CONSTRAINED QUADRILATERAL NONCONFORMING ROTATED \mathcal{Q}_{1} ELEMENT ${ }^{* 1)}$

Jun Hu Zhong-ci Shi
(LSEC, ICMSEC, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China)

Abstract

In this paper, we define a new nonconforming quadrilateral finite element based on the nonconforming rotated \mathcal{Q}_{1} element by enforcing a constraint on each element, which has only three degrees of freedom. We investigate the consistency, approximation, superclose property, discrete Green's function and superconvergence of this element. Moreover, we propose a new postprocessing technique and apply it to this element. It is proved that the postprocessed discrete solution is superconvergent under a mild assumption on the mesh.

Mathematics subject classification: 65N30.
Key words: Constrained, Nonconforming Rotated \mathcal{Q}_{1} element, Superconvergence, Postprocess.

1. Introduction

There are some lower order quadrilateral finite elements, e.g., the conforming isoparametric Q_{1} element, the nonconforming rotated \mathcal{Q}_{1} element and the nonconforming Wilson element. All these finite elements need at least four degrees of freedom. Recently, Park and Sheen have proposed a nonconforming quadrilateral P_{1} element, which has only three degrees of freedom [10]. One of the key ideas of the P_{1} element is that a linear function on a quadrilateral satisfies a constraint that the summation of values at the midpoints of one pair of opposite edges equals to the summation of values at the midpoints of the other pair of opposite edges.

In this paper, we define a new nonconforming quadrilateral finite element based on the nonconforming rotated \mathcal{Q}_{1} element (NR \mathcal{Q}_{1} hereafter)[9] by imposing a similar constraint on each element, the resulting element has only three degrees of freedom, too. We call this element constrained nonconforming rotated \mathcal{Q}_{1} element(CNR \mathcal{Q}_{1} for short). The CNR \mathcal{Q}_{1} element and the P_{1} element are equivalent on a rectangle, however, they are different on a general quadrilateral. We investigate some properties of this new element. A new postprocess technique is proposed to obtain a superconvergent discrete postprocessed solution.

The outline of the paper is as follows. In Section 2 and Section 3, we define the CNR \mathcal{Q}_{1} element and apply it to the second order elliptic problem. In section 4, we define regular derivative Green function of nonconforming finite elements and investigate its properties. Section 5 is devoted to the analysis of the supperclose property and superconvergence of the $\mathrm{CNR} \mathcal{Q}_{1}$ element. In Section 6 , we discuss the postprocessing technique which admits a superconvergent discrete postprocessed solution. This paper ends with numerical examples in Section 7.

We end this section with some notations. Let Ω be a convex polygon with the boundary $\partial \Omega$. We use the standard notation and definition for the Sobolev spaces $H^{s}(\Omega)$ for $s \geq 0$ [1], the associated inner product is denoted by $(\cdot, \cdot)_{s}$, and the norm by $\|\cdot\|_{s}$ with the seminorm $|\cdot|_{s} . H^{0}(\Omega)=L^{2}(\Omega)$, in this case, the norm and inner product are denoted by $\|\cdot\|_{0}$ and (\cdot, \cdot)

[^0]respectively. As usual, $H_{0}^{s}(\Omega)$ is the subspace of $H^{s}(\Omega)$ with vanishing trace on $\partial \Omega$. Define $H^{-1}(\Omega)$ the dual space of $H_{0}^{1}(\Omega)$ equipped with the norm $\|\cdot\|_{-1}$, and $<\cdot, \cdot>$ denotes the dual pair between $H_{0}^{1}(\Omega)$ and $H^{-1}(\Omega)$. We shall also use the Sobolev spaces $W^{s, p}$ for $s \geq 0$ and $p \geq 1$, equipped with the norm $\|\cdot\|_{s, p, \Omega}$ with the seminorm $|\cdot|_{s, p, \Omega}$. If $p=2$ we have $W^{s, p}=H^{s}(\Omega)$.

We use the standard gradient operator:

$$
\nabla r=\binom{\partial r / \partial x}{\partial r / \partial y}, \quad \widehat{\nabla} r=\binom{\partial r / \partial \xi}{\partial r / \partial \eta} .
$$

Throughout this paper, C denotes a generic constant, which is not necessarily the same at different places, but independent of the mesh size h.

2. Constrained Nonconforming Rotated \mathcal{Q}_{1} Element

In this section, we introduce some notations and define a new nonconforming finite element method, namely, $\mathrm{CNR} \mathcal{Q}_{1}$ element.

2.1 Quadrilateral Mesh

Let $J^{h}=\left\{K_{i}, i=1, \cdots, N e\right\}$ be a quasi-uniform quadrilateral partition of Ω with $\operatorname{diam}\left(K_{i}\right) \leq$ h. Let N^{V} and N^{E} denote the numbers of nodes and elements of the partition, respectively, N_{i}^{V} and N_{B}^{S} denote the numbers of interior nodes and boundary edges, respectively.

We shall frequently use the following assumption on the partition J^{h}.
Assumption 2.1. The distance d_{K} between the midpoints of two diagonals is of order $\mathcal{O}\left(h^{1+\alpha}\right)$ with $1 \geq \alpha>0$ when h tends to zero. If $\alpha=1$, we obtain the usual Bi-section condition [11].

For a given element $K \in J^{h}$, its four nodes are denoted by $p_{i}\left(x_{i}, y_{i}\right), i=1, \cdots, 4$ in the counterclockwise order. Let $\hat{K}=[-1,1]^{2}$ denote the reference element with nodes $\hat{p}_{i}\left(\xi_{i}, \eta_{i}\right), i=$ $1, \cdots, 4$. Define the bilinear transformation $\mathcal{F}_{K}: \hat{K} \rightarrow K$ by

$$
x=\sum_{i=1}^{4} x_{i} N_{i}(\xi, \eta), \quad y=\sum_{i=1}^{4} y_{i} N_{i}(\xi, \eta), \quad(\xi, \eta) \in \hat{K},
$$

where $N_{i}(\xi, \eta), i=1,2,3,4$ are the bilinear basis functions, which can be written as

$$
\begin{array}{ll}
N_{1}(\xi, \eta)=\frac{1}{4}(1-\xi)(1-\eta), & N_{2}(\xi, \eta)=\frac{1}{4}(1+\xi)(1-\eta) \\
N_{3}(\xi, \eta)=\frac{1}{4}(1+\xi)(1+\eta), & N_{4}(\xi, \eta)=\frac{1}{4}(1-\xi)(1+\eta)
\end{array}
$$

Define

$$
\left(\begin{array}{cc}
c_{0} & d_{0} \\
c_{1} & d_{1} \\
c_{2} & d_{2} \\
c_{12} & d_{12}
\end{array}\right)=\frac{1}{4}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 1 & 1 & -1 \\
-1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right)\left(\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
x_{3} & y_{3} \\
x_{4} & y_{4}
\end{array}\right),
$$

then the Jacobian matrix of the bilinear transformation \mathcal{F}_{K} can be expressed as

$$
\mathcal{J}_{K}=\left(\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\
\frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta}
\end{array}\right)=\left(\begin{array}{cc}
c_{1}+c_{12} \eta & c_{2}+c_{12} \xi \\
d_{1}+d_{12} \eta & d_{2}+d_{12} \xi
\end{array}\right)
$$

with the determinant $J_{K}(\xi, \eta)=J_{0}+J_{1} \xi+J_{2} \eta$, where $J_{0}=c_{1} d_{2}-c_{2} d_{1}, J_{1}=c_{1} d_{12}-c_{12} d_{1}$, $J_{2}=c_{12} d_{2}-c_{2} d_{12}$, and its inverse is

$$
\mathcal{J}_{K}^{-1}=\left(\begin{array}{ll}
\frac{\partial \xi}{\partial x} & \frac{\partial \xi}{\partial y} \\
\frac{\partial \eta}{\partial x} & \frac{\partial \eta}{\partial y}
\end{array}\right)=\frac{1}{J_{K}(\xi, \eta)}\left(\begin{array}{cc}
d_{2}+d_{12} \xi & -c_{2}-c_{12} \xi \\
-d_{1}-d_{12} \eta & c_{1}+c_{12} \eta
\end{array}\right)
$$

In terms of the aforementioned mesh parameters, Assumption2.1 implies

$$
\begin{align*}
& \left|c_{12}\right|+\left|d_{12}\right| \leq C h^{1+\alpha} \tag{2.1}\\
& \left|J_{1}\right|+\left|J_{2}\right| \leq C h^{2+\alpha} \tag{2.2}\\
& \left|\hat{\nabla} \mathcal{J}_{K}\right| \leq C h^{1+\alpha} \tag{2.3}
\end{align*}
$$

2.2 The constrained nonconforming rotated \mathcal{Q}_{1} element

For $S \subset R^{2}$, denote $P_{l}(S)$ the space of polynomials of degrees $\leq l$ defined on $S, Q_{m, n}(S)$ the space of polynomials of degrees $\leq m$ for the first variable and $\leq n$ for the second variable. For brevity, $Q_{m}(S)=Q_{m, m}(S)$.

Before defining the constrained nonconforming rotated \mathcal{Q}_{1} element, we briefly describe the nonconforming rotated \mathcal{Q}_{1} element [9]. Define

$$
\mathcal{Q}_{1}(\hat{K})=\operatorname{Span}\left\langle 1, \xi, \eta, \xi^{2}-\eta^{2}\right\rangle
$$

For any edge $\mathcal{F} \subset \partial K$, the edge functional $\pi_{0}^{\mathcal{F}}$ is defined as

$$
\pi_{0}^{\mathcal{F}}(v)=\frac{1}{|\mathcal{F}|} \int_{\mathcal{F}} v d s, \quad \forall v \in L^{2}(K)
$$

A local interpolation operator π_{K} is generated by $\pi_{0}^{\mathcal{F}}$ with $\pi_{\left.K\right|_{\mathcal{F}}}=\pi_{0}^{\mathcal{F}}$ for all $\mathcal{F} \subset \partial K$. The NR \mathcal{Q}_{1} element space [9] is defined as

$$
R^{h}=\left\{v \in L^{2}(\Omega) \mid v_{\left.\right|_{K}}=\hat{v} \circ \mathcal{F}_{K}^{-1}, \hat{v} \in \mathcal{Q}_{1}(\hat{K}), v \text { is continuous regarding } \pi_{0}^{\mathcal{F}}\right\}
$$

The corresponding homogeneous space is

$$
R_{0}^{h}=\left\{v \in R^{h} \mid \pi_{0}^{\mathcal{F}}(v)=0, \quad \text { for } \mathcal{F} \subset \partial \Omega\right\}
$$

On the space R^{h}, we define the following norm and seminorm, respectively,

$$
\begin{equation*}
\left\|v_{h}\right\|_{1, h}=\left\{\sum_{K \in J^{h}}\left\|v_{h}\right\|_{1, K}^{2}\right\}^{1 / 2}, \quad\left|v_{h}\right|_{1, h}=\left\{\sum_{K \in J^{h}}\left|v_{h}\right|_{1, K}^{2}\right\}^{1 / 2}, \quad \forall v_{h} \in R^{h} \tag{2.4}
\end{equation*}
$$

Obviously, $|\cdot|_{1, h}$ is a norm on the space $R_{0}^{h}[9]$.
We are in the position to give our element. For a given element $K \in J^{h}$, let $\mathcal{F}_{i}, i=1,2,3,4$ denote its four edges in the counterclockwise order. The constrained nonconforming rotated \mathcal{Q}_{1} element space $C R^{h}$ and its homogenous space $C R_{0}^{h}$ read

$$
\begin{aligned}
& C R^{h}=\left\{v \in R^{h}, \int_{\mathcal{F}_{1}} v d s+\int_{\mathcal{F}_{3}} v d s=\int_{\mathcal{F}_{2}} v d s+\int_{\mathcal{F}_{4}} v d s, \forall K\right\}, \\
& C R_{0}^{h}=\left\{v \in R_{0}^{h}, \int_{\mathcal{F}_{1}} v d s+\int_{\mathcal{F}_{3}} v d s=\int_{\mathcal{F}_{2}} v d s+\int_{\mathcal{F}_{4}} v d s, \forall K\right\} .
\end{aligned}
$$

Remark 2.1. As mentioned in the introduction, the constraint used in the P_{1} quadrilateral nonconforming element [10] is that: For a given element $K \in J^{h}$, let $m_{j}, 1 \leq j \leq 4$ denote its four midpoints of the edges in the counterclockwise order. Let $u \in P_{1}(K)$ be a linear function on K, then $u\left(m_{1}\right)+u\left(m_{3}\right)=u\left(m_{2}\right)+u\left(m_{4}\right)$. Conversely, if $u_{j}, j=1,2,3,4$, are given at $m_{j}, j=1,2,3,4$, respectively, and $u_{1}+u_{3}=u_{2}+u_{4}$, then there exists a unique $u \in P_{1}(K)$ such that, $u\left(m_{j}\right)=u_{j}, j=1,2,3,4$. In our element, we use a similar, however different constraint.

For the $\operatorname{CNR} \mathcal{Q}_{1}$ element, there is an equivalent definition. Define

$$
\mathcal{C} \mathcal{Q}_{1}(\hat{K})=\left\{q \in \mathcal{Q}_{1}(\hat{K}), \int_{\hat{\mathcal{F}}_{1}} q d s+\int_{\hat{\mathcal{F}}_{3}} q d s=\int_{\hat{\mathcal{F}}_{2}} q d s+\int_{\hat{\mathcal{F}}_{4}} q d s\right\},
$$

then, we have the following result,

Lemma 2.1.

$$
\mathcal{C} \mathcal{Q}_{1}(\hat{K})=P_{1}(\hat{K}) .
$$

Proof. Obviously, we have

$$
P_{1}(\hat{K}) \subset \mathcal{C} \mathcal{Q}_{1}(\hat{K}) .
$$

We now show the converse relation of $P_{1}(\hat{K})$ and $\mathcal{C} \mathcal{Q}_{1}(\hat{K})$. Let $q \in \mathcal{C} \mathcal{Q}_{1}(\hat{K})$, which can be expressed as

$$
q=a_{0}+a_{1} \xi+a_{2} \eta+a_{3}\left(\xi^{2}-\eta^{2}\right),
$$

we assert that $a_{3}=0$, otherwise

$$
\int_{\hat{\mathcal{F}}_{1}} q d s+\int_{\hat{\mathcal{F}}_{3}} q d s \neq \int_{\hat{\mathcal{F}}_{2}} q d s+\int_{\hat{\mathcal{F}}_{4}} q d s,
$$

thus

$$
\mathcal{C} \mathcal{Q}_{1}(\hat{K}) \subset P_{1}(\hat{K}),
$$

which ends the proof.
With this Lemma at hand, the $\operatorname{CNR} \mathcal{Q}_{1}$ element space $C R^{h}$ and its homogenous space $C R_{0}^{h}$ read

$$
\begin{gathered}
C R^{h}=\left\{v \in L^{2}(\Omega) \mid v_{\mid K}=\hat{v} \circ \mathcal{F}_{K}^{-1}, \hat{v} \in P_{1}(\hat{K}), v \text { is continuous regarding } \pi_{0}^{\mathcal{F}}\right\} . \\
C R_{0}^{h}=\left\{v \in C R^{h} \mid \pi_{0}^{\mathcal{F}}(v)=0, \quad \text { for } \mathcal{F} \subset \partial \Omega\right\} .
\end{gathered}
$$

For this new element, several remarks are in order.
Remark 2.2. The CNR element can also be constructed from Cai-Douglas-Ye element [5] by imposing the same constraint. Since Cai-Douglas-Ye element is a constrained Han element [6], the CNR element can also be derived from the Han element by enforcing two constraints on each element.

Remark 2.3. On a rectangle K, the $\operatorname{CNR} \mathcal{Q}_{1}$ element is equivalent to the P_{1} element. In fact, in this case, the bilinear transformation \mathcal{F}_{K} degenerates to a linear one, both the P_{1} element [10] and the $\operatorname{CNR} \mathcal{Q}_{1}$ element are linear, morover, $v(m)=\pi_{0}^{\mathcal{F}} v$ if v is a linear function with $v(m)$ the value of v at the midpoint m of the edge \mathcal{F} of K, therefore the constraint (see Remark 2.1 for the P_{1} element) on each element and the continuity(see Ref.[10] for the P_{1} element) are the same. On a general quadrilateral, they are different, because the latter is still a linear function in the case, while the former is not a polynomial any more.

Remark 2.4. Compared to the P_{1} element, the $\operatorname{CNR} \mathcal{Q}_{1}$ element is defined on the reference element through the bilinear transformation, therefore its implementation is standard; while the P_{1} element is directly defined on the physical element, its implementation is not standard.

We now evaluate the dimensions of $C R^{h}$ and $C R_{0}^{h}$. Let N^{V} and N^{E} denote the numbers of nodes and elements of the partition, N_{i}^{V} and N_{B}^{S} denote the numbers of interior nodes and boundary edges, respectively. From the Euler relation of a quadrilateral partition, we have

$$
\operatorname{dim}\left(\mathrm{CR}^{\mathrm{h}}\right)=\mathrm{N}^{\mathrm{V}}-1 .
$$

The $C R_{0}^{h}$ is a subset of R^{h}, which satisfies

$$
\begin{gathered}
\int_{\mathcal{F}_{1, K}} v d s+\int_{\mathcal{F}_{3, K}} v d s-\int_{\mathcal{F}_{2, K}} v d s-\int_{\mathcal{F}_{4, K}} v d s=0, \forall K \in J^{h}, \forall v \in C N R_{0}^{h}, \\
\int_{\mathcal{F}_{j}} v d s=0, \forall \mathcal{F}_{j}, \forall v \in C N R_{0}^{h},
\end{gathered}
$$

where $\mathcal{F}_{j}, j=1, \cdots, N_{B}^{S}$ are boundary edges of the partition. It is easy to find that, among these linear constraints, only $N^{E}+N_{B}^{S}-1$ of them are linearly independent, which implies

$$
\begin{equation*}
\operatorname{dim}\left(\mathrm{CR}_{0}^{\mathrm{h}}\right)=\mathrm{N}_{\mathrm{i}}^{\mathrm{V}} . \tag{2.5}
\end{equation*}
$$

Now we look for a basis for $C R_{0}^{h}$. From (2.5), we need to choose N_{i}^{V} linearly independent functions from $C R_{0}^{h}$. On the reference element \hat{K}, define

$$
\begin{array}{ll}
\hat{\phi}_{1}=\frac{1}{4}(1-\xi-\eta), & \hat{\phi}_{2}=\frac{1}{4}(1+\xi-\eta), \\
\hat{\phi}_{3}=\frac{1}{4}(1+\xi+\eta), & \hat{\phi}_{4}=\frac{1}{4}(1-\xi+\eta),
\end{array}
$$

which are associated to nodes $\hat{p}_{i}, i=1,2,3,4$ of \hat{K}, respectively. In particular, it holds that

$$
\int_{\hat{\mathcal{F}}_{1}} \hat{\phi}_{i} d \hat{s}+\int_{\hat{\mathcal{F}}_{3}} \hat{\phi}_{i} d \hat{s}=\int_{\hat{\mathcal{F}}_{2}} \hat{\phi}_{i} d \hat{s}+\int_{\hat{\mathcal{F}}_{4}} \hat{\phi}_{i} d \hat{s}, i=1,2,3,4 .
$$

For each node p_{j}, let $E(j)$ denote the set of elements with the node p_{j} as one of their vertexes, define

$$
\phi_{j}(p)=\left\{\begin{array}{l}
\hat{\phi}_{i}\left(\mathcal{F}_{K}^{-1}(p)\right), p \in K \in E(j), \tag{2.6}\\
0, p \in K \in J^{h} \backslash E(j),
\end{array}\right.
$$

where the subscript i is determined by $p_{j}=p_{i, K}=\mathcal{F}_{K}\left(\hat{p}_{i}\right)$ with $p_{i, K}, i=1,2,3,4$ four nodes of element K. Let $j=1, \cdots, N_{i}^{V}$ denote the interior nodes, it is easy to see $\phi_{j}, j=1, \cdots, N_{i}^{V}$ are linearly independent and that

$$
\operatorname{span}\left\{\phi_{1}, \cdots, \phi_{N_{i}^{V}}\right\} \subset C R_{0}^{h}
$$

therefore, $\left\{\phi_{j}\right\}_{j=1}^{N_{i}^{V}}$ is a basis of $C R_{0}^{h}$.

Remark 2.5. Let Q_{1} denote the conforming bilinear finite element space, we can see from (2.6) and the definition of π_{h} that $C R_{0}^{h}=\pi_{h} Q_{1}$.

3. Application to the Second Order Elliptic Problem

We consider the following second order elliptic problem in its weak formulation:
Problem 3.1. Find $u \in H_{0}^{1}(\Omega)$, such that

$$
\begin{equation*}
a(u, v)=<f, v>, \quad \forall v \in H_{0}^{1}(\Omega) \tag{3.1}
\end{equation*}
$$

where

$$
a(u, v)=\int_{\Omega}\left[\sum_{i, j=1}^{2} a_{i, j} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}+\sum_{j=1}^{2} b_{j} \frac{\partial u}{\partial x_{j}} v+b_{0} u v\right] d x_{1} d x_{2}
$$

Let $C R_{0}^{h}$ approximate $H_{0}^{1}(\Omega)$, we get the discrete problem:
Problem 3.2. Find $u_{h} \in C R_{0}^{h}$, such that

$$
\begin{equation*}
a_{h}\left(u_{h}, v\right)=<f, v_{h}>, \quad \forall v_{h} \in C R_{0}^{h} \tag{3.2}
\end{equation*}
$$

where

$$
a(u, v)=\sum_{K \in J^{h}} \int_{K}\left[\sum_{i, j=1}^{2} a_{i, j} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}+\sum_{j=1}^{2} b_{j} \frac{\partial u}{\partial x_{j}} v+b_{0} u v\right] d x_{1} d x_{2}
$$

Before considering the convergence of the discrete problem, we investigate the approximation and consistency properties of the $\mathrm{CNR} \mathcal{Q}_{1}$ element.

Because $C R_{0}^{h}$ is a subset of R_{0}^{h}, we have the following consistency error estimate [9]:

$$
\begin{equation*}
\left|\sum_{K} \int_{\partial K} v \Psi \cdot n d s\right| \leq C h\|v\|_{1, h}\|\Psi\|_{1}, \quad \forall v \in R_{0}^{h}, \forall \Psi \in\left(H^{1}(\Omega)\right)^{2} \tag{3.3}
\end{equation*}
$$

In order to study the approximation of the $\operatorname{CNR} \mathcal{Q}_{1}$ element, we first summarize some interpolation results for $\pi_{0}^{\mathcal{F}}$ and its global version defined as $\pi_{h_{K}}=\pi_{K}$.
Lemma 3.1. [9] The foregoing defined interpolation operator $\pi_{0}^{\mathcal{F}}$ and π_{h} admit the following estimates

$$
\begin{equation*}
\left\|v-\pi_{0}^{\mathcal{F}}(v)\right\|_{0, \mathcal{F}} \leq C h_{K}^{1 / 2}|v|_{1, K} \quad \forall v \in H^{1}(K) \tag{3.4}
\end{equation*}
$$

Moreover, if the $(1+\alpha)$-Section Condition holds, then

$$
\begin{equation*}
\left\|v-\pi_{h} v\right\|_{0}+h\left\|v-\pi_{h} v\right\|_{1, h} \leq C h^{1+\alpha}\|v\|_{2} \quad \forall v \in H_{0}^{1} \cap H^{2} \tag{3.5}
\end{equation*}
$$

For any $v \in H^{2}(\Omega)$, let $\Pi_{1}^{h} v$ denote its conforming bilinear interpolation, we have

$$
\begin{equation*}
\left|v-\Pi_{1}^{h} v\right|_{m, K} \leq C h^{2-m}\|v\|_{2, K}, m=0,1,2 \tag{3.6}
\end{equation*}
$$

Set $\Pi=\pi_{h} \Pi_{1}^{h}$. Because $\xi \eta$ is a bubble function for the operator π_{h}, we have

$$
\Pi v=\pi_{h} \Pi_{1}^{h} v \in C R^{h}
$$

From Lemma 3.1 and (3.6), we deduce

$$
\begin{align*}
& h|v-\Pi v|_{1, K}+\|v-\Pi v\|_{0, K} \\
& \leq h\left|v-\Pi_{1}^{h} v\right|_{1, K}+h\left|\Pi_{1}^{h} v-\Pi v\right|_{1, K} \\
& \quad+\left\|v-\Pi_{1}^{h} v\right\|_{0, K}+\left\|\Pi_{1}^{h} v-\Pi v\right\|_{0, K} \\
& \leq C h^{1+\alpha}\|v\|_{2, K} \tag{3.7}
\end{align*}
$$

For the interpolant Πv, there exists a simple expression in terms of $\phi_{i}=\hat{\phi}_{i} \circ \mathcal{F}_{K}^{-1}, i=1,2,3,4$ for any $v \in H^{2}(K)$. In fact, let $v_{i}, i=1,2,3,4$ be the values of v at vertexes $p_{i}, i=1,2,3,4$, a direct calculation gives

$$
\Pi v=\sum_{i=1}^{4} v_{i} \phi_{i}
$$

Remark 3.1. From (3.7), we note that the $\operatorname{CNR} \mathcal{Q}_{1}$ element shares the same approximation property as the NR \mathcal{Q}_{1} element. This is partly because the term $\xi^{2}-\eta^{2}$ is added to the NR \mathcal{Q}_{1} element to satisfy the requirement of degrees of freedom, which has no contribution to the approximation.

Remark 3.2. Compared to the P_{1} element, the interpolation error estimate of the CNR \mathcal{Q}_{1} element depends on the mesh distortion parameter α; while the interpolation error estimate of the P_{1} element is independent of α. However, when $\alpha=1$, they converge at the same rate.

From (3.3) and (3.7), proceeding along the standard line of nonconforming finite element methods, we obtain the following error estimates,

Theorem 3.1. Let $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ be the solution of Problem 3.1 and $u_{h} \in C R_{0}^{h}$ be the solution of Problem 3.2, then

$$
\begin{gather*}
\left\|u-u_{h}\right\|_{1, h} \leq C h^{\alpha}\|u\|_{2} \tag{3.8}\\
\left\|u-u_{h}\right\|_{0} \leq C h^{2 \alpha}\|u\|_{2} \tag{3.9}
\end{gather*}
$$

4. Regular Green's Function

In order to get the superconvergence in the L^{∞} norm, we introduce the following regular delta function $\delta_{\varepsilon}(X, Z)$ for the point $Z \in K_{Z}$, which is defined such that

1. $\left(v,-\partial_{x, h} \delta_{\varepsilon}\right)=\left(\partial_{x, h} v, \delta_{\varepsilon}\right)=\partial_{x, h} v(Z), \quad \forall v \in C R_{0}^{h}$, where the differential operator $\frac{\partial}{\partial x}$ is defined element by element and denoted by $\partial_{x, h}$,
2. $\left|\delta_{\varepsilon}\right|_{s, \Omega, \infty} \leq C \varepsilon^{-2-s}, s=0,1$,
3. $\delta_{\varepsilon} \in C^{0}\left(K_{Z}\right) \cap H_{0}^{1}\left(K_{Z}\right)$ with $\varepsilon \geq C_{1} h$.

For example, let $Z=\left(x_{0, K_{Z}}, y_{0, K_{Z}}\right)$ be the center of element K_{Z}, let K^{\prime} be a subrectangle of K_{Z} with $\left(x_{0, K_{Z}}, y_{0, K_{Z}}\right)$ the center and $h_{x, K^{\prime}}$ and $h_{y, K^{\prime}}$ the meshsizes in the x and y direction. The regular delta function $\delta_{\varepsilon}(X, Z)$ can be defined as

$$
\delta_{\varepsilon}(X, Z)=\frac{9}{4\left|K^{\prime}\right|}\left(1-4\left(\frac{x-x_{0, K}}{h_{x, K^{\prime}}}\right)^{2}\right)\left(1-4\left(\frac{y-y_{0, K}}{h_{y, K^{\prime}}}\right)^{2}\right)
$$

For the general quadrilateral, $\delta_{\varepsilon}(X, Z)$ can be defined in a similar way.
The regular derivative Green's function $G(X, Z)$ is defined by: Find $G(X, Z) \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
a(v, G)=\left(v,-\frac{\partial \delta_{\varepsilon}}{\partial x}\right)=\left(\frac{\partial v}{\partial x}, \delta_{\varepsilon}\right), \quad \forall v \in H_{0}^{1}(\Omega) \tag{4.1}
\end{equation*}
$$

Its discrete problem is: Find $G_{h}(X, Z) \in C R_{0}^{h}$ such that

$$
\begin{equation*}
a_{h}\left(v, G_{h}\right)=\left(\partial_{x, h} v, \delta_{\varepsilon}\right)=\partial_{x, h} v(Z), \quad \forall v \in C R_{0}^{h} \tag{4.2}
\end{equation*}
$$

Introduce the weight function ρ defined by

$$
\begin{equation*}
\rho(X, Z)=\left(\|X-Z\|^{2}+h^{2}\right)^{\frac{1}{2}} \tag{4.3}
\end{equation*}
$$

It is well known that $\rho(X, Z)$ satisfies the following properties

$$
\begin{align*}
& \max _{X \in K} \rho(X, Z) \leq C \min _{X \in K} \rho(X, Z), \quad \forall K \in J^{h} \tag{4.4}\\
& \int_{\Omega} \rho^{-s}(X, Z) d x d y \leq \begin{cases}C h^{2-s}, & s>2 \\
C|\ln h|, & s=2\end{cases} \tag{4.5}
\end{align*}
$$

For $s \in R$ and $k \in N$, the weighted norms and weighted seminorms are defined by

$$
\begin{aligned}
& \|v\|_{k, \rho^{s}, \Omega}=\left(\int_{\Omega} \rho^{s} \sum_{|\beta| \leq k}\left|D^{\beta} v\right|^{2} d x d y\right)^{\frac{1}{2}} \\
& |v|_{k, \rho^{s}, \Omega}=\left(\int_{\Omega} \rho^{s} \sum_{|\beta|=k}\left|D^{\beta} v\right|^{2} d x d y\right)^{\frac{1}{2}}
\end{aligned}
$$

In the analysis in the sequel, we use the following Sobolev inequality(see.Ref.[3] and the references therein for the details),

Lemma 4.1. Let $f \in H^{1}(\Omega)$ and $p \gg 1$, we have the following estimate

$$
\|f\|_{0, p, \Omega} \leq C p^{\frac{1}{2}}\|f\|_{1, \Omega}
$$

With these preparations at hand, we have

Lemma 4.2.

$$
\|G\|_{1, \rho^{2}, \Omega}^{2}+\|G\|_{1,1, \Omega}+\|G\|_{0}^{2} \leq C|\ln h|
$$

Proof. For the simplicity, we only consider the case where

$$
a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x d y
$$

We shall use the duality method to bound $\|G\|_{0}$. To this end, we introduce the following auxiliary problem: Find $u_{G} \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
a\left(u_{G}, v\right)=(G, v) \tag{4.6}
\end{equation*}
$$

Assume this problem admits the following regularity,

$$
\left\|u_{G}\right\|_{2} \leq C\|G\|_{0}
$$

Take $v=G$ in (4.6), by the definition of the derivative Green function, we proceed as

$$
\begin{aligned}
\|G\|_{0}^{2} & =a\left(u_{G}, G\right)=\left(\frac{\partial u_{G}}{\partial x}, \delta_{\varepsilon}\right)=\left(\frac{\partial u_{G}}{\partial x}, \delta_{\varepsilon}\right)_{K_{Z}} \\
& \leq\left\|\frac{\partial u_{G}}{\partial x}\right\|_{0, p, \Omega}\left\|\delta_{\varepsilon}\right\|_{0, q, K_{Z}} \quad\left(\text { with } \frac{1}{p}+\frac{1}{q}=1\right) \\
& \leq C h^{-\frac{2}{p}} p^{\frac{1}{2}}\left\|\frac{\partial u_{G}}{\partial x}\right\|_{1} \quad(\text { by Lemma } 4.1) \\
& \leq C h^{-\frac{2}{p}} p^{\frac{1}{2}}\|G\|_{0} \quad \text { (by the regularity) }
\end{aligned}
$$

Let $p=|\ln h|$ in the above inequality, we obtain

$$
\|G\|_{0} \leq C|\ln h|^{\frac{1}{2}}
$$

Take $v=\rho^{2} G$ in (4.1) and integrate by parts, we derive

$$
\begin{aligned}
\|\rho \nabla G\|_{0}^{2} & =\left(\frac{\partial \rho^{2} G}{\partial x}, \delta_{\varepsilon}\right)-2(\rho \nabla \rho, G \nabla G) \\
& =\left(\rho^{2} \frac{\partial G}{\partial x}, \delta_{\varepsilon}\right)+2\left(\rho G \frac{\partial \rho}{\partial x}, \delta_{\varepsilon}\right)-2(\rho \nabla \rho, G \nabla G) \\
& \leq C\left(\|\rho \nabla G\|_{0}+\|G\|_{0}+\|\rho \nabla G\|_{0}\|G\|_{0}\right) .
\end{aligned}
$$

An application of Yong's inequality gives

$$
\|\rho \nabla G\|_{0} \leq C|\ln h|^{\frac{1}{2}} .
$$

We now turn to $\|G\|_{1,1, \Omega}$, which can be bounded as

$$
\begin{aligned}
\|G\|_{1,1, \Omega} & =\sum_{|\beta| \leq 1} \int_{\Omega}\left|D^{\beta} G\right| d x d y \\
& \leq \sum_{|\beta| \leq 1}\left(\int_{\Omega} \rho^{-2} d x d y\right)^{\frac{1}{2}}\left(\int_{\Omega} \rho^{2}\left|D^{\beta} G\right|^{2} d x d y\right)^{\frac{1}{2}} \\
& \leq C|\ln h|,
\end{aligned}
$$

which completes the proof.
Lemma 4.3. There exist a positive constant C independent of h the mesh size and α the mesh distortion parameter such that

$$
\left\|G_{h}\right\|_{0}^{2} \leq C h^{2 \alpha-2}+C|\ln h| .
$$

Proof. First it is easy to see

$$
\left\|G_{h}\right\|_{1, h} \leq C h^{-1}
$$

We use the duality method again to bound $\left\|G_{h}\right\|_{0}$, thus introduce the auxiliary problem: Find $u_{G_{h}} \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
a\left(u_{G_{h}}, v\right)=\left(G_{h}, v\right), \forall v \in H_{0}^{1}(\Omega) . \tag{4.7}
\end{equation*}
$$

Let $u_{G_{h}, h}$ be the CNR \mathcal{Q}_{1} finite element solution to the above problem, from the consistency error estimate of CNR \mathcal{Q}_{1} element and the regularity of $u_{G_{h}}$, we derive that

$$
\begin{aligned}
\left(G_{h}, G_{h}\right) & =\left(G_{h}, G_{h}\right)-a_{h}\left(u_{G_{h}}, G_{h}\right)+a_{h}\left(u_{G_{h}}, G_{h}\right) \\
& \leq C h\left\|u_{G_{h}}\right\|_{2}\left\|G_{h}\right\|_{1, h}+a_{h}\left(u_{G_{h}}-u_{G_{h}, h}, G_{h}\right)+a_{h}\left(u_{G_{h}, h}, G_{h}\right) \\
& \leq C h\left\|u_{G_{h}}\right\|_{2}\left\|G_{h}\right\|_{1, h}+\left(\partial_{x, h} u_{G_{h}, h}, \delta_{\varepsilon}\right) \\
& \leq C h^{\alpha}\left\|u_{G_{h}}\right\|_{2}\left\|G_{h}\right\|_{1, h}+\left(\partial_{x, h}\left(u_{G_{h}, h}-u_{G_{h}}\right), \delta_{\varepsilon}\right)+\left(\frac{\partial u_{G_{h}}}{\partial x}, \delta_{\varepsilon}\right) \\
& \leq C h^{\alpha-1}\left\|G_{h}\right\|_{0}+\left(\frac{\partial u_{G_{h}}}{\partial x}, \delta_{\varepsilon}\right) \quad \text { (using Lemma 4.1 again) } \\
& \leq C\left(h^{\alpha-1}+|\ln h|^{\frac{1}{2}}\right)\left\|G_{h}\right\|_{0} .
\end{aligned}
$$

which ends the proof.
Lemma 4.4. Let J^{h} be a rectangle partition of Ω, it holds

$$
\left\|G_{h}\right\|_{1, \rho^{2}, h}^{2}+\left\|G_{h}\right\|_{1,1, h} \leq C|\ln h| .
$$

Proof.

$$
\begin{aligned}
\left\|\rho \nabla_{h} G_{h}\right\|_{0}^{2} & =\sum_{K \in J^{h}} \int_{K} \rho^{2} \nabla G_{h} \cdot \nabla G_{h} d x d y \\
& =\sum_{K \in J^{h}} \int_{K} \nabla\left(\rho^{2} G_{h}\right) \cdot \nabla G_{h}-2 \rho G_{h} \nabla \rho \cdot \nabla G_{h} d x d y \\
& =I_{1}+I_{2}
\end{aligned}
$$

We first estimate the first term in the above equation. Let $Z \in K_{Z}$, for a given element K with the center $\left(x_{0, k}, y_{0, K}\right)$ and the meshsizes $2 h_{x}$ and $2 h_{y}$ in the x and y direction respectively, define

$$
d_{x}=-\left(x_{Z}-x_{0, K}\right), \quad d_{y}=-\left(y_{Z}-y_{0, K}\right)
$$

It follows that

$$
\rho^{2}(X, Z)=\left(h_{x}^{2} \xi^{2}+2 h_{x} d_{x} \xi+h_{y}^{2} \eta+2 h_{y} d_{y} \eta+d_{x}^{2}+d_{y}^{2}+h^{2}\right)
$$

By virtue of (4.4), we have

$$
\begin{equation*}
d_{x}^{2}+d_{y}^{2} \leq C \rho^{2} \tag{4.8}
\end{equation*}
$$

Denote $p_{i}, i=1,2,3,4$ the nodes of K numbered counterclockwise. Suppose G_{h} can be expressed as

$$
\left.G_{h}\right|_{K}=\sum_{i=1}^{4} g_{i} \phi_{i} \text { (see Section } 2 \text { for the definition of } \phi_{i} \text {). }
$$

Let $w_{h} \in C R_{0}^{h}$ be a formal interpolant of $\rho^{2} G_{h}$ defined by

$$
\left.w_{h}\right|_{K}=\sum_{i=1}^{4} \rho_{i}^{2} g_{i} \phi_{i}
$$

with ρ_{i} the values of ρ at nodes p_{i}, then we have

$$
\begin{aligned}
\left.w_{h}\right|_{K}= & \left(h_{x}^{2}-2 h_{x} d_{x}+h_{y}^{2}-2 h_{y} d_{y}+d_{x}^{2}+d_{y}^{2}+h^{2}\right) g_{1} \phi_{1} \\
& +\left(h_{x}^{2}+2 h_{x} d_{x}+h_{y}^{2}-2 h_{y} d_{y}+d_{x}^{2}+d_{y}^{2}+h^{2}\right) g_{2} \phi_{2} \\
& +\left(h_{x}^{2}+2 h_{x} d_{x}+h_{y}^{2}+2 h_{y} d_{y}+d_{x}^{2}+d_{y}^{2}+h^{2}\right) g_{3} \phi_{3} \\
& +\left(h_{x}^{2}-2 h_{x} d_{x}+h_{y}^{2}+2 h_{y} d_{y}+d_{x}^{2}+d_{y}^{2}+h^{2}\right) g_{4} \phi_{4}
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\rho^{2} G_{h}-w_{h}= & \left(h_{x}^{2}\left(\xi^{2}-1\right)+2 h_{x} d_{x}(\xi+1)+h_{y}^{2}\left(\eta^{2}-1\right)+2 h_{y} d_{y}(\eta+1)\right) g_{1} \phi_{1} \\
& +\left(h_{x}^{2}\left(\xi^{2}-1\right)+2 h_{x} d_{x}(\xi-1)+h_{y}^{2}\left(\eta^{2}-1\right)+2 h_{y} d_{y}(\eta+1)\right) g_{2} \phi_{2} \\
& +\left(h_{x}^{2}\left(\xi^{2}-1\right)+2 h_{x} d_{x}(\xi-1)+h_{y}^{2}\left(\eta^{2}-1\right)+2 h_{y} d_{y}(\eta-1)\right) g_{3} \phi_{3} \\
& +\left(h_{x}^{2}\left(\xi^{2}-1\right)+2 h_{x} d_{x}(\xi+1)+h_{y}^{2}\left(\eta^{2}-1\right)+2 h_{y} d_{y}(\eta+1)\right) g_{4} \phi_{4}
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\partial \rho^{2} G_{h}-w_{h}}{\partial x} \\
&=\left(2 h_{x} \xi+2 d_{x}\right) g_{1} \phi_{1}-\frac{g_{1}}{4 h_{x}}\left(h_{x}^{2}\left(\xi^{2}-1\right)+2 h_{x} d_{x}(\xi+1)+h_{y}^{2}\left(\eta^{2}-1\right)+2 h_{y} d_{y}(\eta+1)\right) \\
&+\left(2 h_{x} \xi+2 d_{x}\right) g_{2} \phi_{2}+\frac{g_{2}}{4 h_{x}}\left(h_{x}^{2}\left(\xi^{2}-1\right)+2 h_{x} d_{x}(\xi-1)+h_{y}^{2}\left(\eta^{2}-1\right)+2 h_{y} d_{y}(\eta+1)\right) \\
&+\left(2 h_{x} \xi+2 d_{x}\right) g_{3} \phi_{3}+\frac{g_{3}}{4 h_{x}}\left(h_{x}^{2}\left(\xi^{2}-1\right)+2 h_{x} d_{x}(\xi-1)+h_{y}^{2}\left(\eta^{2}-1\right)+2 h_{y} d_{y}(\eta-1)\right) \\
&+\left(2 h_{x} \xi+2 d_{x}\right) g_{4} \phi_{4}-\frac{g_{4}}{4 h_{x}}\left(h_{x}^{2}\left(\xi^{2}-1\right)+2 h_{x} d_{x}(\xi+1)+h_{y}^{2}\left(\eta^{2}-1\right)+2 h_{y} d_{y}(\eta+1)\right) .
\end{aligned}
$$

Which implies

$$
\begin{aligned}
\int_{K} \frac{\partial\left(\rho^{2} G_{h}-w_{h}\right)}{\partial x} \frac{\partial G_{h}}{\partial x} d x d y= & \int_{\hat{K}} 3\left(-g_{1}+g_{2}+g_{3}-g_{4}\right) \xi^{2} b J_{K} d \xi d \eta \\
& +\int_{\hat{K}}\left(g_{1}-g_{2}-g_{3}+g_{4}\right) b J_{K} d \xi d \eta \\
& +\int_{\hat{K}}\left(-g_{1}+g_{2}+g_{3}-g_{4}\right) \frac{h_{y}^{2}}{h_{x}^{2}}\left(\eta^{2}-1\right) b J_{K} d \xi d \eta \\
& +\int_{\hat{K}} 2\left(-g_{1}+g_{2}+g_{3}-g_{4}\right) d_{y} \frac{h_{y}}{h_{x}^{2}} b J_{K} d \xi d \eta \\
\leq & C h^{2}\left\|\nabla G_{h}\right\|_{0, K}^{2}+C h\left|d_{y}\right|\left\|\nabla G_{h}\right\|_{0, K}^{2} \\
\leq & C h^{2}\left\|\nabla G_{h}\right\|_{0, K}^{2}+C h\left\|\nabla G_{h}\right\|_{0, K}\left\|\rho \nabla G_{h}\right\|_{0, K},
\end{aligned}
$$

where $b=\frac{1}{16}\left(-g_{1}+g_{2}+g_{3}-g_{4}\right)$. In the same way, we can prove

$$
\int_{K} \frac{\partial\left(\rho^{2} G_{h}-w_{h}\right)}{\partial y} \frac{\partial G_{h}}{\partial y} d x d y \leq C h^{2}\left\|\nabla G_{h}\right\|_{0, K}^{2}+C h\left\|\nabla G_{h}\right\|_{0, K}\left\|\rho \nabla G_{h}\right\|_{0, K} .
$$

Since

$$
\begin{aligned}
\left.\frac{\partial w_{h}}{\partial x}\right|_{K}= & \frac{1}{2}\left(g_{1}+g_{2}+g_{3}+g_{4}\right) d_{x}+2\left(g_{1}-g_{2}+g_{3}-g_{4}\right) \frac{h_{y} d_{y}}{4 h_{x}} \\
& +\left(h_{x}^{2}+h_{y}^{2}+d_{x}^{2}+d_{y}^{2}+h^{2}\right)\left(-g_{1}+g_{2}+g_{3}-g_{4}\right) \frac{1}{4 h_{x}},
\end{aligned}
$$

we proceed as

$$
\begin{aligned}
\left|\sum_{K \in J^{h}} \nabla w_{h} \cdot \nabla G_{h}\right| & =\left|\left(\frac{\partial w_{h}}{\partial x}, \delta_{\varepsilon}\right)_{K_{z}}\right| \\
& \leq C\left\|G_{h}\right\|_{0, K_{z}}+C h\left\|G_{h}\right\|_{0, \infty, K_{z}}+C h\left\|\nabla G_{h}\right\|_{0, K_{z}} \\
& \leq C|\ln h|^{\frac{1}{2}} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left|I_{1}\right| & =\left|\sum_{K \in J^{h}} \nabla\left(\rho^{2} G_{h}-w_{h}\right) \cdot \nabla G_{h}+\nabla w_{h} \cdot \nabla G_{h} d x d y\right| \\
& \leq C|\ln h|^{\frac{1}{2}}+C\left\|\rho \nabla_{h} G_{h}\right\|_{0}
\end{aligned}
$$

Obviously, we have

$$
\left|I_{2}\right| \leq C|\ln h|^{\frac{1}{2}}\left\|\rho \nabla_{h} G_{h}\right\|_{0} .
$$

Owing to the two estimates, using Young's inequality, we come to

$$
\left\|\rho \nabla_{h} G_{h}\right\|_{0}^{2} \leq C|\ln h|
$$

By the usual way, we have

$$
\left\|G_{h}\right\|_{1,1, h} \leq C|\ln h|
$$

which completes the proof.
Lemma 4.5. For a general quadrilateral mesh J^{h}, we can prove

$$
\left\|G_{h}\right\|_{1, \rho^{2}, h}^{2}+\left\|G_{h}\right\|_{1,1, h} \leq C h^{2 \alpha-2}+C|\ln h| .
$$

Proof. The proof is similar but lengthy expressions, for the brevity we omit it here.

5. Superconvergence of the CNR \mathcal{Q}_{1} Element

In this section, we discuss the superconvergence of the CNR \mathcal{Q}_{1} element. We shall get three kinds of superconvergence points.

We consider the rectangular mesh with constant coefficients in the first subsection and the rectangular mesh with variable coefficients in the second subsection. The general case is studied in the third subsection.

5.1 The case of constant coefficients

Let $J^{h}=\cup K$ be a regular rectangle partition of the domain Ω with $2 h_{x, K}$ and $2 h_{y, K}$ the mesh size of the element K in the x and y direction respectively, $h=\max _{K \in J^{h}}^{\max }\left(h_{x, K}, h_{y, K}\right)$.

For a given element $K \in J^{h}$, let $\left(x_{0, K}, y_{0, K}\right)$ be its center. Setting $R=u-\Pi_{1}^{h} u$, expanding R at the point (x, y), we have

$$
R=\phi(x) u_{x x}+\psi(y) u_{y y}+r_{3}
$$

where

$$
\begin{aligned}
\phi(x)= & \frac{\left(x-x_{0, K}\right)^{2}}{2}-\frac{h_{x, K}^{2}}{2}, \quad \psi(y)=\frac{\left(y-y_{0, K}\right)^{2}}{2}-\frac{h_{y, K}^{2}}{2}, \\
& \left\|r_{3}\right\|_{s, p . K} \leq C h^{3-s}\|u\|_{3, p, K}, s=0,1,1 \leq p \leq \infty
\end{aligned}
$$

For any $v \in C R_{0}^{h}$, we have the following decomposition

$$
\begin{align*}
a_{h}\left(u_{h}-\Pi u, v\right) & =a_{h}\left(u_{h}-\Pi_{1}^{h} u, v\right)+a_{h}\left(\Pi_{1}^{h} u-\Pi u, v\right) \\
& =a_{h}\left(u_{h}-u, v\right)+a_{h}(R, v)+a_{h}\left(\Pi_{1}^{h} u-\Pi u, v\right) \\
& =s_{1}+s_{2}+s_{3} \tag{5.1}
\end{align*}
$$

In order to show the superconvergence of the CNR \mathcal{Q}_{1} element, we have to prove the superconvergence of the consistency error term s_{1}, the interpolation error term s_{2} and s_{3}.

For s_{1}, we have
Theorem 5.1. Let $u \in H^{3}(\Omega) \cap H_{0}^{1}(\Omega)$ be the solution of Problem 3.1, u_{h} be the solution of Problem 3.2, then

$$
\begin{equation*}
\left|s_{1}\right| \leq C h^{2}\|u\|_{3, \Omega}\|v\|_{1, h}, \forall v \in C R_{0}^{h} \tag{5.2}
\end{equation*}
$$

Proof. Let $\nu=\left(\nu_{1}, \nu_{2}\right)$ denote the unit outward normal, we have

$$
\begin{aligned}
s_{1} & =a_{h}\left(u_{h}-u, v\right)=(f, v)-a_{h}(u, v) \\
& =-\sum_{K \in J^{h}} \int_{\partial K} \sum_{i, j=1}^{2} a_{i, j} \frac{\partial u}{\partial x_{i}} \nu_{j} v d s \\
& =-\sum_{K \in J^{h} F \subset \partial k} \int_{F} \sum_{i, j=1}^{2} a_{i, j}\left(\frac{\partial u}{\partial x_{i}}-\pi_{0}^{F} \frac{\partial u}{\partial x_{i}}\right)\left(v-\pi_{0}^{F} v\right) \nu_{j} d s \\
& =-\sum_{K \in J^{h}} \sum_{i, j=1}^{2} \sum_{m=1}^{4} I_{i, j}^{m}
\end{aligned}
$$

where $\pi_{0}^{F} w=\frac{1}{|F|} \int_{F} w d s$. Now we study the cancellation in the above identity. For a given element K with the center (a, b) and the mesh sizes $2 r$ and $2 s$ in x and y direction respectively, we only consider the case where $i=1$ and $j=1$.

$$
\begin{align*}
& I_{1,1}^{1}+I_{1,1}^{3}=-a_{1,1} \int_{b-s}^{b+s} {\left[\frac{\partial u}{\partial x}(a-r, y) d y-\frac{1}{2 s} \int_{b-s}^{b+s} \frac{\partial u}{\partial x}(a-r, t) d t\right] } \\
& \times {\left[v(a-r, y)-\frac{1}{2 s} \int_{b-s}^{b+s} v(a-r, t) d t\right] d y } \\
&+a_{1,1} \int_{b-s}^{b+s}\left[\frac{\partial u}{\partial x}(a+r, y) d y-\frac{1}{2 s} \int_{b-s}^{b+s} \frac{\partial u}{\partial x}(a+r, t) d t\right] \\
& \times {\left[v(a+r, y)-\frac{1}{2 s} \int_{b-s}^{b+s} v(a+r, t) d t\right] d y } \tag{5.3}
\end{align*}
$$

Note that v is a linear function on K, which implies

$$
\begin{equation*}
v(a-r, y)-\frac{1}{2 s} \int_{b-s}^{b+s} v(a-r, t) d t=v(a+r, y)-\frac{1}{2 s} \int_{b-s}^{b+s} v(a+r, t) d t \tag{5.4}
\end{equation*}
$$

Substituting (5.4) into (5.3) gives

$$
\begin{aligned}
I_{1,1}^{1}+I_{1,1}^{3}=a_{1,1} \int_{b-s}^{b+s} & {\left[\int_{a-r}^{a+r} \frac{\partial^{2} u}{\partial x^{2}}(x, y) d x-\frac{1}{2 s} \int_{b-s}^{b+s} \int_{a-r}^{a+r} \frac{\partial^{2} u}{\partial x^{2}}(x, t) d x d t\right] } \\
\times & {\left[v(a+r, y)-\frac{1}{2 s} \int_{b-s}^{b+s} v(a+r, t) d t\right] d y } \\
=\frac{a_{1,1}}{2 s} \int_{b-s}^{b+s} & \left\{\int_{a-r}^{a+r} \int_{b-s}^{b+s} \int_{t}^{y} \frac{\partial^{3} u}{\partial x^{2} \partial z} d z d t d x\right\} \\
\times & \left\{\frac{1}{2 s} \int_{b-s}^{b+s} \int_{t}^{y} \frac{\partial v}{\partial z}(a+r, z) d z d t\right\} d y
\end{aligned}
$$

Because $\frac{\partial v}{\partial z}$ is a constant on K, we get

$$
I_{1,1}^{1}+I_{1,1}^{3} \leq C h^{2}\|u\|_{3, K}|v|_{1, K}
$$

Similarly

$$
I_{i, j}^{1}+I_{i, j}^{3} \leq C h^{2}\|u\|_{3, K}|v|_{1, K}, i, j=1,2
$$

and

$$
I_{i, j}^{2}+I_{i, j}^{4} \leq C h^{2}\|u\|_{3, K}|v|_{1, K}, i, j=1,2
$$

From these inequalities, we conclude that

$$
\left|s_{1}\right|=\sum_{K \in J^{h}} \sum_{i, j=1}^{2} \sum_{m=1}^{4} I_{i, j}^{m} \leq C h^{2}\|u\|_{3, \Omega}|v|_{1, h}
$$

which completes the proof.
For s_{2}, we have
Theorem 5.2. Let $u \in H^{3}(\Omega) \cap H_{0}^{1}(\Omega)$ be the solution of Problem 3.1, then

$$
\begin{equation*}
\left|s_{2}\right| \leq C h^{2}\|u\|_{3, \Omega}\|v\|_{1, h}, \forall v \in C R_{0}^{h} \tag{5.5}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
s_{2} & =\sum_{K \in J^{h}} \int_{K}\left\{\sum_{i, j=1}^{2} a_{i, j} \frac{\partial R}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}+\sum_{i=1}^{2} b_{i} \frac{\partial R}{\partial x_{i}} v+b_{0} R v\right\} d x d y \\
& =J_{1}+J_{2}+J_{3}
\end{aligned}
$$

On any element $K, \frac{\partial v}{\partial x_{i}}, i=1,2$ are constants and

$$
\frac{\partial R}{\partial x}=\left(x-x_{0, K}\right) u_{x x}+r_{4}, \quad \frac{\partial R}{\partial y}=\left(y-y_{0, K}\right) u_{y y}+r_{5}
$$

where

$$
\left\|r_{4}\right\|_{0, K}+\left\|r_{5}\right\|_{0, K} \leq C h^{2}\|u\|_{3, K}
$$

Let Π_{0} denote the L^{2} projection operator onto the piecewise constant space, we proceed as

$$
\begin{aligned}
\left|\int_{K} a_{1,1} \frac{\partial R}{\partial x} \frac{\partial v}{\partial x} d x d y\right| \leq & \left|\int_{K} a_{1,1} r_{4} \frac{\partial v}{\partial x} d x d y\right| \\
& +\left|\int_{K} a_{1,1}\left(x-x_{0, K}\right) u_{x x} \frac{\partial v}{\partial x} d x d y\right| \\
= & \left|\int_{K} a_{1,1} r_{4} \frac{\partial v}{\partial x} d x d y\right| \\
& +\left|\int_{K} a_{1,1}\left(x-x_{0, K}\right)\left(I-\Pi_{0}\right) u_{x x} \frac{\partial v}{\partial x} d x d y\right| \\
\leq & C h^{2}\|u\|_{3, K}\|v\|_{1, K}
\end{aligned}
$$

In the same way, we can obtain

$$
\left|\int_{K} a_{i, j} \frac{\partial R}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} d x d y\right| \leq C h^{2}\|u\|_{3, K}\|v\|_{1, K}
$$

therefore,

$$
\left|J_{1}\right| \leq C h^{2}\|u\|_{3, \Omega}\|v\|_{1, h}
$$

We turn to the second term J_{2}.

$$
\begin{aligned}
\int_{K} \sum_{i=1}^{2} b_{i} \frac{\partial R}{\partial x_{i}} v d x d y & =\int_{K} \sum_{i=1}^{2} b_{i} \frac{\partial R}{\partial x_{i}}\left(v-\Pi_{0} v\right) d x d y+\int_{K} \sum_{i=1}^{2} b_{i} \frac{\partial R}{\partial x_{i}} \Pi_{0} v d x d y \\
& \leq C h^{2}\|u\|_{2, K}|v|_{1_{, K}}+C h^{2}\|u\|_{3, K}\|v\|_{0, K}
\end{aligned}
$$

which implies

$$
\left|J_{2}\right| \leq C h^{2}\|u\|_{3, \Omega}\|v\|_{1, h}
$$

It is easy to see

$$
\left|J_{3}\right| \leq C h^{2}\|u\|_{3, \Omega}\|v\|_{1, h}
$$

which ends the proof.
We remain to estimate the third term s_{3} in (5.1), which is bounded in the following theorem.
Theorem 5.3. Let $u \in H^{3}(\Omega) \cap H_{0}^{1}(\Omega)$ be the solution of Problem 3.1, then

$$
\begin{equation*}
\left|a_{h}\left(\Pi_{1}^{h} u-\Pi u, v\right)\right| \leq C h^{2}\|u\|_{3, \Omega}\|v\|_{1, h}, \forall v \in C R_{0}^{h} \tag{5.6}
\end{equation*}
$$

Proof. Denote $\delta u=\Pi_{1}^{h} u-\Pi u$, we have

$$
\begin{aligned}
a_{h}\left(\Pi_{1}^{h} u-\Pi u, v\right) & =\sum_{K \in J^{h}} \int_{K}\left\{\sum_{i, j=1}^{2} a_{i, j} \frac{\partial \delta u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}+\sum_{i=1}^{2} b_{i} \frac{\partial \delta u}{\partial x_{i}} v+b_{0} \delta u v\right\} d x d y \\
& =J_{1}+J_{2}+J_{3}
\end{aligned}
$$

Since

$$
\left.\delta u\right|_{K}=C_{K} \frac{x-x_{0, K}}{h_{x, K}} \frac{y-y_{0, k}}{h_{y, K}}
$$

where C_{K} is a constant, and $\frac{\partial v}{\partial x_{j}}, j=1,2$, are piecewise constants, we have

$$
J_{1}=0
$$

By virtue of $\left|\Pi_{1}^{h} u\right|_{2, K} \leq C\|u\|_{3, K}$, proceeding along the same line of Theorem 5.2, we can show that

$$
\left|J_{2}+J_{3}\right| \leq C h^{2}\|u\|_{3, \Omega}\|v\|_{1, h}
$$

which ends the proof.
Combining Theorem 5.1, Theorem 5.2 and Theorem 5.3, we obtain
Theorem 5.4. Let $u \in H^{3}(\Omega) \cap H_{0}^{1}(\Omega)$ be the solution of Problem 3.1 and u_{h} be the solution of Problem 3.2, then

$$
\begin{equation*}
\left|a_{h}\left(u_{h}-\Pi u, v\right)\right| \leq C h^{2}\|u\|_{3, \Omega}\|v\|_{1, h}, \forall v \in C R_{0}^{h} \tag{5.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|u_{h}-\Pi u\right|_{1, h} \leq C h^{2}\|u\|_{3, \Omega} \tag{5.8}
\end{equation*}
$$

Theorem 5.5. A slight modification of the above analysis, we can obtain

$$
\begin{equation*}
\left|a_{h}\left(u_{h}-\Pi u, v\right)\right| \leq C h^{2}\|u\|_{3, \infty, \Omega}\|v\|_{1,1, h}, \forall v \in C R_{0}^{h} \tag{5.9}
\end{equation*}
$$

where the broken norm $\|\cdot\|_{1,1, h}$ is similarly defined as in (2.4)
For the analysis, we need the following result concerning the superconvergence at the centrial points of elements for the interpolation operator Π
Theorem 5.6. Let $u \in W^{3, \infty}(\Omega)$, then it holds that

$$
\begin{equation*}
\max _{K \in J^{h}}\left|\nabla(u-\Pi u)\left(x_{0, K}, y_{0, K}\right)\right| \leq C h^{2}\|u\|_{3, \infty, \Omega} \tag{5.10}
\end{equation*}
$$

Proof. Denote $\hat{\mathcal{Q}}(\hat{u})=|\hat{\nabla}(\hat{u}-\hat{\Pi} \hat{u})(\hat{O})|$, where \hat{O} is the center of \hat{K}. Note that

$$
|\hat{\mathcal{Q}}(\hat{u})| \leq C\|\hat{u}\|_{3, \infty, \hat{K}}
$$

For any $\hat{v} \in P_{2}(\hat{K})$, it is easy to see

$$
\hat{\mathcal{Q}}(\hat{v})=0 .
$$

It follows from Bramble-Hilbert Lemma that

$$
\hat{\mathcal{Q}}(\hat{u}) \leq C|\hat{u}|_{3, \infty, \hat{K}}
$$

which, together with the scaling argument, implies the desired result.
From Theorem 5.5, Lemma 4.4 and Theorem5.6, we have the following superconvergence
Theorem 5.7. Let $u \in W^{3, \infty}(\Omega) \cap H_{0}^{1}(\Omega)$ be the solution of Problem 3.1, and u_{h} be the solution of Problem 3.2, \mathcal{O}_{K} be the center of K, then

$$
\begin{equation*}
\max _{K \in J^{h}}\left|\nabla\left(u-u_{h}\right)\left(\mathcal{O}_{K}\right)\right| \leq C h^{2}|\ln h| \mid u \|_{3, \infty, \Omega} \tag{5.11}
\end{equation*}
$$

Proof. For a given element K with $Z=\left(x_{0, K}, y_{0, k}\right)$ the center, we have

$$
\begin{aligned}
\partial_{x, h}\left(u_{h}-\Pi u\right)(Z) & =a_{h}\left(u_{h}-\Pi u, G_{h}\right) \\
& \leq C h^{2}\|u\|_{3, \infty, \Omega}\left\|G_{h}\right\|_{1,1, h} \\
& \leq C h^{2}|\ln h|\|u\|_{3, \infty, \Omega}
\end{aligned}
$$

In the same way, we can prove

$$
\partial_{y, h}\left(u_{h}-\Pi u\right)(Z) \leq C h^{2}|\ln h|\|u\|_{3, \infty, \Omega}
$$

The above two inequalities imply

$$
\max _{K}\left|\nabla\left(u_{h}-\Pi u\right)\left(x_{0, K}, y_{0, K}\right)\right| \leq C h^{2}|\ln h|\|u\|_{3, \infty, \Omega}
$$

Owing to Theorem 5.6, we come to

$$
\begin{aligned}
\max _{K}\left|\nabla\left(u_{h}-u\right)\left(x_{0, K}, y_{0, K}\right)\right| \leq & \max _{K}\left|\nabla\left(u_{h}-\Pi u\right)\left(x_{0, K}, y_{0, K}\right)\right| \\
& +\max _{K}\left|\nabla(\Pi u-u)\left(x_{0, K}, y_{0, K}\right)\right| \\
\leq & C h^{2}|\ln h|\|u\|_{3, \infty, \Omega}
\end{aligned}
$$

which is the desired result.

Figure 1: Node and Midpoint

Now we are going to discuss the superconvergence at nodes and midpoints of edges. In this stage, we assume the partition is uniform. As illustrated by Figure 1, let the centrial points near to the node p be denoted by $\mathcal{O}_{i}, i=1, \cdots, 4$, assume that $u \in W^{3, \infty}(\Omega) \cap H_{0}^{1}(\Omega)$.

Define

$$
\overline{\partial_{i} u_{h}}(p)=\frac{1}{4} \sum_{j=1}^{4} \frac{\partial u_{h}}{\partial x_{i}}\left(\mathcal{O}_{j}\right), i=1,2 .
$$

Let \mathcal{V}_{I} denote the set of interior nodes, then we have
Theorem 5.8. Let $u \in W^{3, \infty}(\Omega) \cap H_{0}^{1}(\Omega)$ be the solution of Problem 3.1, and u_{h} be the solution of Problem 3.2, then

$$
\max _{p \in \mathcal{V}_{i}}\left|\partial_{i} u(p)-\overline{\partial_{i} u_{h}}(p)\right| \leq C h^{2}|\ln h|\|u\|_{3, \infty, \Omega}
$$

Proof. Denote $\partial_{i} u=\frac{\partial u}{\partial x_{i}}, i=1,2$, by Taylor expansion, we have

$$
\begin{gathered}
\partial_{i} u(p)=\partial_{i} u\left(\mathcal{O}_{1}\right)+\nabla \partial_{i} u\left(\mathcal{O}_{1}\right)\left(h_{x}, h_{y}\right)+r_{1} \\
\partial_{i} u(p)=\partial_{i} u\left(\mathcal{O}_{2}\right)+\nabla \partial_{i} u\left(\mathcal{O}_{2}\right)\left(-h_{x}, h_{y}\right)+r_{2} \\
\partial_{i} u(p)=\partial_{i} u\left(\mathcal{O}_{3}\right)+\nabla \partial_{i} u\left(\mathcal{O}_{3}\right)\left(-h_{x},-h_{y}\right)+r_{3} \\
\partial_{i} u(p)=\partial_{i} u\left(\mathcal{O}_{4}\right)+\nabla \partial_{i} u\left(\mathcal{O}_{2}\right)\left(h_{x},-h_{y}\right)+r_{4}
\end{gathered}
$$

which give

$$
\begin{gathered}
\partial_{i} u(p)=\frac{1}{4} \sum_{j=1}^{4} \partial_{i} u\left(\mathcal{O}_{j}\right)+r_{p} \\
\left|r_{p}\right| \leq C h^{2}\|u\|_{3, \infty, \Omega}
\end{gathered}
$$

Then

$$
\begin{equation*}
\left|\partial_{i} u(p)-\overline{\partial_{i} u_{h}}(p)\right| \leq\left|\frac{1}{4} \sum_{j=1}^{4}\left(\partial_{i} u\left(\mathcal{O}_{j}\right)-\partial_{i} u_{h}\left(\mathcal{O}_{j}\right)\right)\right|+C h^{2}\|u\|_{3, \infty, \Omega} \tag{5.12}
\end{equation*}
$$

Owing to Theorem 5.7, we come to

$$
\max _{p \in \mathcal{V}_{i}}\left|\partial_{i} u(p)-\overline{\partial_{i} u_{h}}(p)\right| \leq C h^{2}|\ln h|\|u\|_{3, \infty, \Omega}
$$

which is the desired result.
As illustrated by Figure 1, let the centrial points near to the midpoint M be \mathcal{O}_{1} and \mathcal{O}_{2} respectively, define

$$
\overline{\partial_{i} u_{h}}(M)=\frac{1}{2}\left(\frac{\partial u_{h}}{\partial x_{i}}\left(\mathcal{O}_{1}\right)+\frac{\partial u_{h}}{\partial x_{i}}\left(\mathcal{O}_{2}\right)\right), i=1,2 .
$$

Let \mathcal{M}_{I} be the set of midpoints of interior edges, similarly,
Theorem 5.9. Let $u \in W^{3, \infty}(\Omega) \cap H_{0}^{1}(\Omega)$ be the solution of Problem 3.1, and u_{h} be the solution of Problem 3.2, then

$$
\max _{p \in \mathcal{M}_{I}}\left|\partial_{i} u(p)-\overline{\partial_{i} u_{h}}(p)\right| \leq C h^{2}|\ln h|\|u\|_{3, \infty, \Omega}
$$

5.2 The case of variable coefficients

In this case, our main task is still to bound the three terms s_{1}, s_{2} and s_{3} in the decoposition (5.1), which are estimated in the following Theorem.

Theorem 5.10. Assume that $a_{i, j} \in W^{2, \infty}(\Omega), i, j=1,2, b_{i} \in W^{1, \infty}(\Omega), i=1,2, b_{0} \in L^{\infty}(\Omega)$, then

$$
\begin{gather*}
\left|s_{1}\right|+\left|s_{2}\right| \leq C h^{2}\|u\|_{3, \Omega}\|v\|_{1, h}, \forall v \in C R_{0}^{h} \tag{5.13}\\
\left|a_{h}\left(\Pi_{1}^{h} u-\Pi u, v\right)\right| \leq C h^{2}\|u\|_{3, \Omega}\|v\|_{1, h}, \forall v \in C R_{0}^{h} \tag{5.14}\\
\left\|u_{h}-\Pi u\right\|_{1, h} \leq C h^{2}\|u\|_{3, \Omega} \tag{5.15}
\end{gather*}
$$

Proof.

$$
\begin{aligned}
s_{1} & =a_{h}\left(u_{h}-u, v\right)=-\sum_{K \in J^{h}} \int_{\partial K} \sum_{i, j=1}^{2} a_{i, j} \frac{\partial u}{\partial x_{i}} \nu_{j} v d s \\
& =-\sum_{K \in J^{h} F \subset \partial k} \int_{F} \sum_{i, j=1}^{2}\left[a_{i, j} \frac{\partial u}{\partial x_{i}}-\pi_{0}^{F}\left(a_{i, j} \frac{\partial u}{\partial x_{i}}\right)\right] \times\left[v-\pi_{0}^{F} v\right] \nu_{j} d s
\end{aligned}
$$

By the assumption on $a_{i, j}$, repeating the line of Theorem5.1, it can be shown that

$$
\begin{aligned}
&\left|s_{1}\right| \leq C h^{2}\|u\|_{3, \Omega}\|v\|_{1, h} \\
& s_{2}= \sum_{K \in J^{h}} \int_{K}\left\{\sum_{i, j=1}^{2} a_{i, j} \frac{\partial R}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}+\sum_{i=1}^{2} b_{i} \frac{\partial R}{\partial x_{i}} v+b_{0} R v\right\} d x d y \\
&= \sum_{K \in J^{h}} \int_{K}\left\{\sum_{i, j=1}^{2} \Pi_{0} a_{i, j} \frac{\partial R}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}+\sum_{i=1}^{2} \Pi_{0} b_{i} \frac{\partial R}{\partial x_{i}} v+b_{0} R v\right\} d x d y \\
&+\sum_{K \in J^{h}} \int_{K}\left\{\sum_{i, j=1}^{2}\left(a_{i, j}-\Pi_{0} a_{i, j}\right) \frac{\partial R}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}+\sum_{i=1}^{2}\left(b_{i}-\Pi_{0} b_{i}\right) \frac{\partial R}{\partial x_{i}} v\right\} d x d y \\
&= J_{1}+J_{2} .
\end{aligned}
$$

The first term J_{1} can be bounded in the same way as in Theorem 5.2, which reads

$$
\left|J_{1}\right| \leq C h^{2}\|u\|_{3, \Omega}\|v\|_{1, h}
$$

It is easy to see that

$$
\left|J_{2}\right| \leq C h^{2}\|u\|_{3, \Omega}\|v\|_{1, h}
$$

Similarly,

$$
\left|a_{h}\left(\Pi_{1}^{h} u-\Pi u, v\right)\right| \leq C h^{2}\|u\|_{3, \Omega}\|v\|_{1, h}
$$

which completes the proof.
Similarly, we have

$$
\begin{equation*}
\left|a_{h}\left(u_{h}-\Pi u, v\right)\right| \leq C h^{2}\|u\|_{3, \infty, \Omega}\|v\|_{1,1, h}, \quad \forall v \in C R_{0}^{h} \tag{5.16}
\end{equation*}
$$

Owing to (5.16), the same procedures of Theorem 5.7, Theroem 5.8 and Theorem 5.9 yield
Theorem 5.11. Let $u \in W^{3, \infty}(\Omega) \cap H_{0}^{1}(\Omega)$ be the solution of Problem 3.1, and u_{h} be the solution of Problem 3.2. In addition, assume that $a_{i, j} \in W^{2, \infty}(\Omega), i, j=1,2, b_{i} \in W^{1, \infty}(\Omega), i=$ $1,2, b_{0} \in L^{\infty}(\Omega)$, we have

$$
\begin{equation*}
\max _{K \in J^{h}}\left|\nabla\left(u-u_{h}\right)\left(x_{0, K}, y_{0, K}\right)\right| \leq C h^{2}|\ln h|\|u\|_{3, \infty, \Omega} \tag{5.17}
\end{equation*}
$$

$$
\begin{aligned}
& \max _{p \in \mathcal{V}_{I}}\left|\partial_{i} u(p)-\overline{\partial_{i} u_{h}}(p)\right| \leq C h^{2}|\ln h|\|u\|_{3, \infty, \Omega} \\
& \max _{p \in \mathcal{M}_{I}}\left|\partial_{i} u(p)-\overline{\partial_{i} u_{h}}(p)\right| \leq C h^{2}|\ln h|\|u\|_{3, \infty, \Omega}
\end{aligned}
$$

In the last two estimates, we assume that J^{h} is a uniform partition of the domain Ω.

5.3 The General Case

In this subsection, we give the analysis of the superconvergence on a general quadrilateral mesh. We assume the partition satisfied the $1+\alpha$ condition defined by Assumption 2.1.

From the above discussion, in order to analyze the superconvergence, the key is to bound the three term s_{1}, s_{2} and s_{3} in the decomposition (5.1). We first deal with the consistency error term s_{1}. As usual, we only consider the case where $i=1, j=1$ with constant coefficients. We shall apply the technique of [11]. For a given element K,

$$
\begin{aligned}
I_{1,1}^{1}+I_{1,1}^{3}= & a_{1,1} \int_{F_{1}}\left(\frac{\partial u}{\partial x}-\pi_{0}^{F_{1}} \frac{\partial u}{\partial x}\right) \times\left(v-\pi_{0}^{F_{1}} v\right) \nu_{1,1} d s \\
& +a_{1,1} \int_{F_{3}}\left(\frac{\partial u}{\partial x}-\pi_{0}^{F_{3}} \frac{\partial u}{\partial x}\right) \times\left(v-\pi_{0}^{F_{3}} v\right) \nu_{1,3} d s \\
= & a_{1,1} \frac{\left|F_{1}\right|}{\left|\hat{F}_{1}\right|}\left|\hat{F}_{1}\right| \int_{-1}^{1}\left(\frac{\widehat{\partial u}}{\partial x}(-1, \eta)-\widehat{\pi_{0}^{F_{1}} \frac{\partial u}{\partial x}}\right) \\
& \times\left(\hat{v}(-1, \eta)-\widehat{\pi_{0}^{F_{1}} v}\right) \frac{d_{12}-d_{2}}{\left|F_{1}\right|} d \eta \\
& +a_{1,1} \frac{\left|F_{3}\right|}{\left|\hat{F}_{3}\right|}\left|\hat{F}_{3}\right| \int_{-1}^{1}\left(\frac{\widehat{\partial u}}{\partial x}(1, \eta)-\widehat{\pi_{0}^{F_{3}} \frac{\partial u}{\partial x}}\right) \\
& \times\left(\hat{v}(1, \eta)-\widehat{\pi_{0}^{F_{3}} v}\right) \frac{d_{12}+d_{2}}{\left|F_{3}\right|} d \eta
\end{aligned}
$$

Since $\left|\hat{F}_{1}\right|=\left|\hat{F}_{3}\right|=2$, it follows that

$$
\pi_{0}^{F_{1}} \frac{\partial u}{\partial x}=\frac{1}{\left|\hat{F}_{1}\right|} \int_{-1}^{1} \frac{\widehat{\partial u}}{\partial x}(-1, t) d t, \quad \pi_{0}^{F_{3}} \frac{\partial u}{\partial x}=\frac{1}{\left|\hat{F}_{3}\right|} \int_{-1}^{1} \frac{\widehat{\partial u}}{\partial x}(1, t) d t
$$

Note that \hat{v} is a linear function with respect to ξ and η on \hat{K}, we have

$$
\hat{v}(-1, \eta)-\widehat{\pi_{0}^{F_{1}} v}=\hat{v}(1, \eta)-\widehat{\pi_{0}^{F_{3}} v}
$$

Using these equations, we derive as

$$
\begin{aligned}
I_{1,1}^{1}+I_{1,1}^{3}= & \frac{a_{1,1}}{4} d_{2} \int_{-1}^{1}\left\{\int_{-1}^{1} \int_{t}^{\eta} \int_{-1}^{1} \frac{\partial^{2}}{\partial s \partial z} \frac{\partial u}{\partial x}(s, z) d s d z d t\right\} \\
& \times\left\{\int_{-1}^{1} \int_{t}^{\eta} \frac{\partial}{\partial z} \hat{v}(1, z) d z d t\right\} d \eta \\
& +\frac{a_{1,1}}{4} d_{12} \int_{-1}^{1}\left\{\int_{-1}^{1} \int_{t}^{\eta}\left[\frac{\partial}{\partial z} \frac{\widehat{\partial u}}{\partial x}(-1, z)+\frac{\partial}{\partial z} \frac{\widehat{\partial u}}{\partial x}(1, z)\right](s, z) d z d t\right\} \\
& \times\left\{\int_{-1}^{1} \int_{t}^{\eta} \frac{\partial}{\partial z} \hat{v}(1, z) d z d t\right\} d \eta \\
\leq & C h\left|\frac{\widehat{\partial u}}{\partial x}\right|_{2, \hat{K}}|\hat{v}|_{1, \hat{K}}+C h^{1+\alpha}\left|\frac{\partial u}{\partial x}\right|_{1, \hat{K}}|\hat{v}|_{1, \hat{K}} \\
\leq & C h^{1+\alpha}\|u\|_{3, K}\|v\|_{1, K} .
\end{aligned}
$$

Similarly,

$$
\left|I_{i, j}^{1}+I_{i, j}^{3}\right| \leq C h^{1+\alpha}\|u\|_{3, K}\|v\|_{1, K}, i, j=1,2,
$$

and

$$
\left|I_{i, j}^{2}+I_{i, j}^{4}\right| \leq C h^{1+\alpha}\|u\|_{3, K}\|v\|_{1, K}, i, j=1,2
$$

Therefore,

$$
\begin{equation*}
\left|s_{1}\right|=\left|\sum_{K \in J^{h}} \sum_{i, j=1}^{2} \sum_{l=1}^{4} I_{i, j}^{l}\right| \leq C h^{1+\alpha}\|u\|_{3, \Omega}\|v\|_{1, h} \tag{5.18}
\end{equation*}
$$

We now estimate the second s_{2} of (5.1). On the reference element \hat{K}, we have

$$
\begin{equation*}
\hat{R}(\xi, \eta)=\frac{\left(\xi^{2}-1\right)}{2} u_{\xi \xi}+\frac{\left(\xi^{2}-1\right)}{2} u_{\eta \eta}+r_{3} \tag{5.19}
\end{equation*}
$$

where r_{3} only consists of the third order derivatives of u with respect to ξ and η.

$$
\begin{aligned}
s_{2} & =\sum_{K \in J^{h}} \int_{K}\left\{\sum_{i, j=1}^{2} a_{i, j} \frac{\partial R}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}+\sum_{i=1}^{2} b_{i} \frac{\partial R}{\partial x_{i}} v+b_{0} R v\right\} d x d y \\
& =J_{1}+J_{2}+J_{3}
\end{aligned}
$$

It is easy to find

$$
\left|J_{3}\right| \leq C h^{2}\|u\|_{3, \Omega}\|v\|_{1, h}
$$

The key is to bound J_{1} and J_{2}. For a given element K, we consider the case where $i=1$ and $j=1$. In this case,

$$
\begin{aligned}
\int_{K} a_{1,1} \frac{\partial R}{\partial x} \frac{\partial v}{\partial x} d x d y= & a_{1,1} \int_{\hat{K}}\left[\frac{\partial \hat{R}}{\partial \xi}\left(d_{2}+d_{12} \xi\right)+\frac{\partial \hat{R}}{\partial \eta}\left(-d_{1}-d_{12} \eta\right)\right] \\
& \times\left[\frac{\partial \hat{v}}{\partial \xi} \frac{\left(d_{2}+d_{12} \xi\right)}{J_{K}}+\frac{\partial \hat{v}}{\partial \eta} \frac{\left(-d_{1}-d_{12} \eta\right)}{J_{K}}\right] d \xi d \eta .
\end{aligned}
$$

Assume that $\alpha>0$. From Assumption 2.1, when h is small enough, it holds

$$
\left.\frac{1}{J_{K}}=\frac{1}{J_{0}}\left[1-\frac{J_{1} \xi+J_{2} \eta}{J_{0}}+r\right)\right],
$$

with $|r| \leq C h^{2 \alpha}$.

Taking into account the expansion of \hat{R} and the fact that $\frac{\partial \hat{v}}{\partial \xi}$ and $\frac{\partial \hat{v}}{\partial \eta}$ are constants on \hat{K}, we can prove

$$
\left|\int_{K} a_{1,1} \frac{\partial R}{\partial x} \frac{\partial v}{\partial x} d x d y\right| \leq C h^{2 \alpha}\|u\|_{3, K}\|v\|_{1, K}
$$

which implies

$$
\left|J_{1}\right| \leq C h^{2 \alpha}\|u\|_{3, \Omega}\|v\|_{1, h}
$$

We now turn to J_{2}, which can be decomposed as

$$
\begin{aligned}
J_{2} & =\sum_{K \in J^{h}} \int_{K} \sum_{i=1}^{2} \frac{\partial R}{\partial x_{i}} v d x d y \\
& =\sum_{K \in J^{h}} \int_{K} \sum_{i=1}^{2} \frac{\partial R}{\partial x_{i}}\left(v-\Pi_{0} v\right)+\frac{\partial R}{\partial x_{i}} \Pi_{0} v d x d y \\
& =I_{1}+I_{2} .
\end{aligned}
$$

Obviously,

$$
\left|I_{1}\right| \leq C h^{2 \alpha}\|u\|_{3, \Omega}\|v\|_{1, h}
$$

Repeating the line of estimating J_{1}, we obtain

$$
\left|I_{2}\right| \leq C h^{2 \alpha}\|u\|_{3, \Omega}\|v\|_{1, h}
$$

Therefore,

$$
\begin{equation*}
\left|s_{2}\right| \leq C h^{2 \alpha}\|u\|_{3, \Omega}\|v\|_{1, h} \tag{5.20}
\end{equation*}
$$

From (5.18) and (5.20), we obtain

$$
\begin{equation*}
\left|a_{h}\left(u_{h}-\Pi_{1}^{h} u, v\right)\right| \leq C h^{2 \alpha}\|u\|_{3, \Omega}\|v\|_{1, h}, \forall v \in C R_{0}^{h} \tag{5.21}
\end{equation*}
$$

Because $\widehat{\delta u}=$ only consists of the intersected term $\xi \eta$ and \hat{v} is a linear function on \hat{K}, taking into account the approximation of the operator π_{h} (see Lemma 3.1) and (2.1)-(2.3), a similar procedure of estimating s_{2} yields

$$
\begin{equation*}
\left|s_{3}\right|=\left|a_{h}\left(\Pi_{1}^{h} u-\Pi u, v\right)\right| \leq C h^{2}\|u\|_{3, \Omega}\|v\|_{1, h}, \forall v \in C R_{0}^{h} \tag{5.22}
\end{equation*}
$$

Combining these estimates, we obtain

$$
\begin{equation*}
\left\|u_{h}-\Pi u\right\|_{1, h} \leq C h^{2 \alpha}\|u\|_{3, \Omega} \tag{5.23}
\end{equation*}
$$

Repeating the same line, we can prove

$$
\begin{equation*}
\left|a_{h}\left(u_{h}-\Pi u, v\right)\right| \leq C h^{2 \alpha}\|u\|_{3, \infty, \Omega}\|v\|_{1,1, h}, \quad \forall v \in C R_{0}^{h} \tag{5.24}
\end{equation*}
$$

Applying (2.1)-(2.3) again, using Bramble-Hilbert Lemma and the scaling argument as in Theorem 5.6, we get

$$
\begin{equation*}
\max _{K \in J^{h}}\left|\nabla(u-\Pi u)\left(x_{0, K}, y_{0, K}\right)\right| \leq C h^{2 \alpha}\|u\|_{3, \infty, \Omega} \tag{5.25}
\end{equation*}
$$

From (5.24) and (5.25), applying Lemma 4.5, we obtain
Theorem 5.12. Let $u \in W^{3, \infty}(\Omega) \cap H_{0}^{1}(\Omega)$ be the solution of Problem 3.1 and u_{h} be the solution of Problem 3.2, assume that $a_{i, j} \in W^{2, \infty}(\Omega), i, j=1,2, b_{i} \in W^{1, \infty}(\Omega), i=1,2, b_{0} \in L^{\infty}(\Omega)$, and the partition satisfies $1+\alpha$ condition, then

$$
\begin{equation*}
\max _{K \in J^{h}}\left|\nabla\left(u-u_{h}\right)\left(\mathcal{O}_{K}\right)\right| \leq C h^{4 \alpha-2}|\ln h|\|u\|_{3, \infty, \Omega} \tag{5.26}
\end{equation*}
$$

Remark 5.1. For the general quarilateral mesh, there are no similar superconvergences at the nodes of the partition and the midpoints of edges.

5.4 Summary

In this section, we analyze the superconvergence of the CNR \mathcal{Q}_{1} element. Because the $\mathrm{CNR} \mathcal{Q}_{1}$ element is equivalent to the P_{1} element on a rectangle, the analysis and results hold equally for the the P_{1} element when a rectangular mesh is uased. When a general quadrilateral mesh is used, we don't know whether there are similar results. The technique in this section is inapplicable for the NR \mathcal{Q}_{1} element, because in this case, Theorem 5.2 doesn't hold any more.

6. Postprocessing

In this section, we shall propose a new postprocessing technique which admits a superconvergence postprocessed discrete solution.

Let J^{h} be obtained from a coarse quadrilateral mesh $J^{2 h}$ by bi-sectioning each quadrilateral $M, p_{i}, i=1, \cdots, 9$ be the nodes on M (see Figure 2 for an example).

Figure 2: Macroelement

For any $v_{h} \in C R_{0}^{h}$ in the form

$$
\left.v_{h}\right|_{M}=\sum_{i=1}^{9} v_{i} \phi_{i}
$$

we define an interpolant $\Pi_{2} v_{h} \in Q_{2}(M)$ by

$$
\Pi_{2} v_{h}=\sum_{j=1}^{9} v_{i} \Phi_{i}
$$

where $\Phi_{i}, i=1, \cdots, 9$ are the basis functions of the space $Q_{2}(M)$. For any $w \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, let $\Pi_{2}^{\prime} w$ its piecewise biquadratic interpolant with respect to the coarse partition $J^{2 h}$ defined by

$$
\left.\Pi_{2}^{\prime} w\right|_{M}=\sum_{i}^{9} w_{i} \Phi_{i}
$$

where w_{i} are the values of w on the nodes p_{i}. Obviously, we have
Lemma 6.1. For any $w \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, it holds that

$$
\Pi_{2}^{\prime} w=\Pi_{2} \Pi w
$$

We now prove that Π_{2} is a bounded operator with repspect to the norm $\|\cdot\|_{1, h}$,
Lemma 6.2. For any $v_{h} \in C R_{0}^{h}$, it holds that

$$
\begin{gather*}
\left|\Pi_{2} v_{h}\right|_{1, M} \leq C\left|v_{h}\right|_{1, M, h} \tag{6.1}\\
\left|\Pi_{2} v_{h}\right|_{1} \leq C\left|v_{h}\right|_{1, h} \tag{6.2}
\end{gather*}
$$

Proof. In order to verify this inequality we consider the reference macroelement \widehat{M} consisting of four subcells $F_{M}^{-1}\left(K_{j}\right), j=1,2,3,4$. Let \widehat{W} denote the nonconforming finite element space of piecewise linear functions(spanned by $1, \xi, \eta$) with zero meanvalue of the jumps over four inner edges of the subcells. Define the following seminorm

$$
|\widehat{w}|_{1, \widehat{M}, h}=\left\{\sum_{j}^{4}|\widehat{w}|_{1, F_{M}^{-1}\left(K_{j}\right)}^{2}\right\}^{\frac{1}{2}}, \forall \widehat{w} \in \widehat{W}
$$

By virtue of the definition, for any $\widehat{w} \in \widehat{W}$, we have,

$$
\left|\widehat{\Pi_{2} w}\right|_{1, F_{M}^{-1}\left(K_{j}\right)}=\left|\widehat{\Pi}_{2} \widehat{w}\right|_{1, F_{M}^{-1}\left(K_{j}\right)} \leq C\|\widehat{w}\|_{0, \infty, F_{M}^{-1}\left(K_{j}\right)} \leq C\|\widehat{w}\|_{1, F_{M}^{-1}\left(K_{j}\right)}
$$

here $w=\widehat{w} \circ F_{M}^{-1}$. Thus,

$$
\left|\widehat{\Pi_{2} w}\right|_{1, \hat{M}} \leq C\left\{\sum_{j}^{4}\|\widehat{w}\|_{1, F_{M}^{-1}\left(K_{j}\right)}^{2}\right\}^{\frac{1}{2}}
$$

Moreover, $|\cdot|_{1, \widehat{M}, h}$ is also a norm on the factor space \widehat{W} / R, which implies

$$
\begin{aligned}
\left|\widehat{\Pi_{2} w}\right|_{1, \hat{M}} & \leq C\left\{\sum_{j}^{4}\|\widehat{w}\|_{1, F_{M}^{-1}\left(K_{j}\right)}^{2}\right\}^{\frac{1}{2}} \\
& \leq C\left\{\sum_{j}^{4}|\widehat{w}|_{1, F_{M}^{-1}\left(K_{j}\right)}^{2}\right\}^{\frac{1}{2}}, \quad \forall \widehat{w} \in \widehat{W} / R .
\end{aligned}
$$

Further, both sides of the inequality vanish for a constant funcition $\widehat{w} \in \widehat{W}$. Thus,

$$
\left|\widehat{\Pi_{2} w}\right|_{1, \hat{M}} \leq C\left\{\sum_{j}^{4}|\widehat{w}|_{1, F_{M}^{-1}\left(K_{j}\right)}^{2}\right\}^{\frac{1}{2}}, \quad \forall \widehat{w} \in \widehat{W}
$$

which prove (6.1). It is easy to see that $\Pi_{2} v_{h} \in H_{0}^{1}(\Omega)$, and then (6.2) is the direct consequence of (6.1).

For the postprocessed solution $\Pi_{2} u_{h}$, we have the following superconvergence,
Theorem 6.1. Let $u \in H^{3}(\Omega) \cap H_{0}^{1}(\Omega)$ be the solution of Problem 3.1 and u_{h} be the solution of Problem 3.2, assume that $a_{i, j} \in W^{2, \infty}(\Omega), i, j=1,2, b_{i} \in W^{1, \infty}(\Omega), i=1,2, b_{0} \in L^{\infty}(\Omega)$, and the partition satisfies $1+\alpha$ condition, then

$$
\begin{equation*}
\left|u-\Pi_{2} u_{h}\right|_{1} \leq C h^{2 \alpha}\|u\|_{3} \tag{6.3}
\end{equation*}
$$

Proof. Owing to estimate (5.23), Lemma 6.1 and Lemma 6.2, we derive

$$
\begin{aligned}
\left|u-\Pi_{2} u_{h}\right|_{1} & \leq\left|u-\Pi_{2}^{\prime} u\right|_{1}+\left|\Pi_{2}^{\prime} u-\Pi_{2} \Pi u\right|_{1}+\left|\Pi_{2} \Pi u-\Pi_{2} u_{h}\right|_{1} \\
& \leq C h^{2 \alpha}\|u\|_{3}+C\left|\Pi u-u_{h}\right|_{1, h} \\
& \leq C h^{2 \alpha}\|u\|_{3}
\end{aligned}
$$

7. Numerical Examples

In this section, we consider numerical experiments of second order elliptic problems with Dirichlet boundary condition, which reads as

$$
\left\{\begin{array}{cc}
-\triangle u=f, & \Omega=[0,1]^{2} \\
u=0, & \partial \Omega
\end{array}\right.
$$

We choose f such that the exact solution is $u(x, y)=\sin 2 \pi x \sin 2 \pi y$. The example meshes are illustrated by Figures (3)-(5). In numerical examples, we compare the CNR \mathcal{Q}_{1} element with the nonconforming quadrilateral P_{1} element from [10]. The numerical results are listed in Table 1-Table 3.

Figure 3: Example Mesh $\alpha=1.0$

Figure 4: Example Mesh $\alpha=0.5$

Figure 5: Example Mesh $\alpha=0$

Table 1. Error of $P_{1}, \operatorname{CNR} \mathcal{Q}_{1}$ and $\operatorname{NR} \mathcal{Q}_{1}$ element $\alpha=1$

Elements	$\left\\|u-u_{h}\right\\|_{0}$			$\left\\|\nabla_{h}\left(u-u_{h}\right)\right\\|_{0}$		
	CNR	NR	P_{1}	CNR	NR	P_{1}
8×8	0.034054	0.031303	0.034251	1.442686	1.422368	1.448856
16×16	0.008501	0.007715	0.008538	0.727732	0.715461	0.730244
32×32	0.002124	0.001921	0.002132	0.365815	0.358225	0.364638
64×64	0.000530	0.000479	0.000533	0.182415	0.179173	0.182993
128×128	0.000132	0.000120	0.000133	0.091219	0.089594	0.091507
256×256	0.000033	0.000030	0.000034	0.045123	0.044766	0.046180

Table 2. Error of $P_{1}, \operatorname{CNR} \mathcal{Q}_{1}$ and $\operatorname{NR} \mathcal{Q}_{1}$ element $\alpha=0.5$

Elements	$\left\\|u-u_{h}\right\\|_{0}$			$\left\\|\nabla_{h}\left(u-u_{h}\right)\right\\|_{0}$		
	CNR	NR	P_{1}	CNR	NR	P_{1}
8×8	0.039254	0.038142	0.036890	1.541388	1.521077	1.476560
16×16	0.009854	0.009708	0.008447	0.796036	0.791288	0.727414
32×32	0.002834	0.002811	0.002006	0.426718	0.425625	0.360132
64×64	0.000972	0.000968	0.000488	0.241019	0.240780	0.179091
128×128	0.000394	0.000393	0.000120	0.144607	0.144558	0.089292
256×256	0.000178	0.000178	$2.99 \mathrm{E}-05$	0.091841	0.091837	0.044582

Table 3. Error of $P_{1}, \operatorname{CNR} \mathcal{Q}_{1}$ and NR \mathcal{Q}_{1} element $\alpha=0$

Elements	$\left\\|u-u_{h}\right\\|_{0}$			$\left\\|\nabla_{h}\left(u-u_{h}\right)\right\\|_{0}$		
	CNR	NR	P_{1}	CNR	NR	P_{1}
8×8	0.041618	0.0410213	0.038437	1.57476	1.48928	1.49358
16×16	0.014419	0.0141182	0.009707	0.92364	0.91044	0.754329
32×32	0.008793	0.0085398	0.002429	0.66085	0.66491	0.378065
64×64	0.007793	0.0076641	0.000607	0.57625	0.56245	0.189144
128×128	0.007589	0.0074404	0.000152	0.55305	0.55130	0.094586
256×256	0.007542	0.0074012	$3.79 \mathrm{E}-05$	0.54710	0.54848	0.047294

Table 1 indicates that if the Bisection condition holds, namely $\alpha=1$, the CNR \mathcal{Q}_{1} element and the P_{1} element converge at the same rate. Otherwise, as demonstrated by Table 2-3, the convergence rate of the $\operatorname{CNR} \mathcal{Q}_{1}$ element deteriorates when α tends to zero, and the convergence rate of the P_{1} element is independent of the mesh distortion parameter α. These numerical results coincide with the theoretical result.

In the next example, we test the superconvergence at three kinds of points. In this case, we select f such that the exact solution is $u(x, y)=x(x-1) y(y-1)$. The numerical result is reported in Table.4, where uniform rectangle meshes are used.

Table 4. Derivative Error of $\operatorname{CNR} \mathcal{Q}_{1}$ at three kinds of points

Elements	CNR		
	Center	Node	Midpoint
4×4	0.0059193	0.0069444	0.0095486
8×8	0.0015681	0.0036764	0.0040020
16×16	0.0003971	0.0012943	0.0013351
32×32	$9.961 \mathrm{E}-05$	0.0003880	0.0003931
64×64	$2.491 \mathrm{E}-05$	0.000107	0.0001079
128×128	$6.232 \mathrm{E}-06$	$2.839 \mathrm{E}-05$	$2.847 \mathrm{E}-05$
256×256	$1.55 \mathrm{E}-06$	$7.328 \mathrm{E}-06$	$7.338 \mathrm{E}-06$

In the last example, we examine the superconvergence of the postprocessed sulotion $\Pi_{2} u_{h}$. The exact solution is still $u(x, y)=x(x-1) y(y-1)$, the numerical results is reported in Table.5.

Table 5. Superconvergence of postprocessed solution $\Pi_{2} u_{h}$

Elements	rectangle	$\alpha=1$	$\alpha=0.5$	$\alpha=0$
4×4	0.0124225999	0.013832899	0.0158845238	0.0132328551
8×8	0.0028412121	0.00303176098	0.0036921097	0.0033364464
16×16	0.000695237312	0.000724880704	0.00093215325	0.000988615941
32×32	0.000172902193	0.000180134184	0.000272992359	0.000396499858
64×64	$4.3169582 \mathrm{E}-05$	$4.50965764 \mathrm{E}-05$	$8.81364918 \mathrm{E}-05$	0.000205713438
128×128	$1.07889121 \mathrm{E}-05$	$1.12934922 \mathrm{E}-05$	$3.0224819 \mathrm{E}-05$	0.000131823701
256×256	$2.69701051 \mathrm{E}-06$	$2.82645534 \mathrm{E}-06$	$1.0850847 \mathrm{E}-05$	0.000105685113

References

[1] R. A. Adams, Sobolev Space, New York, Academic Press, 1978.
[2] D. N. Arnold, D. Boffi and R. S. Falk, Approximation by quadrilateral finite elements, Report No. AM220, 2000.
[3] C. M. Chen and Y. Q. Huang, High Accuracy Theory of Finite Element Methods, Hunan Science and Technology Press, 1995.
[4] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978.
[5] J. Douglas Jr, J. E. Santos, D. W. Sheen and X. Ye, Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems, Math. Modelling and Numerical Analysis, 33 (1999), 747-770.
[6] H. Han, Nonconforming elements in the mixed finite element method, J.Comp.Math, 2 (1984), 223-233.
[7] Q. Lin, L. Tobiska and A. Zhou, Superconvergence and Extrapolation of nonconforming lower order finite elements applied to the Poisson equation, To appear.
[8] P. B. Ming and Z.C Shi, Quadrilateral mesh, Chinese Annals of Mathematics, 23B (2002), 1-18.
[9] R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element, Numer. Meth. Part. Diff. Equations., 8 (1992), 97-111.
[10] C. Park and D.W.Sheen, P_{1} nonconforming quadrilateral finite element methods for second-order elliptic problems, SIAM. J.Numer.Anal., 41 (2003), 624-640.
[11] Z. C. Shi, A convergence condition for quadrilateral Wilson element, Numer.Math., 44 (1984), 349-361.
[12] Z. C. Shi, B. Jiang and W. M. Xue, A new superconvergence property of Wilson nonconforming finite element, Numer.Math., 78 (1997), 259-268.

[^0]: * Received July 14, 2004.
 ${ }^{1)}$ This research work was supported by the Special Funds for Major State Basic Research Project

