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NEW APPROACH TO THE LIMITER FUNCTIONS�Jin Li Ze-min Chen Zi-qiang Zhu(Beijing University of Aeronautis and Astronautis, Beijing 100083, China)AbstratIn this paper we disuss three topis on the designing of the limiter funtions.(1) To guarantee the TVD property (2) To maintain enough arti�ial visosity. (3)A method to form TVB limiter whih an ensure seond order auray even atthe extrema of the solution.Key words: Finite di�erene methods, TVD shemes, Limiter Funtion1. IntrodutionSine 1980's, di�erene shemes with TVD or TVB properties have been used formore and more CFD problems, espeially the following system of onservation laws:Ut + F (U)x = 0: (1.1)The reason is that the TVB property will guarantee the onvergene of any subsequeneof the di�erene solution sequene to a week solution of the di�erential equation. Ob-viously if the week solution is unique, then the whole sequene will onverge to thatsolution.One of the frequently used TVD sheme is the seond order �ve-point onservativeone: Un+1i = Uni � �(Hi+1=2 �Hi�1=2): (1.2)Here Hi+1=2 = H(Uni�1, Uni , Uni+1, Uni+2), is onsistent with F , i.e, H(U;U;U; U) =F (U), and ould be written asHi+1=2 = F (Uni ) +Qi+1=2 � (F (Uni+1)� F (Uni )); (1.3)here Qi+1=2 is usually a nonlinear funtion of Uni�1; � � � ; Uni+2, and is alled Limiter.It is this Limiter that has great e�et on the sheme. In this paper we will disusssome priniples and methods on how to onstrut that funtion in order that the shemehas desired properties. For simpliity, we begin with the following salar linear equationas the model problem: Ut + a � Ux = 0: (1.4)� Reeived April 16, 1996.



42 J. LI, Z.M. CHEN AND Z.Q. ZHUThe orresponding sheme is:Un+1i = Uni � a � �(Uni +Qi+1=2 ��Ui+1=2 � Uni�1 �Qi�1=2 ��Ui�1=2) (1.5)here � = �t�x , �Ui+1=2 = Uni+1 � Uni . Without loss of generality, we assume here a � 0.Although the above simple model is used for the theoretial analysis, the bakgroundproblem of this paper is a pratial 3-D visous outer ow one, so some of the numerialexamples are about 3-D ow problems.In setion 2, the onditions on Limiter for TVD property are disussed. In setion3, for solving the problems arising in the pratial ow alulation, some ideas onmaintaining proper arti�ial visosity are given. In setion 4, a method for onstrutinga Limiter whih will ensure the seond order auray of the sheme even at the extremaof the solution while keeping the TVB property is presented. The results of numerialexperiments are provided in setion 5.2. The Basi Conditions for TVD LimitersAordiong to the TVD suÆient ondition of Harten in [1℄, if a sheme an bewritten as: Un+1i = Uni + C+i+1=2�Ui+1=2 � C�i�1=2�Ui�1=2 (2.1)and if C+i+1=2; C�i+1=2 � 0; C+i+1=2 + C�i+1=2 � 1 (2.2)then the sheme is a TVD one.The sheme (1.5) an be put into the form (2.1) if we hoose:C�i�1=2 = a � �(1 +Qi+1=2�U1+1=2�Ui�1=2 �Qi�1=2); C+i+1=2 = 0: (2.3)Assume that Qi+1=2 is a funtion of the di�erene ratio ri+1=2 = �Ui�1=2�Ui+1=2 , i.e, Qi+1=2 =Q(ri+1=2), and the funtion satis�es:Q(r) = 0 r � 01 � Q(r) > 0 if r > 0Q(r) = 1=2 r = 1 : (2.4)Furthermore we require the Q(r) is Lipshitz ontinuous, i.e, there is a L > 0 indepen-dent of r, suh that for any r; r0:jQ(r)�Q(r0)j � L � jr � r0j: (2.5)Thus, there must be Q(0) = 0, for any r > 0:jQ(r)j = jQ(r)�Q(0)j � L � r: (2.6)Therefore, when a � � � 11+L , for the oeÆient C�i�1=2 in (2.3), we have:if �Ui+1=2�Ui�1=2 � 0: (2.7)



New Approah to the Limiter Funtions 430 < C�i�1=2 = a � �(1�Qi�1=2) � 11 + L < 1 (2.8)if �Ui+1=2�Ui�1=2 � 0 from (2.6): (2.9)0 < C�i�1=2 � a � �(1 + L � ri+1=2 � 1ri+1=2 ) = a � �(1 + L) � 1: (2.10)In onsequene, we get the following onlusion:Theorem 2.1. If the Limiter funtion Q(r) satis�es ondition (2:4) and is Lipthitzontinuous, then when a � � � 11+L , here L is the Lipthitz onstant, the sheme (1:5)is TVD.The next question is about the auray of sheme (1.5), if it satis�es the onditionsin theorem (2.1). Here the auray is in the sense of trunation error.From Taylor expansion:�Ui+1=2 = Ui+1 � Ui = h � U 0i + h22 U 00i + h36 U (3)i +O(h4)�Ui�1=2 = Ui � Ui�1 = h � U 0i � h22 U 00i + h36 U (3)i +O(h4) (2.11)�Ui�3=2 = Ui�1 � Ui�2 = h � U 0i � 3h22 U 00i + 7h36 U (3)i +O(h4)Substituting (2.11) into (1.5) yields:Un+1i =Uni � a � �(�Ui�1=2 +Qi+1=2 ��Ui+1=2 �Qi�1=2 ��Ui�1=2)=Uni � a � �hh � (1 +Qi+1=2 �Qi�1=2) � U 0i + h22 (�1 +Qi+1=2 +Qi�1=2) � U 00i+ h36 (1 +Qi+1=2 �Qi�1=2) � U (3)i +O(h4)i: (2.12)Eq.(2.12) means that to have seond order auray, we only need:Qi+1=2 �Qi�1=2 = O(h2) (2.13)Qi+1=2 +Qi�1=2 � 1 = O(h): (2.14)From the Lipthitz ontinuity of Q, we have:jQi+1=2 �Qi�1=2j =���Q��Ui�1=2�Ui+1=2��Q��Ui�3=2�Ui�1=2 ������ � L � ����Ui�1=2�Ui+1=2 � �Ui�3=2�Ui�1=2 ���=L � ����U2i�1=2 ��Ui�3=2 ��Ui+1=2�Ui+1=2 ��Ui�1=2 ��� = O(h2): (2.15)In the derivation of the last equality, the expansion (2.11) and the following results areused: �Ui+1=2; �Ui�1=2 = O(h): (2.16)



44 J. LI, Z.M. CHEN AND Z.Q. ZHUThus the (2.13) is proved. For the proof of (2.14), note that Q(1) = 1=2, so we have:jQi+1=2 � 1=2j =���Q��Ui�1=2�Ui+1=2��Q��Ui+1=2�Ui+1=2�����L � ����Ui�1=2 ��Ui+1=2�Ui+1=2 ��� = O(h): (2.17)Similarly jQi�1=2 � 1=2j = O(h) an be proved. Notie that all the above expansionsare on the basis of (2.16), i.e. we require here U 0i 6= 0 or xi is not an extramum of U .Otherwise the sheme will degenerate into �rst order one.Up to now, we have proved the following onlusion:Theorem 2.2. If Q(r) satis�es the onditions in theorem (2:1), then exept in theviinity of the extrama of the solution U , sheme (1:5) has seond-order auray.It is not diÆult to know that many widely used Limiters satisfy the above ondi-tions. For example, the following:Minimod: Q(r) = 1=2 �minimod(1; r)here minimod(1; r) = ( min (1; r)0 if r > 0r � 0Monotoni: Q(r) = 1=2 � r+jrj1+r .MUSCL: Q(r) = 1=2 �max[0;min(2; 2r; 1+r2 )℄:Superbee: Q(r) = 1=2 �max[0;min(2r; 1);min(r; 2)℄The onditions in the above theorem are relatively easy to meet, so besides theabove Limiters, one an form some new Limiters whih will also guarantee the TVDondition and seond order auray. Here we want to emphasize that if Q(r) satis�esthe onditions in the above theorems, then the funtion QM(r) de�ned by Q(r):QM(r) = Q(min(r; 1=r)) (2.18)still satis�es those onditions. The proof is as follows:First it is easy to see the QM(r) still satis�es ondition (2.4), so we only need toprove:Lemma 2.3. The QM(r) is Lipthitz ontinuous with the same Lipthitz onstantL as that of Q(r).Proof. First, for any r1; r2 > 0:(1) when r1 � 1, r2 � 1QM(r1) = Q(r1) QM(r2) = Q(r2): (2.19)So the lemma is obvious in this ase.(2) when r1 � 1, r2 � 1, from the L-ontinuity of Q(r) and jr1 � r2j � 1:jQM(r2)�QM(r1)j =���Q� 1r2��Q� 1r1���� � L � ��� 1r2 � 1r1 ���



New Approah to the Limiter Funtions 45=L � ���r1 � r2r1 � r2 ��� � L � jr2 � r1j: (2.20)(3) when r1 � 1, r2 � 1 It an be similarly proved when r1 � 1, r2 � 1)jQM(r2)�QM(r1)j =���Q� 1r2��Q(r1)����L � ��� 1r2 � r1��� = L � ���1� r1 � r2r2 ���: (2.21)Beause jr2 � r1j = j r22�r1�r2r2 j, so we only need to prove j1�r1�r2r2 j � j r22�r1�r2r2 j.When r1 � r2 � 1, from r22 � 1 the above is obvious.When r1 � r2 > 1, then r1 � r2 � 1 � 0, from r1 � r2 omes r22 � r1 � r2 � 0. therefor:jr22 � r1 � r2j � jr1 � r2 � 1j =r22 � r1 � r2 � r1 � r2 + 1=r22 � 2 � r1r2 + r21 + 1� r21=(r2 � r1)2 + (1� r21) � 0: (2.22)Combine the above inequalities, we have:jQM(r2)�QM(r1)j � L � ���1� r1 � r2r2 ��� � L � ���r22 � r1 � r2r2 ��� = L � jr2 � r1���: (2.23)So in the ase of r1; r2 � 0, the lemma is proved. In the ases of one or both rs less than0, the orresponding QM will beome 0, then the prove is very simple, it is ommitedhere.From the above theorems and lemma, we know that if the Limiter QM(r) is usedin (1.5), the sheme will still be a seond order TVD sheme.Notie that this Limiter (whih we all the Limiter of QM type in the followingdisussion) is not the same as the symmetri Limiters of H.C. Yee in [11℄.3. The Relation Between the Limiter and the Arti�ial VisosityNumerial visosity inluded in almost all of the shemes used in CFD. The entraldi�erene shemes usually have an expliit arti�ial visosity term, while the upwindbiased ux spliting shemes inlude an impliit one sometimes alled the sheme vis-osity. To inlude arti�ial visosity is not only for the purpose of shok apturing butalso in many ases for the stably onverging of the numerial solution. Espeially whenthe meshes used in the numerial alulation are not �ne enough to make the physialvisosity play the key role in stabilizing the solution.As mentioned in setion 1, the bakground problem of this paper is a visous 3-Dstati outer ow problem, the Re number is in the order of 106 and the angle of attakis fairly large. The distribution of pressure is given in Fig.3. When we used ux vetorspliting sheme plus the Monotoni or Minimod Limiter to solve the above problem, thenumerial solution is `owing' up and down, i.e. hanging with the advane of the timesteps (the dashed line in Fig.3) and not onverging to a �xed plae. Other researhersarrying out the alulation for the same problem also found similar phenomena.



46 J. LI, Z.M. CHEN AND Z.Q. ZHUIn fat, for the sheme (1.5), the sign, size and property of numerial visosity areall related to the Limiter. Consider the semidisrete sheme orresponding to (1.5):Ut = �ah � (�Ui�1=2 +Qi+1=2 ��Ui+1=2 �Qi�1=2 ��Ui�1=2): (3.1)From (2.11), we have the expansion similar to (2.12):Ut =� a � U 0i + �a � h(1�Qi+1=2 �Qi�1=2)� (Qi+1=2 �Qi�1=2) � U 0ih2U 00i� (1 +Qi+1=2 �Qi�1=2) � U (3)iU 00i � h3 i � h2U 00i �+O(h3): (3.2)If Limiter Q satis�es (2.13) and (2.14), the three terms in the square braket are allO(h), and the sum of them is in fat the oeÆient of the numerial visosity. To ensurethe stability, the oeÆient must be positive. (notie here a > 0)Now let us analyse this oeÆient. From the expansion (2.11), we obtain:U 0i = �Ui+1=2 +�Ui�1=22h +O(h2)U 00i = �Ui+1=2 ��Ui�1=2h2 +O(h2) (3.3)and: U (3)i = �Ui+1=2 � 2�Ui�1=2 +�Ui�3=2h3 +O(h): (3.4)From jQi+1=2 �Qi�1=2j = O(h2), omit the higher order terms:(1�Qi+1=2�Qi�1=2)� (Qi+1=2 �Qi�1=2) � U 0ih2U 00i � (1 +Qi+1=2 �Qi�1=2) � U (3)iU 00i � h3=2 � [(1=2�Qi+1=2)��Ui+1=2�(1=2�Qi�1=2)��Ui�1=2℄�Ui+1=2��Ui�1=2 � 13 � �3Ui�3=2�2Ui�1=2 : (3.5)Here �3Ui�3=2 = �Ui+1=2 � 2�Ui�1=2 +�Ui�3=2, �2Ui�1=2 = �Ui+1=2 ��Ui�1=2.The omitted terms are higher order ones and will not a�et the sign of the mainterm, so the right hand side of the above equation should be positive.Now let us see in what ases the above ondition an be violated.(1) When: 0 < �Ui+1=2 < �Ui�1=2 < �Ui�3=2 (3.6)it is obvious that in this ase, ri+1=2 > 1 ri�1=2 > 1.If the Limiter Q(r) is linear on the interval (1;max(ri+1=2, ri�1=2)) with the � asthe slop, we have:(1=2 �Qi+1=2) = Q��Ui+1=2�Ui+1=2��Q��Ui�1=2�Ui+1=2� = � � (�Ui+1=2 ��Ui�1=2)�Ui+1=2 (3.7)



New Approah to the Limiter Funtions 47(1=2 �Qi�1=2) = � � (�Ui�1=2 ��Ui�3=2)�Ui�1=2 : (3.8)Substituting the above two equations into (3.5), the oeÆient of numerial visosityis just: (2� � 13) � �3Ui�3=2�2Ui�1=2 : (3.9)If � > 16 and: �3Ui�3=2�2Ui�1=2 < 0 (3.10)the value of (3.9) is negative.If � < 16 and: �3Ui�3=2�2Ui�1=2 > 0 (3.11)the value of (3.9) is also negative.In fat, for the MUSCL Limiter, the (3.7) beomes true if ri+1=2, ri�1=2 � 3:0 with� = 14 .For the Superbee Limiter, the (3.7) beomes true if ri+1=2, ri�1=2 � 2:0 with � = 12 .For the Minimod Limiter, the (3.7) is held for any ri+1=2, ri�1=2 � 1:0 with � = 0.Although the Monotoni Limiter is not a linear funtion, when ri+1=2, ri�1=2 � 1:0it varies in the similar way.Therefore we an say that all the above Limiters an't ensure the oeÆient beingpositive under the onditions of both (3.10) and (3.11).The ases of (3.6), (3.10), (3.11) are just what happened in our alulations. Thepressure urve at the right neighbour of point x0 in Fig.3 show that here U 0 > 0,U 00 < 0, so omes (3.6). The absolute value of U 00 �rst inrease, then derease, i.e.the value of U (3) �rst is negative then positive, thus make the ases (3.11) and (3.10)alternately happen in that narrow area. So if the Limiter is not properly designed, the`utuating' phenomenon of the numerial solution will our.To make the values of (3.9) be always positive, the Limiter of QM type in the lastsetion was tried, but no satisfatory result has been obtained. Some analysis show thatthe reason is the onvexity on [0,1℄ of the basi Limiter Q(r), i.e. for any s; t 2 [0; 1℄,s < t, there always be: Q(t) � 1=2 �Q(s)1� s � (t� s) +Q(s): (3.12)This is the ommon feature of the Limiters from Minimod to Superbee, the equality ishold only for the Minimod Limiter.Further analysis indiate that if Q is onvex, the oeÆient of arti�ial vososity isde�nitely negative under (3.6), (3.11), but if Q is onave, the result may be di�erent.Let's see the following example:



48 J. LI, Z.M. CHEN AND Z.Q. ZHUDenote � = min�j1 � 1ri+1=2 j, j1 � 1ri�1=2 j� it is easy to know � = O(h), so weonstrut a Limiter as: Q(s) = 12 � e s�1�2 = 12 � 1e1�s�2 (3.13)it is obvious: Q(1) = 1=2, and Q(0) = 1=2 � e�1�2 is a vary small quantity. To makeQ(0) = 0 so that the onditions in theorem (2.1) are satis�ed, a small smoothness ouldbe made in the neighborhood of 0, but this will not a�et the main property of thatLimiter. For simpliity, we omitted it here.Thus when ri+1=2, ri�1=2 > 1, the orresponding QM Limiter isQMi+1=2 = 1=2 � e1=ri+1=2�1�2 ; QMi�1=2 = 1=2 � e1=ri�1=2�1�2 : (3.14)Substituting this into (3.5), now the oeÆient is:1� 2QMi+1=2 + 2 � QMi�1=2 �QMi+1=21ri+1=2 � 1 � 13 � �3Ui�3=2�2Ui�1=2=1� e�(1�1=ri+1=2)�2 � �e� (1�1=ri�1=2)�21� 1=ri+1=2 � e� (1�1=ri+1=2)�21� 1=ri+1=2 �� 13 � �3Ui�3=2�2Ui�1=2 (3.15)By the de�nition of �:e� (1�1=ri�1=2)�21� 1=ri+1=2 < 1� � e� 1� ; e� (1�1=ri+1=2)�21� 1=ri+1=2 < 1� � e� 1� (3.16)From the properties of exponential funtion, for any k > 0:1�k+1 � e� 1� !�!0 0: (3.17)Beause � = O(h), the seond and third terms in (3.15) are less than O(h3), so they arehigher order terms and will not a�et the sign of the quantity. Omitting those terms,the quantity in (3.15) beome: 1� 13 � �3Ui�3=2�2Ui�1=2 : (3.18)



New Approah to the Limiter Funtions 49The seond term is O(h), so when h issmall enough, the oeÆient is positive.The above example indiate that atleast the oeÆient will be positive whenQ is onave enough. But the Limiter inthe above example is onave too muhand will ause too big arti�ial visosity.The Limiter Q(s) ould be designedas in the following shape: Fig.1Here Q is linear on [s0; s1℄ with the slop � > 0, when s0 � 1ri+1=2 , 1ri�1=2 � s1, theoeÆient in (3.5) is:1� 2QMi+1=2 + 2 � QMi�1=2 �QMi+1=21ri+1=2 � 1 � 13 � �3Ui�3=2�2Ui�1=2 if 1ri+1=2 < 1ri�1=21� 2QMi�1=2 + 2 � QMi�1=2 �QMi+1=21� ri+1=2 � 13 � �3Ui�3=2�2Ui�1=2 if 1ri+1=2 > 1ri�1=2 ;(3.19)By the linearity of Q:2 � (QMi�1=2 �QMi+1=2) =2 � �Q� 1ri�1=2��Q� 1ri+1=2��=2� � � 1ri�1=2 � 1ri+1=2�: (3.20)so for the �rst ase of (3.19), the third term is:2 � QMi�1=2 �QMi+1=21ri+1=2 � 1 = �2� � ( 1ri�1=2 � 1ri+1=2 )1� 1ri+1=2 > �2�; (3.21)for the seond ase, this term is positive.By Fig.1 and s0 � 1ri+1=2 , 1ri�1=2 � s1, it is obvious that:1� 2QMi+1=2; 1� 2QMi�1=2 � 2 � l (3.22)ombine the above analysis, we know that for both ases in (3.19), the quantity therewill not be less than: 2 � l� 2� � 13 � �3Ui�3=2�2Ui�1=2 ; (3.23)That means if we hoose l � � > 16 � �3Ui�3=2�2Ui�1=2 the oeÆient of arti�ial visosity (if his small enough) will be positive.To determine the parameters suh as l; �; s0; s1 properly, we need some preknowl-edge about the feature and property of the solution U , for example, the range of 1ri+1=2 ,



50 J. LI, Z.M. CHEN AND Z.Q. ZHU1ri�1=2 , the sale of �3Ui�3=2�2Ui�1=2 et. But at least the above analysis indiate that the QMtype plus onave shape is a right diretion to design a Limiter suh that it an maintainadequate arti�ial visosity.With the parameters determined, to implement the program is not diÆult. The Qan be formed on [0,1℄ as a pieewise polynomial and what we have to do is to alulatethe polynomial oeÆients for eah piee, afterwards the s = r, or s = 1r an be usedas the variable to get the value Q(s).4. A Uniform Seond Order TVB LimiterFor TVD shemes there is a ommon defet that they will degenerate to �rst orderauray near the extrema of U . The reason is (2.16) will no longer be orret at theextrema and beome the following form:�Ui+1=2; �Ui�1=2 = O(h2) (4.1)In this setion we simply use the above result to modify the Limiter in the viinity ofthe extrema to maintain the seond order trunation error while only lead to O(h2)Total Variation inrease there. Beause there is only �nite number of extrema, theTV inrease during the whole proedure of time evolution is bounded by a onstantindependent of step size �t, and �x, i.e. the sheme is a TVB one.In the following, the (1.4) is still used as the model equation to disuss the mod-i�ation of the Limiter. From (2.12) it is obvious that to make (2.1) seond order isequivalent to make:h � U 0i (Qi+1=2 �Qi�1=2) + h22 � U 00i (Qi+1=2 +Qi�1=2 � 1) = O(h3) (4.2)For the sheme at point xi, we �rst assume that xi�k is an extremum point of U . (Theextremum point is easy to be deteted in pratial alulation by heking whether�Ui�k+1=2�Ui�k�1=2 < 0.) so we have U 0i�k = 0. From Taylor expansion:U 0i =U 0i�k + k � hU 00i�k + (kh)22 U (3)i�k +O(h3)=kh � (U 00i � kh � U (3)i +O(h2)) + (kh)22 U (3)i�k +O(h3)=kh � U 00i � (kh)2 � U (3)i + (kh)22 U (3)i�k +O(h3)=kh � U 00i +O((kh)2): (4.3)Substituting the above into the left side of (4.2), we have:h � U 0i(Qi+1=2 �Qi�1=2) + h22 � U 00i (Qi+1=2 +Qi�1=2 � 1)=[(1 + 2k) �Qi+1=2 + (1� 2k) �Qi�1=2 � 1℄h22 � U 00i +Ri (4.4)



New Approah to the Limiter Funtions 51here Ri = (Qi+1=2 �Qi�1=2) �O(h � (kh)2): (4.5)Now let the value of Limiter at i � 1=2, i.e. Qi�1=2 = Q(ri�1=2) be the TVD Limitersatisfying the onditions in theorem (2.1), but the value at i+ 1=2 be:Qi+1=2 = (1 + (2k � 1) �Qi�1=2)1 + 2k = 1� 2Qi�1=21 + 2k +Qi�1=2: (4.6)It is easy to verify that if Ri = O(h3), with the above de�nition the (4.2) will besatis�ed.Of ourse we an hoose Qi+1=2 as the normal TVD Limiter but let:Qi�1=2 = (1� (2k + 1) �Qi+1=2)1� 2k = 1� 2Qi+1=21� 2k +Qi+1=2; (4.7)this de�nition an also make (4.2) be satis�ed when Ri = O(h3).When xi+k is the extremum point, similar modi�ation an be made either as:Qi+1=2 is the normal TVD Limiter with:Qi�1=2 = (1 + (2k � 1) �Qi+1=2)1 + 2k = 1� 2Qi+1=21 + 2k +Qi+1=2 (4.8)or as:Qi�1=2 is the normal TVD Limiter with:Qi+1=2 = (1� (2k + 1) �Qi1=2)1� 2k = 1� 2Qi�1=21� 2k +Qi�1=2: (4.9)To ensure the sheme is a TVB one under some onditions, the Limiters should bemodi�ed on the following priniple:Priniple 4.1. Between the two Limiters: Qi�1=2, Qi+1=2, the one orrespondingto the bigger �U must be the TVD Limiter with the other modi�ed.For example, if j�Ui�1=2j < j�Ui+1=2j, the Qi+1=2 should be the original TVDLimiter and the Qi�1=2 ould be modi�ed using (4.7), or (4.8).Now we begin to prove that with the above modi�ed Limiter, the sheme (1.5) isa uniform seond order TVB sheme. In order to avoid onfusion, in the following themodi�ed Limiter de�ned in (4.6) to (4.9) is denoted by QB, while the TVD Limiter insetion 2 is Q.In this setion, we assume the solution U of equation (1.4) has a ompat support onthe x axis, i.e. there are �; � 2 R suh that U vanishes outside (�; �). We also assumethe time upper bound T is a �nite number, i.e. we only need to get the solution U(t; x)of (1.4) with t < T . Many pratial CFD problems satisfy the above assumptions.Under the above assumptions, it is obvious that the number of mesh points at xdiretion is N1 = B1h , here B1 = ���. The number of time steps is denoted as N2 = T�t .If the CFL number � = �th is bounded, i.e. 0 � �1 � � � �2, then we have:



52 J. LI, Z.M. CHEN AND Z.Q. ZHUTheorem 4.1. If the numerial solution of (1:4) has only �nite number of isolateddisontinuous points, then the sheme (1:5) with the modi�ed Limiter QB is a TVBsheme.Here a point xi is a disontinuous point that means �Ui = O(1), and it is a isolatedone that means there should be �Ui�1;�Ui+1 = O(h)Proof. In this proof, Uni , i = 0; 1; � � � ; N1, n = 0; 1; � � � ; N2, denote the numerialsolution of (1.4).The sheme (1.5) with QB as its Limiter is:Un+1i =Uni � a � �(Uni +QBi+1=2 ��Ui+1=2 � Uni�1 �QBi�1=2 ��Ui�1=2)=UDn+1i + a�(Qi+1=2 �QBi+1=2)��Ui+1=2 � a�(Qi�1=2 �QBi�1=2) ��Ui�1=2 (4.10)here Q is the TVD Limiter from whih the QB is formed in (4.6) to (4.9), and UDn+1i =Uni � a � �(Uni +Qi+1=2 ��Ui+1=2 � Uni�1 �Qi�1=2 ��Ui�1=2) is just the value of Ui onn+1 time level when the original TVD Limiter is used.From the TVD property: TV (UDn+1) � TV (UDn):TV (Un+1) = N1Xi=1 jUn+1i � Un+1i�1 j�TV (Un) + 2a� � N1Xi=1 jQi+1=2 �QBi+1=2j � j�Uni+1=2j+ 2a� � N1Xi=1 jQi�1=2 �QBi�1=2j � j�Uni�1=2j: (4.11)The last two term in the above inequality an not be ombined beause the formula usedto alulate QBi+1=2 at point xi maybe di�erent from the formula for QB(i+1)�1=2 atpoint xi+1. (For simpliity, we did not introdue di�erent notations for them.) Notiethat between the two Limiter values QBi+1=2, QBi�1=2 assoiated with point xi, thereis only one whih is di�erent from Q's value.To estimate the sale of last two terms, note that no matter whih formula of (4.6)to (4.9) is used, we always have:jQi+1=2 �QBi+1=2j � j2Qi�1=2 � 1j+ jQi+1=2 �Qi�1=2j (4.12)and the above inequality is orret for any k, (In fat, when k = 0, there is a betterestimation.) so from the ondition (2.4), there will be:jQi+1=2 �QBi+1=2j � 2: (4.13)First, assume the numerial solution Un is smooth enough in the interval [xi�2; xi+2℄whih is the `dependent interval' of the value Un+1i , thus all the estimations in setion2 are orret here.



New Approah to the Limiter Funtions 53From expansion (2.11), no matter whether or not U 0i = 0, there always be:�Ui+1=2 = �Ui�1=2 +O(h2); (4.14)so if �Ui�1=2 = O(h), there must be �Ui+1=2 = O(h) too, thus the (2.13) and jQi�1=2�1=2j = O(h) are orret, substituting them into (4.12) lead to:jQi+1=2 �QBi+1=2j = O(h) (4.15)Now we have the following onlusion:if: j�Ui+1=2j = O(h)jQi+1=2 �QBi+1=2j � j�Ui+1=2j = O(h2)From (4.13): (4.16)if: j�Ui+1=2j = O(h2) also:jQi+1=2 �QBi+1=2j � j�Ui+1=2j = O(h2)Similarly we an prove that:jQi�1=2 �QBi�1=2j � j�Ui�1=2j = O(h2): (4.17)By the derivation above and in setion 2, it is easy to know that the oeÆients in theseond order in�nitesimal O(h2) are only dependent on the loal values of derivativesof numerial solution Un and the Lipshitz onstant L of TVD Limiter Q. In this way,if Un is smooth enough on [xi�2; xi+2℄, there is a �nite number M > 0, suh that:jQi+1=2 �QBi+1=2j � j�Ui+1=2j �M � h2jQi�1=2 �QBi�1=2j � j�Ui�1=2j �M � h2: (4.18)It is obvious that the number of points in the smooth region of Un is � N1 = B1h , sothe possible inrease of total variation:Xxi2C jQi+1=2 �QBi+1=2j � j�Ui+1=2j � N1 �Mh2 = B4 � hXxi2C jQi�1=2 �QBi�1=2j � j�Ui�1=2j � N1 �Mh2 = B4 � h (4.19)Here xi 2 C means the point xi is in the smooth region. B4 = B1 �M is independentof h.Now assume the xi is not in the smooth region. From priniple (4.1), one of the twovalues: jQi�1=2�QBi�1=2j or jQi+1=2�QBi+1=2j must be 0, the other is orrespond tothe less �U and satisfy (4.13). From the assumption that the disontinuous points areisolated, this �U must be O(h), so we have:jQi+1=2 �QBi+1=2j � j�Ui+1=2j = O(h)jQi�1=2 �QBi�1=2j � j�Ui�1=2j = O(h): (4.20)



54 J. LI, Z.M. CHEN AND Z.Q. ZHUBeause the number of disontinuous points is �nite, so there must be a B5 independentof h suh that: Xxi2DC jQi+1=2 �QBi+1=2j � j�Ui+1=2j � B5 � hXxi2DC jQi�1=2 �QBi�1=2j � j�Ui�1=2j � B5 � h: (4.21)Here xi 2 DC means the point xi is a disontinuous point of Un.Substituting (4.19) and (4.21) into (4.11), we have:TV (Un+1) � TV (Un) + 4a � �2 � (B4 +B5) � h = TV (Un) +B6 � h (4.22)here B6 = 4a � �2 � (B4 +B5), so when n+ 1 � N2 = T�t = Th � h�t = Th � 1� , there shouldbe: TV (Un+1) � TV (U0) +N2 � B6 � h = TV (U0) + TB6� � TV (U0) + TB6�1 (4.23)The righthand side of the above inequality is independent of �t; h, i.e. N1; N2:Remark 1. More aref toul proof ould givejQi+1=2 �QBi+1=2j � j�Ui+1=2j �M � h2kjQi�1=2 �QBi�1=2j � j�Ui�1=2j �M � h2k (4.24)instead of (4.18), so a better TV bound than (4.23) ould be found.Theorem 4.2. If the exat solution of (1:4) is smooth enough, then the sheme(1:5) with the modi�ed Limiter QB is unformly seond order auray.Proof. Here the U denote the exat solution of (1.4).From (4.2), (4.4), (4.5), the main obstale of seond order auray is the Ri dependon k whih is the step number from the present point xi to the nearst extremum pointxi�k, and this k an varry from 0 to O(N1) = O( 1h), so we an not say the sheme isuniformly seond order only from the elimination of the oeÆient of O(h2) term in(4.4). That elimination only give the seond order auray if k = 0.Now assume k > 0.When U 0i�k = 0, From (2.11), we have:�Ui+1=2 =h � U 0i + h22 U 00i +O(h3)=h[U 0i�k + khU 00i�k +O((kh)2)℄ + h22 U 00i +O(h3)=kh2 � U 00i�k +O(k2h3)) +O(h2)) = O(kh2): (4.25)From (4.14) and above, it holds:jQi+1=2 � 1=2j � L � ����Ui�1=2 ��Ui+1=2�Ui+1=2 ��� = O�1k� (4.26)



New Approah to the Limiter Funtions 55If the Limiter QBi�1=2 is formed by (4.7), we have:jQBi+1=2 �QBi�1=2j = jQi+1=2 �QBi�1=2j = ���2(Qi+1=2 � 1=2)2k � 1 ��� = O� 1k2�: (4.27)Substituting the above and (4.3) into (2.12):Un+1i =Uni � a � �hh � U 0i + (QBi+1=2 �QBi�1=2) � hU 0i+ (QBi+1=2 +QBi�1=2 � 1)h22 � U 00i +O(h3)i=Uni � a � �hh � U 0i + (QBi+1=2 �QBi�1=2) � kh2 � U 00i + h � (QBi+1=2�QBi�1=2) � O((kh)2) + (QBi+1=2 +QBi�1=2 � 1)h22 � U 00i +O(h3)i=Uni � a � �hh � U 0i + ((2k + 1) �QBi+1=2 + (1� 2k) �QBi�1=2 � 1) � h22 � U 00i+ h � O� 1k2� �O((kh)2) +O(h3)i=Uni � a � �[h � U 0i +O(h3)℄: (4.28)This means the sheme is seond order independent of k, i.e. uniformly seond orderauray. (When k < 0 or used (4.6), (4.8) and (4.9) to form QB, the proof are similar)5. The Numerial Examples and the ConlusionAlthough in the above setions we have only disussed the sheme (1.5) whih isfor the salar di�erential equation (1.4), this sheme an be generalized by some wellknown methods suh as that in [1℄ and used for the equation system (1.1).The �rst example (In fat, the bakground problem) is solving a three dimensionalN-S equation around a blunt revolution body with the symmetri setion shown inFig.2.Here the angle of attak � = 20Æ and theMah number of free stream is 0.9. A mesh ofO{O type with the points number 77 � 40 � 45is used for this outer ow �eld. Our task is toobtain the distribution of pressure on the body'ssurfae. When we use van Leer ux vetor split-ing plus the Limiters from Minimod to Super-bee, the utuating phenomenon ours and thenumerial solutions do not onverge even aftermore than 10000 time steps. This phenomenonan be seen from Fig.3 and Fig.4 whih givethe pressure distributions on the lee side of theabove symmetri setion of that blunt body. Fig.2
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Fig.3 Lee side

The di�erent lines in the same �gure above show the results after di�erent timesteps. It is lear that with the limiters above, we an't get a onvergent solution (TheMinimod Limiter gives a similar result and with the Superbee limiter the solutionvibrated so badly that the result omitted here); so we tried and formed the limiter insetion 3. The result is shown in the following �gure:

Fig.4 Lee side
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Fig.5 Lee side
It ould be seen that the distributions of pressure remains unhanged even afterthousands of time steps. The numerial alulation with this limiter indeed gives asuessfully onverging result.
Now we turn to the numerial examples for the setion 4, i.e. omparison betweenthe results obtained using a TVD limiter and those using the `uniform seond order'limiter onstruted from that TVD limiter following the proedure in setion 4. Forthis purpose, a shok tube problem (disontinuous initial value problem with one di-mensional Euler equation as governing equation) is solved. The results are shown inthe following �gures:

Fig.6
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Fig.7Here the solid urve represents the exat solution.In Fig.6, the Minimod limiter is used while the Fig.7 is the result with the limiterformed from Minimod limiter following the formulas and priniple in setion 4. Al-though the new limiter makes the disontinuity a little bit of sharper, the vibration onthe pressure urve is stronger.The result using the TVD limiter disussed in setion 2 and that using the limiteronstruted from that TVD limiter are also ompared and show the similar di�ereneas in Fig.6 and Fig.7.It seems to us that the limiters in setion 4 produe less numerial visosity than thelimiters from whih they onstruted. Although they did not make remarkable improve-ment in above numerial experiments, it is worth doing some further investigations onthem. Referenes[1℄ A. Harten, J. Comput. Phys., 49 (1983), 357{393.[2℄ A. Harten, P.D. Lax, B.van Leer, SIAM Review, 25 : 1 (1983), 35{61.[3℄ A. Harten, S Osher, SIAM J. Numer. Anal., 24 : 2 (1987), 279{309.[4℄ B. van Leer, J. Comput. Phys, 14 (1974), 361{370.[5℄ B. van Leer, Leture Notes in Physis, 170 (1982), 507{512.[6℄ B. van Leer, J.L. Thomas, P.L. Roe, AIAA Paper, 87{1104.[7℄ P.L. Roe, J. Comput. Phys., 43 (1981), 357{372.[8℄ P.L. Roe, Ann. Rev. Fluid Meh., 18 (1986), 337{365.[9℄ C.W. Shu, Math. Comp., 49 (1987), 105{121.[10℄ P.K. Sweby, SIAM J. Numer. Anal., 21 : 5 (1984).[11℄ H.C. Yee, J. Comput. Phys., 68 (1987), 151{179.[12℄ W.K. Anderson, J.L. Thomas, AIAA Journal, 24 : 9 (1986), 1453{1460.[13℄ H.Q. Yang, A.J. Przekwas, J. Comput. Phys., 102 (1992), 139{159.[14℄ J.N. Sott, Y.Y. Niu, AIAA Paper, 93{0068.


