
Journal of Computational Mathematics, Vol.22, No.4, 2004, 489–500.

A DIRECT SEARCH FRAME-BASED CONJUGATE GRADIENTS
METHOD ∗

I.D. Coope C.J. Price
(Department of Mathematics and Statistics, University of Canterbury, Private Bag 4800,

Christchurch, New Zealand)

Abstract

A derivative-free frame-based conjugate gradients algorithm is presented. Convergence
is shown for C1 functions, and this is verified in numerical trials. The algorithm is tested on
a variety of low dimensional problems, some of which are ill-conditioned, and is also tested
on problems of high dimension. Numerical results show that the algorithm is effective
on both classes of problems. The results are compared with those from a discrete quasi-
Newton method, showing that the conjugate gradients algorithm is competitive. The
algorithm exhibits the conjugate gradients speed-up on problems for which the Hessian at
the solution has repeated or clustered eigenvalues. The algorithm is easily parallelizable.

Mathematics subject classification: 90C56, 90C30, 65K05.

Key words: Conjugate gradients, Derivative-free, Frame-based methods, Numerical results.

1. Introduction

The linear conjugate gradient was developed by Hestenes and Stiefel [10], and extended
to the minimization of general functions by Fletcher and Reeves [6]. A description of con-
jugate gradients methods for minimising general functions can be found in [5, 6, 7, 8, 9, 12]
and elsewhere. In this paper we consider the application of conjugate gradients techniques to
unconstrained minimization of C1 functions in a derivative-free context. A method is described
which conforms to the frame-based template in [2], thereby guaranteeing convergence under
standard conditions. The problem may be formally stated as

min
x∈Rn

f(x),

where a local, but not necessarily a global minimizer is sought. Here we restrict attention to
objective functions f which are continuously differentiable, but do not assume that gradient in-
formation is available. Second order optimality conditions are not useable as second derivatives
may not exist. Consequently stationary points are accepted as solutions. The algorithm forms
an estimate of the gradient at each iterate, but does not rely on the accuracy of these esti-
mates to guarantee convergence. These gradient estimates are used to form conjugate gradients
search directions, and line searches are conducted along these directions. Hence the algorithm
mimics a conjugate gradients method when it can (that is to say, when its gradient estimates
happen to be accurate), which makes it more effective in practice. Convergence is guaranteed
by the frame-based nature of the algorithm, not the fact that it mimics a conjugate gradients
method. The theoretical convergence properties are unaffected by the accuracy of gradient
estimates, although inaccurate estimates will, in general, degrade the numerical performance of
the algorithm.

∗ Received August 26, 2002; final revised June 4, 2003.

490 I.D. COOPE AND C.J. PRICE

The conjugate gradients method used is that of Polak and Ribière [12], and Polyak [13]
(hereafter PRP). Limited numerical comparisons between frame based PRP and Fletcher–
Reeves methods indicated that the former was more promising. This preference seems to be in
accord with the case when exact gradients are available [7]. The automatic reset property [14]
of the PRP method is also very desirable for higher dimensional problems.

The algorithm generates a sequence of iterates {x(k)}, where k is the iteration number. At
each iteration the function values at a set of points Φ(k) called a frame are calculated. Frames
are defined precisely in the following section, and a template for frame-based algorithms is given
in Section 3. Loosely speaking, the points in the frame surround x(k). The gradient at x(k)

is estimated using points from the frame Φ(k). This gradient estimate allows a derivative-free
conjugate search direction to be formed, as described in Section 4. A line search is conducted
along this search direction, yielding the next iterate. The process is repeated until an ade-
quate approximation to a stationary point is obtained. The choice of frames yields a second
order gradient estimate at each iterate. The line search uses parabolic interpolation to locate
an approximation to each line local minimum. On a quadratic these gradient estimates and
approximations to line local minima are exact, and so the algorithm exactly minimizes convex
quadratics in a finite time. A description of the line search is given in Section 5. Numerical
results and concluding remarks are presented in Sections 6 and 7.

2. Frames

A frame Φ is defined by a frame centre x, a frame size h > 0, and a positive basis V+. A
positive basis [4] (see also [18]) is a set of vectors V+ with the following two properties:

(i) every vector in Rn is a linear combination of the members of V+, where all coefficients of
the linear combination are non-negative; and

(ii) no proper subset of V+ satisfies (i).

A frame Φ(x, h,V+) around x is a set of points of the form Φ (x, h,V+) = {x+ hv : v ∈ V+} .
It is shown in [4] that positive bases (and hence also frames) have at least n + 1 and at most
2n members. Positive bases and frames containing 2n members are called maximal. Maximal
positive bases [4] are of the form V+ = {v1, v2, . . . , vn,−v1,−v2, . . . ,−vn} where v1, . . . , vn are
a basis for Rn. Herein we use vi = ei, where ei is the ith unit vector. This yields a frame
around a frame centre x(k) of the form:

Φ(k) = {x(k) + h(k)ei : ∀i = 1, . . . , n} ∪ {x(k) − h(k)ei : ∀i = 1, . . . , n}. (1)

Each such maximal frame contains enough information to form second order estimates of the
gradient at x(k), and also the diagonal entries of the Hessian at x(k). These second derivative
estimates are used to scale the decision variables at each reset.

Frames which are called quasi-minimal are of particular interest. These frames have the
property that no frame point is more than ε lower than the frame centre, where ε is a preselected
non-negative constant. The convergence theory [2] shows that any method conforming to it will
generate an infinite subsequence of quasi-minimal frames. The convergence theory also shows
that, under mild conditions, the cluster points of this subsequence of quasi-minimal frame
centres are stationary points of f .

At each iteration a positive constant ε(k) is chosen. The frame Φ(k) is called quasi-minimal
if and only if

f
(
x(k)

)
≤ f (x) + ε(k) ∀x ∈ Φ(k). (2)

A Direct Search Frame-based Conjugate Gradients Method 491

The constant ε(k) is connected to the frame size via the following relation

ε(k) = N
(
h(k)

)ν

(3)

where N > 0 and ν > 1 are constants. The restriction ν > 1 ensures that ε = o(h) as h→ 0; a
property which is vital to the convergence theory. Herein ν = 3/2 and N = 1 were used.

3. A Convergent Template

In this section the template presented in [2] is described, and the relevant convergence
theory is summarised. The choice of frame in equation (1) is much more restricted than in [2].
Corresponding simplifications have been made to the template and convergence theory.

The idea behind the template is either to generate a quasi-minimal frame or to locate a
point of sufficient descent at each iteration. A point of sufficient descent at iteration k is any
point x satisfying

f(x) < f (k) − ε(k),

where f (k) ≡ f(x(k)). If the frame Φ(k) around x(k) is completed then this frame is either
quasi-minimal or it must contain a point of sufficient descent. Depending on which of these two
outcomes occurs, h (and hence ε) is respectively decreased, or not decreased. The latter case
may result in h being increased.

This ensures that an infinite subsequence of quasi-minimal frames occurs unless the sequence
of function values is unbounded below. If the subsequence of quasi-minimal frames were finite,
then h would be bounded away from zero. Equation (3) means ε would also have a strictly
positive lower bound. Eventually each iteration would reduce f by at least this quantity,
meaning that the sequence of function values must be unbounded below. Hence if the sequences
{x(k)} and {f (k)} are bounded then the sequence of quasi-minimal iterates must be infinite,
and it must also have cluster points. A final requirement of the method of adjusting h is that
h→ 0 if it is reduced repeatedly without any increases occurring.

The stationarity of cluster points of the subsequence of quasi-minimal frame centres is a
direct consequence of equation (3). For clarity, replace {x(k)} with a subsequence of itself
which has a unique limit point x∗ and consists entirely of quasi-minimal frame centres. Quasi-
minimality of Φ(k) implies

f
(
x(k) ± h(k)ei

)− f (
x(k)

)
h(k)

+
ε(k)

h(k)
≥ 0 ∀ i = 1, . . . , n.

In the limit k → ∞ equation (3) means that the second term vanishes, showing that the
directional derivative of f in the direction ±ei is non-negative at x∗. Since ±e1, . . . ,±en is a
positive basis, the only possibility is that x∗ is a stationary point of f [2].

A simplified form of the frame-based template described in [2] is stated next. The simplifi-
cations are permitted because the conjugate gradients method uses the same positive basis for
all iterations. The iteration counter i is used in place of k to highlight the fact that several
iterations of the conjugate gradients method may be treated as one iteration of the template.
This is discussed in detail later in this section.

Algorithm 1. 1. Initialize: Set i = 1. Choose h(1), N > 0, and ν > 1.

2. Calculate ε(i).

3. Execute any finite process which either chooses x(i+1) as a point of sufficient descent, or
forms a quasi-minimal frame Φ(i) around x(i).

492 I.D. COOPE AND C.J. PRICE

4. If sufficient descent was obtained in step 3 then choose h(i+1) ≥ h(i), increment i and go
to step 2.

5. Set x(i+1) as the lowest point found in step 3. Set h(i+1) < h(i), increment i and go to
step 2.

There is one point on which the conjugate gradient algorithm differs from the template given
in Algorithm 1 above. If Φ(i) is quasi-minimal, the template requires that x(i+1) be the lowest
point found in that step. The conjugate gradients algorithm is not able to do this immediately
because any such step along a frame direction destroys the conjugate directions property of
the algorithm on convex quadratics. Instead the conjugate gradients method must wait until
the next reset to make such a move. This can be accommodated in the template by regarding
all iterations starting from the iteration in which a step along a frame direction should occur
until the next reset as part of the finite process in step 3. Hence the counter i is similar, but
not equivalent to k. The convergence properties of this template are stated in the following
theorem.

Theorem 1. If the following conditions are satisfied

1. the sequence of iterates is bounded;

2. f is continuously differentiable with a locally Lipschitz gradient; and

3. h(k) → 0 as k→∞
then the subsequence of quasi-minimal frame centres is infinite, and all cluster points of this
subsequence are stationary points of f .

Proof. The result is a direct consequence of Theorems 4.1 and 4.2 of [2].
This theorem does not specify how h(k) → 0 is to be achieved in the limit k → ∞. Theo-

rem 4.3 of [2] shows that the following approach to choosing h will ensure h → 0 in the limit
k → ∞, subject to the conditions in Theorem 1. If a quasi-minimal frame is located, then h
must be scaled by a constant factor cdech ∈ (0, 1). Otherwise h may be kept constant, or scaled
up by a factor which is bounded below by 1, and bounded above by a second constant cinch > 1.
The reasoning behind this is as follows: if h is bounded away from zero (h ≥ h0 say), then an
infinite number of sufficient descent steps must occur. Each of these steps must reduce f by at
least N(h0)ν . This contradicts assumptions 1 and 2 of Theorem 1.

4. The Conjugate Gradients Algorithm

The algorithm performs a fixed number of direct search conjugate gradient steps, and then
resets. At each reset the algorithm uses estimates of the pure second derivatives ∂2f/∂x2

i ,
i = 1, . . . , n, to scale the decision variables. After each reset the algorithm starts from the
lowest known point, which may be either a frame point or a point found in the latest line
search. The next iteration searches along the steepest descent direction from this point.

The basic steps of one iteration of the algorithm are as follows. An iteration in which a
reset does not occur is described first, after which the case when a reset occurs is discussed.
Firstly a frame Φ(k) is constructed about the current iterate x(k). Using the function values
at these frame points a second order estimate g(k) of the gradient at x(k) is formed. The ith

element of g(k) is (f(x(k) + h(k)ei) − f(x(k) − h(k)ei))/2h(k). The next search direction p(k)

is then calculated using g(k), g(k−1), and p(k−1). An accurate line search is conducted along
the line x(k) + αp(k), α ∈ R, for the next iterate x(k+1). The frame size h is then updated.
Specifically, if the frame Φ(k) is quasi-minimal then h(k) is reduced, which, subject to a lower
bound, yields h(k+1). Otherwise, if the distance between x(k) and x(k+1) is large compared with

A Direct Search Frame-based Conjugate Gradients Method 493

h(k) then h(k) is increased, yielding h(k+1). The constant ε(k+1) which defines quasi-minimality
is then recalculated using equation (3). This completes an iteration.

In an iteration in which a reset occurs, the following changes are made. First, the diagonal
matrix D(k) is formed where the ith diagonal entry Di of D is the estimate (f(x(k) + h(k)ei) +
f(x(k) − h(k)ei)− 2f (k))/(h(k))2 of ∂2f/∂x2

i . An iteration is completed as described above, and
the reset is then performed. The reset involves setting the current iterate to be the lowest known
point, and updating the scaling for each coordinate direction. The next iteration searches along
the steepest descent direction at x(k+1).

Each line search looks along the line x+αhp/‖p‖, α ∈ R, for a local minimizer of f on that
line. The line search returns a value α(k) which approximates a local minimizer of the function
ψ(k)(α), where

ψ(k)(α) = f
(
x(k) + αh(k)p(k) /‖p‖

)
.

The line search uses safeguarded parabolic interpolation. It is described in Section 5.

4.1. Generating the Search Direction

Each frame provides second order estimates of the gradient and the pure second derivatives.
The latter are used to scale the coordinate directions in order to improve the conditioning of
the problem. The algorithm begins with all scale factors Hi set equal to one. At each reset
new scale factors are calculated using

Hi = 1 /max {Di, τ2nd} ∀i = 1, . . . , n.

Here τ2nd is a small positive constant used to ensure that each scale factor Hi is positive. For
the numerical results presented herein τ2nd = 10−4 was used. The decision variables xi are then
scaled for all iterations until the next reset occurs using zi = xi/

√
Hi. This scaling ensures

that ∂2f/∂z2
i = 1 for every co-ordinate direction along which ∂2f/∂x2

i exceeds τ2nd. The next
search direction is calculated by applying the conjugate direction formula to the z variables.
This yields the following formula

p(k+1) = −Hg(k+1) + β(k)p(k) where β(k) = max

{
0,
gTH

(
g(k+1) − g)
gTHg

}
(4)

and where the (k) superscripts have been omitted from g. The matrix H is a diagonal matrix
with diagonal entries H1, . . . , Hn. Here (4) uses the PRP update [12, 13], with Powell’s modi-
fication [15] that negative values of β are replaced with zero. This modification is preferred for
several reasons. It has been shown [16] that the unmodified PRP algorithm can cycle without
ever approaching a solution point. Gilbert and Nocedal [7] show that Powell’s modification gives
convergence. Their numerical results show that these two methods are comparable in practice.
Also, much of the theory behind conjugate gradients methods is developed for quadratic ob-
jective functions. On such functions the Fletcher–Reeves [6] and PRP formulas for β are equal
and necessarily non-negative as the former is the ratio ‖g(k+1)‖2/‖g(k)‖2. This suggests that
any negative values for β(k) should be replaced with 0.

Numerical testing showed that the algorithm’s performance was significantly improved by
scaling of each variable at each reset, particularly on the ill-conditioned problems. Spacing
resets n + 3 iterations apart rather than n was also shown to be more effective by numerical
testing, and is justified by the fact that the PRP conjugate gradients method tends to reset
automatically when progress is poor [5, 14].

A listing of the algorithm is now given. For clarity some (k) superscripts on g, h, and p have
been omitted. The variable j counts the number of iterations until the next reset. Stopping
conditions and the method of updating h are described in the following two subsections.

494 I.D. COOPE AND C.J. PRICE

Algorithm 2. Data x(1), τacc

1. Initialize: Set k = 1, j = n, h = α(0) = 1, and H = I. Choose N > 0, τmin > 0, hmin > 0,
and ν > 1.

2. while (stopping conditions do not hold) do

(a) Calculate the function values at the frame points, and form the gradient estimate
g(k). If j = 1 then also form the pure second derivative estimate D.

(b) Check stopping conditions.

(c) Calculate the new search direction p(k) via equation (4).

(d) Select the initial values ψ′
0 and αinit of the line search using ψ′

0 = hpTg/‖p‖ and
αinit = α(k−1). Using these initial values, find a local minimizer α(k) of ψ(k)(α).

(e) If j = 1 then updateH , set x(k+1) equal to the lowest known point, and set j = n+3,
else decrement j and set x(k+1) = x(k) + α(k)hp/‖p‖.

(f) Update h(k) to get h(k+1), and increment k.

end.

The algorithm keeps a record of the lowest known point, and, at each reset, sets the current
iterate equal to this best point. This is vital for convergence purposes because it allows a
direct search using the frames to take over when the line searches are rendered useless through
inaccurate gradient estimates.

4.2. Adjusting the Frame Size

The main intention of the method of selecting h is not to get accurate estimates of the
gradients, but to get acceptable descent. This is a fundamental part of the frame-based nature
of the method. It ensures convergence in exact arithmetic even if every gradient estimate is
complete rubbish, chosen randomly, set to zero, or chosen as maliciously as possible. The only
requirements imposed by the convergence theory on the line searches is that they are finite
processes which do not accept ascent steps. This is much weaker than the conditions imposed
by standard conjugate gradients theory (See e.g. [1]).

In essence, the updating strategy for h increases it if the algorithm is making good progress,
and decreases it whenever a quasi-minimal frame is located. The size of h is only loosely linked
to the accuracy of the gradient estimates. Inaccurate gradients tend to result in poor progress
being made, which usually makes quasi-minimal frames more frequent, and results in a smaller
h. For accurate gradients the opposite is true, and h tends to be increased more often. One
could perhaps think that, for accurate gradients, one should retain the same h rather than
increase it and risk a loss of gradient accuracy. However the convergence theory applies only
to the subsequence of quasi-minimal frame centres, not the whole sequence of iterates. An
algorithm which allows h to fluctuate around a range of values giving accurate gradients will
produce more quasi-minimal frames than one which keeps h fixed. Moreover, keeping h larger
increases the chance that the direct search implicit in the frames will also find better points
from time to time, particularly in the earlier iterations.

The frame size is altered as follows. If the current frame is quasi-minimal then h is reduced by
a factor of 4, or set to a lower bound hmin, whichever is the greater. Otherwise, if the line search
accepts a step significantly larger than h, then h is increased. Specifically, if α(k) > 2 + 2

√
n

then h(k+1) = 5h(k)/2 is used. The square root term ensures that a step of length h along each
axis is not considered significantly larger than h. In this paper

hmin = max
{
10−10, 10−5τacc

}

A Direct Search Frame-based Conjugate Gradients Method 495

was used for all numerical test runs.

4.3. Stopping Conditions

The stopping conditions are similar to those proposed for unconstrained optimization by
Gill, Murray and Wright [8]. Specifically, the algorithm halts when

‖g‖ ≤ min(1, (1 + |f |)τacc) and h < 5 max (τacc, hmin) . (5)

The accuracy parameter τacc was set to 10−5 on all test runs except where stated otherwise.
The condition on h in (5) ensures that the algorithm does not halt prematurely if a near-zero

gradient estimate occurs with a large h. An example of this is the function

f(x) = x2 +
(
1 + x− x3

) /(
1 + x2

)
x ∈ R

with x(k) = 0 and h(k) = 1. Both frame points have f = 3/2 whereas f(0) = 1. This gives a
minimal frame with the gradient estimate g(k) = 0. The point x = 0 is clearly not stationary,
and the condition on h prevents the algorithm from accepting it without further examination.

The algorithm also halted when it was unable to find a lower function value and the minimum
frame size hmin had been reached. Specifically, the algorithm stops if all of the following three
conditions are satisfied: h ≤ hmin(1+ τmin); |α| < τmin; and the current frame is quasi-minimal.
Here τmin is a small positive constant (τmin = 10−8 was used herein).

5. The Line Search Algorithm

A safeguarded parabolic line search designed to locate a line local minimizer is used. For
convenience the line search is described in terms of the one dimensional optimization problem:

min
α∈R

ψ(α) where ψ(α) = f(x+ αhp/‖p‖).

The line search is given an estimate ψ′
0 of the derivative of ψ with respect to α at α = 0,

and an initial step αinit. The former is calculated using ψ′
0 = hpTg/‖p‖. The latter is chosen

as the final value α(k−1) from the previous line search, with the convention that α(0) = 1.
The line search has three phases: The first generates three distinct points a, b, and c, sorted

in increasing order, and then calculates ψ at these three points. The second phase searches for
a bracket, where a bracket is three points a, b, and c for which ψ(b) ≤ min(ψ(a), ψ(c)) and
a < b < c. The existence of a bracket ensures that a line local minimum lies in the interval
[a, c]. Once a bracket has been found the third phase reduces the size of the bracketing interval
[a, c] until an acceptable approximation to the line local minimum has been found.

The first phase is provided with the function value ψ(0), an estimate ψ′
0 of the first derivative

ψ′ at α = 0, and an initial step αinit. First α1 is chosen as the closest point to αinit in the
interval [κ1, κ2], where 0 < κ1 < κ2. Using this information, the algorithm calculates the
minimizer α2 of the quadratic interpolating ψ and ψ′

0 at 0, and ψ at α1. If this minimizer does
not exist then α2 = α1/2 is used. If α2 is within ρmin of either 0 or α1, then α2 is chosen as
2α1 if ψ(α1) ≤ ψ(0), or −α1 otherwise. Here ρmin is a small positive constant such that two α
values are regarded as indistinguishable if they differ by less than ρmin. The values α0, α1, and
α2 are then sorted into ascending order and relabelled a, b, and c.

If a, b, and c form a bracket then the aim of the second phase has already been achieved.
If not, then the second phase extends the triple of points to the left if ψ(a) < ψ(c), otherwise
the triple is extended rightward. To extend leftwards, the minimizer αq of the quadratic inter-
polating ψ at a, b, and c is first calculated, if it exists. Otherwise αq = b is used. The point c

496 I.D. COOPE AND C.J. PRICE

is then replaced by b, b is replaced by a, and a is replaced by

max (a− 20(c− a),min (a− 2(c− a), αq)) .

This process of extending leftward is repeated until a bracket is found. The process of extending
rightward is similar.

The third phase reduces the size of the bracket length c − a until a sufficiently accurate
estimate of a line local minimizer is obtained. Each reduction is carried out by first calculating
the minimizer αq of the quadratic interpolating ψ at a, b, and c. This minimizer exists unless
ψ(a) = ψ(b) = ψ(c), in which case αq is chosen to bisect the longer of the intervals [a, b] and
[b, c]. In order to ensure that the bracket’s length is reduced significantly, αq is bounded away
from a and c by reassigning it as follows:

αq ←− max (a+ ρ(c− a),min (c− ρ(c− a), αq))

where ρ ∈ (0, 1
2). The new bracket is chosen as the first of the triples of points a, αq, b, and b,

αq, c, which is actually a bracket. The algorithm always reduces the bracket at least twice, and
terminates when |αq− b| < ρaccκ3/(κ3 + |b|), where κ3 is a positive constant. The factor scaling
ρacc is used to ensure that ρacc is a relative measure of accuracy when the line search large step
is large, and that it is an absolute measure otherwise. At least two reductions of the bracket
are required to ensure the termination condition (usually) compares minimizers of consecutive
quadratic fits.

The line search method also halts when the difference between two α values in the bracket
falls below a small positive constant ρmin = min{ρacc, τmin}. When this happens the two α
values are regarded as indistinguishable, and the bracket no longer identifies a region containing
a local minimum of ψ. Finally, an upper limit on the number of function evaluations the line
search may use is imposed. Herein a limit of 20 was used.

The following line search parameter values were used to generate all of the numerical results
listed in this paper: ρ = 0.1, κ1 = 2, κ2 = κ3 = 100, and ρacc = 10−5.

6. Numerical Results and Discussion

Extensive numerical trials were performed using two categories of test problems. The first
category consists of the test problems solved by Sun in [17], and the first 20 problems in [11].
Results for these problems are presented in Tables 1 and 2. A comparison between Algorithm 2
and Sun’s quasi-Newton algorithm is presented in Table 2. The second category consists of three
high dimensional problems which were solved in a selection of dimensions up to 1000. Results
for these three problems appear in Table 3. The legend for these tables is as follows: n is the
dimension of the problem; ‘nf’ and ‘itns’ are the number of function evaluations and iterations
performed; and ‘qmf’ is the number of quasi-minimal frames generated. The quantities f �,
‖g�‖, and h� are respectively the function value, norm of the gradient estimate, and frame size
at the final frame centre. Test runs with τacc < 10−5 are marked with a dagger (†). The symbol
(§) marks runs for which the stopping condition on h delayed the termination of Algorithm 2.
Problems marked with a double dagger (‡) were not solved to the required accuracy, but the
algorithm obtained the optimal function value to six significant figures.

The measure of accuracy is on the estimated gradient g at the final iterate, not the exact
gradient. Failure to obtain the required accuracy could be a result of an inaccurate g estimate
rather than the final iterate not adequately approximating the solution point. This is clearly
the case with Meyer’s function, where the final function value agrees with that obtained by
methods using gradients to at least six significant figures. For the other function (Osborne 2),
lowering hmin to 10−18 allowed the algorithm to obtain the requested accuracy in 3088 function
evaluations, with a final h value of 4e–11.

A Direct Search Frame-based Conjugate Gradients Method 497

Table 1: Results for the low dimensional problems. Problems are listed in the order they appear
in [11].

Problem n nf qmf itns f � ‖g�‖ h�

Freudenstein & Roth 2 117 9 14 48.9843 8.9e–5 1e–5
Powell badly scaled 2 1984 76 124 2.365e–19 4.4e–8 1e–10
Jennrich & Sampson 2 214 13 26 124.362 1.5e–6 9e–8

Bard 3 228 15 21 8.21488e–3 1.5e–6 4e–8
Gauss § 3 88 9 9 1.1279e–8 3.1e–8 4e–6
Meyer ‡ 3 5193 136 390 87.9459 197.309 1e–10

Gulf 3 585 27 48 3.539e–11 1.7e–6 2e–9
Box 3 259 18 22 9.148e–7 5.8e–6 6e–10

Kowalik and Osborne 4 409 21 29 3.07506e–4 7.1e–8 3e–10
Osborne 1 5 2286 56 147 5.47371e–5 6.6e–6 1e–8

Biggs exponential 6 6 523 20 30 5.65565e–3 5.2e–6 9e–9
Osborne 2 ‡ 11 2443 44 88 0.0401377 1.1e–5 1e–10

Watson 6 1741 42 100 3.50122e–5 8.0e–6 4e–8
Penalty function I 4 401 19 27 2.27303e–5 6.3e–6 2e–9

— 10 1047 25 38 7.10066e–5 6.3e–6 1e–10
Modified Cragg † 4 3893 223 225 1.704e–24 9.1e–21 1e–10

There were three functions on which the algorithm located only a poor approximation to the
actual solution. These were the modified Cragg function and Penalty Function I in dimensions
4 and 10. For the penalty function increasing the required accuracy to 10−7 enabled the
algorithm to solve the problem accurately in both cases. The Modified Cragg function is highly
ill-conditioned, with a zero Hessian at the solution. In order to obtain a final iterate accurate
to 3 digits it was necessary to increase the required accuracy to 10−20. These three results are
marked with a ‘†’ in Tables 1 and 2.

The use of the lower limit on h is justified on the grounds that if h gets too close to machine
precision then the gradient estimates will become completely inaccurate. All problems were also
solved using an hmin value of 10−18, which is below machine precision. This changed the results
for only a few functions: Powell Badly Scaled, Meyer’s, Extended Powell in 64 dimensions,
Osborne 2, Broyden’s Tridiagonal function in 200–1000 dimensions, and Modified Cragg with a
required accuracy of 10−20. This change allowed the algorithm to solve the Osborne 2 problem
to the required accuracy, but not Meyer’s function. In most cases this change meant that the
algorithm took slightly more function evaluations to solve each problem, and in a few cases
less function evaluations. For the extended Powell, and Broyden tridiagonal functions there
were no changes in the number of function evaluations needed to solve the problem, and the
differences in the solutions found were inconsequential. The solution found for the Modified
Cragg function with a required accuracy of 10−20 and hmin = 10−10 was much more accurate
than that found with hmin = 10−18. This was because hmin = 10−18 permitted h to fall below
machine precision. Once this occurs all frame points are identical in finite precision arithmetic.
Such a frame yields an estimate of 0 for the gradient, which immediately causes the algorithm
to terminate.

The maximum value on the final h in (5) together with the facts that h(0) = 1 and each
h(k+1) ≥ h(k)/4 means that the algorithm must perform at least nine iterations before termi-
nating. This prevented the algorithm from terminating more quickly on a number of problems:
Gauss, Hilbert, Tridiagonal in 10 dimensions, and both Powell and Variably Dimensioned for

498 I.D. COOPE AND C.J. PRICE

Table 2: A comparison between our algorithm and Sun’s [17].

Algorithm 2 Sun
Problem n nf itns f � nf itns f �

Beale 2 96 12 1.774e–12 81 14 3.39e–11
Brown badly scaled 2 161 17 2.468e–23 58 10 5.75e–15
Brown and Dennis 4 244 20 85822.2 209 18 85822.2

Broyden Tridiagonal 10 485 23 1.001e–12 845 39 1.58e–12
Modified Cragg 4 214 14 1.901e–7 455 49 7.26e–11

Dixon 10 1869 73 4.261e–17 971 45 3.53e–11
Extended Powell 4 388 29 9.509e–9 387 41 5.43e–11

— 32 2496 36 4.817e–9 3062 46 5.88e–11
— 64 6541 49 1.903e–9 6327 48 6.80e–11

Helical valley 3 277 27 2.448e–16 314 42 4.08e–12
Hilbert 4 118 § 10 2.085e–32 47 4 5.98e–12

Penalty function I 4 747 † 47 2.24998e–5 653 70 2.24998e–5
— 10 1568 † 55 7.08765e–5 4231 189 7.08765e–5

Powell 20 445 § 10 6.409e–31 1480 35 6.99e–11
— 50 1045 § 10 0 819 7 1.83e–14

Rosenbrock 2 300 34 5.234e–11 124 22 1.48e–11
Tridiagonal 10 414 § 17 2.640e–29 255 11 1.88e–12

— 50 5523 53 5.727e–14 5053 49 6.47e–19
Trigonometric 5 372 23 2.160e–9 355 31 8.45e–12

Variably Dimensioned 20 445 § 10 2.312e–29 896 16 2.10e–13
— 50 1045 § 10 9.785e–28 1871 15 2.10e–13

Woods 4 496 39 2.234e–13 354 37 2.66e–12

all values of n. These problems are identified with the ‘§’ symbol in the relevant tables. One
could immediately set h below 5τacc once the required accuracy in ‖g‖ is achieved, and doing
so enabled the algorithm to solve these problems using less than half the number of function
evaluations, on average. However, not reducing h rapidly makes the algorithm more robust,
and this was considered more important by the authors.

Table 2 lists results for Algorithm 2 and for Sun’s discrete quasi-Newton algorithm [17].
A direct comparison shows our algorithm is significantly faster on eight of the 22 problems,
and nearly equal on one. A less crude comparison is made by dividing each problem’s function
count by the smaller of the function counts for both methods. These normalized function
counts are then totalled for each method, yielding totals of 29.6 for Algorithm 2, and 30.06 for
Sun’s method. Together these comparisons show that our method is often somewhat slower,
but occasionally much faster than Sun’s. The stopping condition used by Sun differs from
ours: Sun’s algorithm halted when a function value within 10−10 of the optimal function value
was encountered, whereas we do not assume knowledge of the optimal function value. Lack of
knowledge of f∗, and the upper bound on the final h in (5) mean that Algorithm 2 sometimes
performs several iterations after the solution has been accurately found.

The algorithm was also tested on three high dimensional problems: the extended Rosen-
brock’s function, the Variably Dimensioned function and Broyden’s Tridiagonal function. These
three problems were solved in 200 to 1000 dimensions. For each of these three problems, the
Hessian at the solution has either clustered, or only two distinct eigenvalues. Hence these
problems test the algorithm’s ability to obtain the speed-up expected of a conjugate gradients

A Direct Search Frame-based Conjugate Gradients Method 499

Table 3: Results for three high dimensional problems.

Problem n nf qmf itns f � ‖g�‖ h�

Extended Rosenbrock 200 8142 12 20 1.531e–12 4.9e–6 2e–6
— 400 21775 17 27 1.549e–17 4.0e–8 4e–8
— 600 26542 14 22 1.104e–12 9.6e–7 4e–7
— 800 40174 15 25 4.025e–14 1.9e–6 6e–7
— 1000 48183 14 24 1.694e–15 4.9e–6 6e–6

Broyden Tridiagonal 200 10519 19 26 8.433e–13 9.2e–6 1e–10
— 400 20917 19 26 1.058e–12 1.0e–5 1e–10
— 600 33729 20 28 1.033e–12 9.4e–6 1e–10
— 800 44928 19 28 4.767e–13 6.7e–6 1e–10
— 1000 58130 19 29 5.928e–13 7.5e–6 1e–10

Variably Dimensioned § 200 4045 9 10 4.819e–27 2.2e–10 4e–6
— § 400 8045 9 10 5.164e–27 4.9e–10 4e–6
— § 600 12045 9 10 1.841e–23 7.3e–8 4e–6
— § 800 16045 9 10 3.841e–23 1.6e–7 4e–6
— § 1000 20045 9 10 2.415e–22 5.8e–7 4e–6

method on a problem when the Hessian at the solution has repeated or clustered eigenvalues.
The numerical results clearly show that this speed-up was obtained on all three problems.

The parameter values used to generate all numerical results were N = 1, ν = 1.5, τmin =
10−8, and τacc = 10−5, except that other values of τacc were used on runs marked with the ‘†’
symbol. Line search parameter values are listed at the end of the previous section.

Results were also generated using the formula for β of Dai and Yuan [3] for the 38 problems
listed in Tables 1 and 2. The PRP formula was faster on 24 problems, and equally fast on two.
The Dai-Yuan formula was faster on the remaining 12. Comparing these two methods in the
same way comparisons were made for Sun’s method yields scores of 40.2 for PRP and 46.4 for
Dai-Yuan. Hence PRP is somewhat faster. Nevertheless, the Dai-Yuan method was robust and
performed well.

7. Conclusion

A direct search conjugate gradients algorithm employing a safeguarded parabolic line search
has been presented. A frame-based approach conforming to the template described in [2] is used,
which shows that the method is provably convergent on continuously differentiable functions
under mild conditions. The algorithm uses Powell’s modification of the PRP formula, with
resets. The resets are essential for the convergence theory because, at each reset, the algorithm
may step to the lowest known point without interfering with the conjugate gradient nature
of the method. The frames provide second order estimates of gradients, and, at each reset,
estimates of the pure second order derivatives. These second order derivatives are used to scale
each decision variable at each reset in order to improve the conditioning of the problem.

When the problem’s dimension is large most function evaluations are performed at frame
points, and only a few in the line searches. The function values at the frame points can be
calculated in parallel, which would dramatically reduce computation times.

Extensive numerical testing shows that the algorithm is effective on a wide variety of prob-
lems, including ill-conditioned problems. The results for the three high dimensional problems
show that the algorithm obtains the usual ‘conjugate gradients’ speed-up for problems with
clustered or repeated eigenvalues of the Hessian at the solution. The comparison with the nu-

500 I.D. COOPE AND C.J. PRICE

merical results of Sun’s discrete quasi-Newton algorithm shows that Algorithm 2 is efficient as
well as theoretically sound.

This paper shows that convergent direct search conjugate gradients methods are effective in
practice. It also confirms that many effective direct search frame-based methods exist.

References

[1] M. Al Baali, Descent property and global convergence of the Fletcher–Reeves method with inexact

line search, IMA Journal of Numerical Analysis, 5 (1985), 121–124.

[2] I. D. Coope and C. J. Price, Frame based methods for unconstrained optimization, J. Optimization

Theory Applic., 107 (2000), 261–274.

[3] Y. H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence

property, SIAM Journal on Optimization, 10 (1999), 177–182.

[4] C. Davis, Theory of positive linear dependence, American Journal of Mathematics, 76 (1954),

733–746.

[5] R. Fletcher, Practical methods of optimization, 2nd edition, Wiley, 1987.

[6] R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients, Computer Journal,

7 (1964), 149–154.

[7] J. C. Gilbert and J. Nocedal, Global convergence of conjugate gradients methods for optimization,

SIAM Journal on Optimization, 2:1 (1992), 21–42.

[8] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, 1981.

[9] L. Grippo and S. Lucidi, A globally convergent version of the Polak–Ribière conjugate gradient

method, Math. Prog., 78 (1997), 375–391.

[10] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res.

Nat. Bur. Standards, 49 (1952), 409–436.

[11] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, Testing unconstrained optimization software, ACM

Trans. Math. Software, 7:1 (1981), 17–41.

[12] E. Polak, Computational Methods in Optimization: A Unified Approach, Academic Press, 1971.

[13] Polyak, B. T., The conjugate gradient method in extremum problems, USSR Comp. Math. Math.

Phys., 9 (1969), 94–112.

[14] Powell, M. J. D., Restart procedures for the conjugate gradient method, Math. Prog., 12 (1977),

251–254.

[15] M. J. D. Powell, Convergence properties of algorithms for nonlinear optimization, SIAM Review,

28 (1986), 487–500.

[16] M. J. D. Powell, Nonconvex minimization and the conjugate gradient method, Lecture Notes in

Mathematics, 1066, Springer-Verlag, Berlin 1984, 122–141.

[17] L.-P. Sun, A quasi-Newton algorithm without calculating derivatives for unconstrained minimiza-

tion, J. Comp. Math., 12:4 (1994), 380–386.

[18] W.-C. Yu, Positive basis and a class of direct search techniques, Scientia Sinica (Zhongguo Kexue),

Special Issue 1 on Mathematics (1979), 53–68.

