1

b
f(t) −

∫ t

0

df(λ)

dλ

Hn+1/2(
t−λ
b2 )√

t− λ
dλ.

Combining (3.6) and (3.7), we obtain
∫ t

0

∫ 2π

0

∫ π

0

ΦN

(

u
∣

∣

Γ
,
∂u

∂t

∣

∣

Γ

)

u
∣

∣

Γ
b2 sin θdθdφdτ =

2πb2
∫ t

0

{

W0(a00(τ))

2
a00(τ) +

N
∑

n=1

1

2n+ 1
Nn(an0(τ))an0(τ)+

N
∑

n=1

n
∑

m=1

(n+m)!

(2n+ 1)(n−m)!

{

Wn(anm(τ))anm(τ) +Wn(bnm(τ))bnm(τ)
}

}

dτ (3.8)

On the other hand, we consider the following auxiliary problem on the domain {(r, t) | b ≤ r <
+∞, 0 ≤ t ≤ T } for n = 0, 1, 2, · · · , N :

∂Gn
∂t

=
∂2Gn
∂r2

+
2

r

∂Gn
∂r

− n(n+ 1)

r2
Gn, r > b, 0 < t ≤ T, (3.9)

Gn|r=b = anm(t), (3.10)

Gn|t=0 = 0, (3.11)

Gn → 0, when r → +∞. (3.12)

From (2.37) we have
∂Gn
∂r

|r=b = Wn(anm(t)). (3.13)

Multiplying r2Gn(r, t) on equation (3.8), integrating by parts on [b,+∞) × [0, t] and using
(3.11)-(3.12), we have

∫

∞

b

|Gn(r, t)|2
2

r2dr = −
∫ t

0

b2
∂Gn(b, τ)

∂r
Gn(b, τ)dτ.

−
∫ t

0

∫

∞

b

[

(r
∂Gn(r, τ)

∂r
)2 + (n2 + n)G2

n(r, τ)

]

drdτ. (3.14)
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Namely
∫

∞

b

|Gn|2
2

r2dr +

∫ t

0

∫

∞

b

[

r2(
∂Gn(r, τ)

∂r
)2 + n(n+ 1)G2

n(r, τ)

]

drdτ

= −
∫ t

0

b2
∂Gn(b, τ)

∂r
Gn(b, τ)dτ. (3.15)

This means
∫ t

0

∂Gn(b, τ)

∂r
Gn(b, τ)dτ =

∫ t

0

Wn(anm(τ))anm(τ)dτ ≤ 0. (3.16)

Similarly we have
∫ t

0

Wn(bnm(τ))bnm(τ)dτ ≤ 0. (3.17)

Combining (3.8), (3.16) and (3.17), we complete the proof of the lemma.
For the approximate problem (3.1)-(3.4), we have the following stability estimate:

Theorem 3.1. Suppose that u is a solution of problem (3.1)-(3.4), then the following stability
holds:

∫

Ωb

|u(x, t)|2dx ≤
∫

Ωb

|u0(x)|2dx, 0 ≤ t ≤ T. (3.18)

Proof. For simpleness, only consider the case g = 0. Multiplying u on the equation (3.1)
and integrating by parts on ΩTb , we obtain:

1

2

∫

Ωb

|u(x, t)|2dxdt =
1

2

∫

Ωb

|u0(x)|2dx+

∫ t

0

∫

Γ

∂u(r, t)

∂r

∣

∣

Γ
u(r, t)

∣

∣

Γ
dSdt−

∫ t

0

∫

Ωb

∂u

∂r

∂u

∂r
dxdt

(3.19)
From the lemma, we know that

∫ t

0

∫

Γ

∂u(r, t)

∂r

∣

∣

Γ
u(r, t)

∣

∣

Γ
dSdt ≤ 0.

This means
∫

Ωb

|u(x, t)|2dx ≤
∫

Ωb

|u0(x)|2dx, 0 ≤ t ≤ T.

From estimate (3.18), we have:

Theorem 3.2. The approximate problem (3.1)-(3.4) at most has one solution.

Let N → ∞ in (3.3), one gets

Corollary 3.1. The reduced problem (2.41)-(2.44) at most has one solution.

4. Numerical Examples

In order to demonstrate the effectiveness of the artificial boundary conditions given in this
paper, three numerical examples are discussed. Two kinds of numerical methods, finite element
method(FEM) and finite difference method(FDM), are used to solve these examples.
Example 1. Let’s consider an initial-boundary value problem on the domain out of a sphere:

∂u

∂t
=

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2
1

sin θ

∂

∂θ
(sin θ

∂u

∂θ
) +

1

r2 sin2 θ

∂2u

∂φ2
, (r, θ, φ, t) ∈ ΩTc , (4.1)

u|r=a = g(θ, φ, t), (4.2)

u|t=0 = 0, (4.3)

u → 0, when r → +∞. (4.4)
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where a = 1, T = 1, g(θ, φ, t) = 1

8(πt)
3
2
e−a

2/4t. The exact solution of problem (4.1)–(4.4) is

u(r, θ, φ, t) =
1

8(πt)
3
2

e−r
2/4t. (4.5)

First, Crank-Nicholson difference scheme is used to solve problem (4.1)–(4.4). The interval
[0, T ] is divided into L equal parts:

0 = t0 < t1 < · · · < tL = T. (4.6)

An artificial boundary Γb = {(r, θ, φ, t) | r = b, 0 < t ≤ T } with b = 2 is introduced to finite
ΩTc and a bounded computational domain ΩT0 = {(r, θ, φ, t) | a < r < b, 0 < t < T } is obtained.
Then we divide the interval [a, b] of r-axis into M equal parts, the interval [0, π] into J equal
parts and the interval [0, 2π] into K equal parts:

a = r0 < · · · < rM = b, 0 = θ0 < · · · < θJ = π. 0 = φ0 < · · · < φK = 2π (4.7)

Let τ = T/L, h = (b− a)/M ,δ = π/J and ε = 2π/K. In this example we choose N = 0. Now
we have the following formula by Crank-Nicholson scheme:

un+1
i+1,j,k−2un+1

i,j,k+u
n+1
i−1,j,k+u

n
i+1,j,k−2uni,j,k+u

n
i−1,j,k

2h2
+
un+1
i+1,j,k−un+1

i−1,j,k+u
n
i+1,j,k−uni−1,j,k

hri
+

un+1
i,j+1,k−2un+1

i,j,k+u
n+1
i,j−1,k+u

n
i,j+1,k−2uni,j,k+u

n
i,j−1,k

2r2i δ
2

+
un+1
i,j+1,k−un+1

i,j−1,k+u
n
i,j+1,k−uni,j−1,k

2r2i δ tan θj

+
1

sin2 φk

un+1
i,j,k+1 − 2un+1

i,j,k + un+1
i,j,k−1 + uni,j,k+1 − 2uni,j,k + uni,j,k−1

2r2i ε
2

−
un+1
i,j,k − uni,j,k

τ
= 0,

1 ≤ i ≤M, 1 ≤ j ≤ J, 0 ≤ n ≤ L− 1, 1 ≤ k ≤ K;

u0
i,j,k = 0, 0 ≤ i ≤M, 1 ≤ j ≤ J, 1 ≤ k ≤ K;

un0,j,k = g(θj, εk, tn), 1 ≤ n ≤ L, 1 ≤ j ≤ J, 1 ≤ k ≤ K;

where tn = nτ, ri = ih, θj = jδ, φk = kε and the artificial boundary conditions on Γb are given
by numerical integrals of Φ0(u|Γb

, ∂u∂t |Γb
). For different M , J ,L and K, we have the results in

the first column of Table. 1. In Fig.1, we give the error function |u(b, θ, φ, t)− uh(b, θ, φ, t)| for
t ∈ [0, T ] with θ = π/3, φ = π/3.

Table 1: The results of Example 1.

FDM FEM

M ‖u − uh‖1,Ω/‖u‖1,Ω ‖u − uh‖1,Ω/‖u‖1,Ω

8 2.6674e-1 2.4610e-1

16 1.3412e-1 1.2624e-1

32 6.6020e-2 6.3601e-2

64 3.4168e-2 3.2338e-2

Furthermore, we use finite element method to solve problem (4.1)–(4.4). To do so, we should
give the variational form of problem (4.1)–(4.4):

Find u ∈ U, such that
d

dt
(u, v)Ω0 + a(u, v) = 0, ∀v ∈ V,

}

(4.8)
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Fig. 1: The numerical result of example 1

where
Ω0 = {(r, θ, φ) | a < r < b, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π}, (4.9)

(u, v)Ω0 =

∫

Ω0

uvr2 sin θ drdθdφ, (4.10)

a(u, v) =

∫

Ω0

{∂u
∂r

∂v

∂r
− 1

r

∂u

∂r
v +

1

r2
∂u

∂θ

∂v

∂θ
− cos θ

r2 sin θ

∂u

∂θ
v

+
1

r2 sin2 θ

∂u

∂φ

∂v

∂φ
}r2 sin θdrdθdφ −

∫ 2π

0

∫ π

0

(
∂u

∂r
v)|r=bb2 sin θdθdφ, (4.11)

U =
{

w(r, θ, φ, t)
∣

∣

∣
t ∈ [0, T ], w(·, ·, ·, t), ∂w

∂t
(·, ·, ·, t) ∈ H1(Ω0), and

w(r, θ, φ, 0) = 0, w
∣

∣

r=a
= g(θ, φ, t), w(r, θ, 0, t) = w(r, θ, 2π, t)

}

, (4.12)

V =
{

v(r, θ, φ) ∈ H1(Ω0)
∣

∣

∣
v(a, θ, φ) = 0, v(r, θ, 0) = v(r, θ, 2π)

}

. (4.13)

If we give a partition of Ω0 such as (4.7), we can construct the finite dimension subspace Vh of
V by using piecewise trilinear functions:

Vh =
{

ph(r, θ, φ) ∈ C0(Ω0)
∣

∣

∣
ph|[ri−1,ri]×[θj−1,θj ]×[φk−1,φk] ∈ P111(r, θ, φ)

}

,

where P111(r, θ, φ) is the space of trilinear functions with ph(r, θ, 0) = ph(r, θ, 2π) and 1 ≤ i ≤
M, 1 ≤ j ≤ J, 1 ≤ k ≤ K. Let {N1(r, θ, φ), N1(r, θ, φ), · · · , NM (r, θ, φ)} is a basis of space Vh
with M = dimVh, and

Uh =
{

wh(r, θ, φ, t)
∣

∣

∣
wh(r, θ, φ, t) =

M
∑

i=1

αi(t)Ni(r, θ, φ)

and wh(a, θj , φk, t) = g(θj , φk, t), αi ∈ H1([0, T ]), αi(0) = 0
}

,

V 0
h = {vh(r, θ, φ) ∈ Vh | vh(a, θ, φ) = 0, vh(r, θ, 0) = vh(r, θ, 2π)}.
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Then we will solve the following approximation problem of (4.8):

Find uh ∈ Uh, such that
d

dt
(uh, vh)Ω0 + a(uh, vh) = 0, ∀vh ∈ V 0

h ,

}

(4.14)

From variational problem (4.14), we obtain an initial value problem of ordinary differential
equations containing functions α1(t), · · · , αM (t). Then we can obtain α1(t), · · · , αM (t) from
the initial value problem (4.14) by numerical method. The numerical results are shown in the
second column of Table.1.

Example 2. Consider the same problem in Example 1 with another boundary condition

g(θ, φ, t) =
1

8(πt)
3
2

e−
(r sin θ cos φ−x0)2+(r sin θ cos φ−y0)2+(r cos θ−z0)2

4t

where (x0, y0, z0) = (0.5, 0.5, 0.5). We introduce an artificial boundary Γb with b = 2 to bounded
the domain ΩTc Finite element method similar to that in Example 1 is used to solve this
example. For different choices of N , the order of the artificial boundary condition in (2.45),
errors ‖u− uh‖1,Ω/‖u‖1,Ω are shown in Table 2.

Table 2: The results of Example 2

N = 0 N = 2 N = 4
M FDM FEM FDM FEM FDM FEM

8 3.1130e-1 2.9592e-1 1.9184e-1 1.8592e-1 1.4401e-1 1.3592e-1

16 2.5075e-1 2.4119e-1 9.7369e-2 9.4319e-2 7.4747e-2 6.8319e-2

32 1.8521e-1 1.7143e-1 4.9782e-2 4.7765e-2 3.8673e-2 3.5461e-2

64 1.7438e-1 1.6732e-1 2.5241e-2 2.3321e-2 1.9162e-2 1.7435e-2

N = 7 N = 12
M FDM FEM FDM FEM

8 1.3531e-1 1.3032e-1 1.3078e-1 1.2473e-1

16 6.8863e-2 6.4568e-2 6.4484e-2 6.0259e-2

32 3.4883e-2 3.2182e-2 3.1486e-2 3.0093e-2

64 1.6853e-2 1.5346e-2 1.5185e-2 1.4528e-2

In Fig. 2, the error function |u(b, θ, φ, t) − uh(b, θ, φ, t)| for t ∈ [0, T ] with θ = π/3, φ = π/3
are demonstrated.
Example 3. Consider the following problem:

∂u

∂t
−4u = 0, (x, t) ∈ ΩTc (4.15)

u
∣

∣

∣

Γ0

= g(x, t), (x, t) ∈ Γ0, (4.16)

u
∣

∣

∣

t=0
= 0, (4.17)

u→ 0 when ||x|| → +∞, (4.18)

where Γ0 is the boundary of Ω = {(x1, x2, x3) ∈ R
3, |xi| ≤ 1, i = 1, 2, 3} × [0, T ] and ΩTc =

R
3 × [0, T ]\Ω
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Fig. 2: The numerical result of example 2

The exact solution is

u(x1, x2, x3, t) =
1

8(πt)
3
2

e−
(x1−x0

1)2+(x2−x0
2)2+(x3−x0

3)2

4t

with (x0
1, x

0
2, x

0
3) = (0.5, 0.5, 0.5). The boundary condition is given by the exact solution. The

standard finite element method is used to solve this problem. For different choices of N and
b = 3, the results of ‖u− uh‖1,Ω/‖u‖1,Ω at (x, y, z) = (1.5, 1.5, 1.5) are shown in Table 3.

Table 3: The errors for artificial boundaries with different accuracy

M N = 0 N = 1 N = 3 N = 6 N = 9

8 2.8628e-1 2.1532e-1 1.9653e-1 1.7891e-1 1.6962e-1

16 2.2846e-1 1.2457e-1 1.1462e-1 1.0641e-1 9.8843e-2

32 1.6862e-1 6.4392e-2 5.6673e-2 5.0843e-2 4.9273e-2

64 1.2463e-1 3.3648e-2 2.7356e-2 2.5143e-2 2.4762e-2

Table 4: The result for different artificial boundaries

Mesh size b=2 b=3 b=4 b=5

1/4 2.3364e-1 1.9884e-1 1.8634e-1 1.8023e-1

1/8 1.4973e-1 1.2859e-2 1.2256e-1 1.18262-1

1/16 7.6462e-2 6.4328e-2 6.1638e-2 5.9634e-2

1/32 3.8288e-2 3.2232e-2 3.0934e-2 2.9783e-2



Numerical Solutions of Parabolic Problems on Unbounded 3-D Spatial Domain 461

2 2.5 3 3.5 4 4.5
3.5

4

4.5

5

5.5

6

6.5

−ln(1/h)

−l
nE

N=0
N=1
N=3
N=6
N=9

Fig. 3: The convergent rate of the artificial boundary conditions with different accuracy

To know the relation between the errors and the location of artificial boundary condition, we
select different artificial boundaries, namely b=2, 3, 4, 5. The error function ‖u−uh‖1,Ω/‖u‖1,Ω

at (x1, x2, x3) = (1.5, 1.5, 1.5) are shown in Table.4. In this example, N is chosen to be 4.
Fig.3 demonstrates the convergent rates of the artificial boundary conditions with different

accuracy.

5. Conclusion

The exact boundary condition and a family of artificial boundary conditions of heat equation
on unbounded domains in 3-D spatial space are provided. By them the reduced problems
on bounded computational domain are obtained, which is equivalent or approximate to the
original problem. Furthermore the stability analysis of the reduced problems is given. The good
performance of the numerical examples shows that the given method is feasible and effective.
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