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NONLINEAR INTEGER PROGRAMMING AND GLOBALOPTIMIZATION�1)Lian-sheng Zhang Feng Gao Wen-xing Zhu(Department of Mathematis, Shanghai University Jiading CampusShanghai 201800, China)AbstratVarious approahes have been developed for solving a variety of ontinuousglobal optimization problems. But up to now, less work has been devoted to solvingnonlinear integer programming problems due to the inherent diÆulty. This papermanages to transform the general nonlinear integer programming problem into an\equivalent" speial ontinuous global minimization problem. Thus any e�etiveglobal optimization algorithm an be used to solve nonlinear integer programmingproblems. This result will also promote the researh on global optimization. Wepresent an interval Branh-and-Bound algorithm. Numerial experiments showthat this approah is eÆient.Key words: Integer programming, Global minimization problem, Branh-boundalgorithm. 1. IntrodutionAlthough the general linear integer programming problem is NP-hard, muh workhas been devoted to it (See Numhauser and Wolsey [1988℄, Shrijver [1986℄). Thesolution methods inlude the utting plane, the Branh-and-Bound, the dynami pro-gramming methods et.. However, the general nonlinear integer programming problemis diÆult to solve. Garey and Johnson [1979℄ pointed out that the integer programmingover Rn with a linear objetive funtion and quadrati onstraints is undeidable. So ifa nonlinear integer programming problem is handled, it is always solved over a boundedbox. Due to the inherent diÆulty of nonlinear integer programming, less work has beendone (see e.g. Benson, Erengu and Horst [1990℄, Chihinadze [1991℄). But during thepast 30 years, various approahes have been developed to onstrut algorithms for avariety of ontinuous global optimization problems (for detail, see Rinooy kan and Tim-mer [1988℄). In this paper, we transform the general nonlinear integer programmingproblem into an \equivalent" speial ontinuous global minimization problem whih anbe solved by any one of e�etive global optimization algorithms. So it is a reasonableway to handle nonlinear integer programming problems. The involved funtions of theonsidered nonlinear integer programming problem are only required to be Lipshitz� Reeived May 24, 1996.1)The researh was supported by the National Natural Siene Foundation of China.



180 L.S. ZHANG, F. GAO AND W.X. ZHUontinuous or ontinuous. Hene this result is a generalization of Ge [1989℄, where theinvolved funtions are assumed to be twie ontinuously di�erentiable. Moreover, ourproof is simple. We present an interval Branh-and-Bound algorithm for the speialontinuous global optimization problem. Lower bounds are alulated by the rules ofinterval analysis (Ratshek and Rokne [1988℄). Methods for loal optimal solutions anbe inorporated into the Branh-and-Bound sheme to �nd better inumbent solutions.At last, numerial experiments are presented to show that this approah is eÆient.2. Unonstrained CaseConsider the following problem(UP )I ( min f(x)s.t. x 2 XI ;where f(x) : Rn ! R is a Lipshitz funtion with Lipshitz onstant L over a set X,here X � Rn is a bounded losed box whose verties all are integral latties, XI is theset of integer points in X.A ontinuous global optimization problem orresponding to (UP )I is(UP�) 8><>: min f(x) + � nXi=1 j sin�xij; x = (x1; � � � ; xn)T ;s.t. x 2 X:For developing the relationship between problems (UP )I and (UP�), we need thefollowing lemmas.Lemma 2.1. j sinxj = sinx � 2�x; if 0 � x � �2j sinxj = sinx � 2� j� � xj; if �2 � x � �:Proof. Construt a line through points (0; 0), (�=2; 1) and a line through points(�=2; 1), (�; 0). Their equations are y = 2�x;y = 2� (� � x):Sine sinx is onave over [0; �℄, and sin 0 = 0;sin �2 = 1;sin� = 0;



Nonlinear Integer Programming and Global Optimization 181we have j sinxj = sinx � 2�x;if 0 � x � �2 ;j sinxj = sinx � 2� j� � xj;if �2 � x � �;and the proof is ompleted. 2Obviously, we haveLemma 2.2. Let X be a bounded losed box whose verties all are integral latties.For any x = (x1; � � � ; xn)T 2 X, there exists an integer point xI 2 X, suh thatminy2RnI kx� yk1 = kx� xIk1; (2.1)where RnI is a set of integer points in Rn.Theorem 2.1. If � > L=2, then problem (UP�) and problem (UP )I have the sameoptimal solutions.Proof. Obviously, to prove this theorem, we only need to prove that any of theoptimal solutions to problem (UP�) is an integer vetor, whih is also an optimalsolution to problem (UP )I . We prove it by ontradition. Denote by G the set ofoptimal solutions to problem (UP�). Suppose that there exists x� = (x�1; � � � ; x�n)T 2 Gwhih is not integral. Let x�I = (x�1I ; � � � ; x�nI)T be the losest integer point to x�, i.e.,kx� � x�Ik1 � 12 :Then by Lemma 2.2, x�I 2 X, and if � > L=2, by Lemma 2.1, we havef(x�I) + � nXi=1 j sin�x�iI j � f(x�)� � nXi=1 j sin�x�i j=f(x�I)� f(x�)� � nXi=1 j sin�(x�i � x�iI)j�L � kx�I � x�k1 � � nXi=1 j sin�(x�i � x�iI)j�L � kx�I � x�k1 � � � 2=� � � � kx�Ix�k1 < 0:It indiates that x� is not an optimal solution to problem (UP�), whih ontradits theassumption that x� 2 G. Therefore, x� is integral, and is also an optimal solution toproblem (UP )I . 2Note that the objetive funtion of problem (UP�) is generally not ontinuously dif-ferentiable. For the possibility of using the gradient methods of global optimization, e.g.the Filled Funtion method (Ge [1990℄), the Tunnelling method (Levy and Montalvo[1985℄), to solve nonlinear integer programming problems, orresponding to problem(UP )I , we onstrut the following global optimization problem with a ontinuouslydi�erentiable objetive funtion if f(x) itself is,(UP�)1 8><>: min f(x) + � nXi=1 sin2 �xis.t. x 2 X:



182 L.S. ZHANG, F. GAO AND W.X. ZHUThen we have the following results.Theorem 2.2. Suppose that there exists M > 0, suh thatjf(x)j �M; for all x 2 X:Given a point x = (x1; � � � ; xn)T , if there exists a omponent xi0 in x xi0 and itsnearest integer number xIi0 suh that12 � jxi0 � xIi0 j > 16 ;then f(x) + � nXi=1 sin2 �xi > M; if � > 8M:Proof. Under the assumption of Theorem 2.2, we havef(x) + � nXi=1 sin2 �xi � �M + � sin2 �xi0 > �M + 8M sin2 �6 =M:Hene Theorem 2.2 holds. 2By Lemma 2.2, theorem 2.2 implies that for any one of the global optimal solutionsto problem (UP�)1, say x�, its nearest integer point, say xI , is in XI and satis�es thatkx� � xIk1 � 1=6; if � > 8M:Theorem 2.3. Suppose that x1I , x2I are two di�erent integer points in XI , f(x1I) <f(x2I). If � > L216(f(x2I)� f(x1I)) , we havef(x) + � nXi=1 sin2 �xi > f(x1I); for all x 2 fx : kx� x2Ik1 � 1=6g \X:Proof. For all x 2 fx : kx� x2Ik1 � 1=6g \X, we havef(x) + � nXi=1 sin2 �xi �f(x2I)� L � kx� x2Ik1 + � nXi=1 sin2 �xi=f(x2I)� L � kx� x2Ik1 + � nXi=1 sin2 �(jxi � x2Iij)�f(x2I)� L � kx� x2Ik1 + �(2=� � � � kx� x2Ik1)2 (by Lemma 2.1)=f(x2I)� L � kx� x2Ik1 + 4� � kx� x2Ik21: (2.2)Clearly, a minimal solution x of (2.2) satis�es thatkx� x2Ik1 = L8�:



Nonlinear Integer Programming and Global Optimization 183Moreover, the minimal value of (2.2) isf(x2I)� L � L8� + 4� � L264�2 =f(x2I)� L216�>f(x2I)� L216 � L216(f(x2I)� f(x1I)) �sine� > L216(f(x2I)� f(x1I))�=f(x1I):Hene Theorem 2.3 holds. 2Thus we an establish the relationship between problems (UP )I and (UP�)1 asfollows.Theorem 2.4. Let m satisfy that0 < m � 8><>: min f(x2I)� f(x1I)s.t. f(x2I) > f(x1I)x2I ; x1I 2 XI :If � > max(8M;L2=16m), then for any one of the global optimal solutions to problem(UP�)1, say x�, there exists an integer point x�I 2 XI , suh that kx� � x�Ik1 � 1=6,and x�I is an optimal solution to problem (UP )I .Proof. By Theorem 2.2, if � > 8M , then for any one of the global optimal solutionsto problem (UP�)1, say x�, there exists some integer point x�I 2 XI , suh thatkx� � x�Ik1 � 16 :Thus if � > max(8M;L2=16m), x�I is an optimal solution to problem (UP )I ; otherwise,by Theorem 2.3, x� is not a global optimal solution to problem (UP�)1. Hene Theorem2.4 holds. 2Remark. If f(x) is a polynomial funtion with integer oeÆients, then we maytake m = 1. 3. Constrained CaseNow we onsider the following onstrained problem(P )I ( min f(x)s.t. x 2 SI ;where SI = fx 2 XI : gi(x) � 0, i = 1; � � � ;mg, XI is the set of integer points in abounded box X, f(x); gi(x), i = 1; � � � ;m : Rn ! R1 are ontinuous funtions overX, SI is not empty. Construt a funtion p(x) suh that for all x 2 XI , p(x) � 0,and p(x) = 0, x 2 XI if and only if x 2 SI . This kind of p(x) may be p(x) =mXi=1max(0; gi(x)) or p(x) = mXi=1(max(0; gi(x)))2 if p(x) is wanted to be di�erentiable



184 L.S. ZHANG, F. GAO AND W.X. ZHUwhen gi(x), i = 1; � � � ;m are. Then a penalty problem orresponding to (P )I is(P�)I ( min f(x) + � � p(x)s.t. x 2 XI :Let mI � minx2XInSI p(x), mI > 0, �f � maxx2XI f(x), f � minx2XI f(x). We have the followingtheorem.Theorem 3.1. If � > f � fmI , then problems (P )I and (P�)I have the same optimalsolutions.Proof. Denote by GI and G�I the sets of optimal solutions to problems (P )I and(P�)I respetively. For � > f � fmI , to prove GI = G�I , we only need to prove thatGI � G�I and G�I � GI .(i) GI � G�I . For all x� 2 GI , p(x�) = 0, and for all x 2 SI ,f(x) + �p(x) = f(x) � f(x�) = f(x�) + �p(x�):Moreover, for all y 2 XInSI , p(y) � mI , andf(y) + �p(y) � f + � �mI > f + f � fmI �mI = f � f(x�):So x� 2 G�I , and GI � G�I .(ii) G�I � GI . For all x� must be a feasible integer point of (P )I ; otherwise ifx� 2 XInSI , then for any x0 2 SI ,f � f(x0) = f(x0)+�p(x0) � f(x�)+� �p(x�) � f+� �mI > f+ f � fmI �mI = f: (3.1)Inequalities (3.1) show that x� is not an optimal solution to problem (P�)I , whihontradits the assumption that x�inG�I . Therefore, x� 2 SI andf(x�) + � � p(x�) = f(x�) � f(x) + � � p(x) = f(x); for all x 2 SI :Hene, x� 2 GI , and G�I � GI . 2Remark 1. In Theorem 3.1, mI exists theoretially,a nd generally is very diÆult toalulate. But if gi(x), i = 1; � � � ;m are polynomial funtions with integer oeÆients,then we an set mI = 1, and Theorem 3.1 holds if � > f � f .Remark 2. Aording to Theorem 3.1, we an always transform the onstrainedproblem (P )I into an unonstrained one (P�)I using the penalty funtion method. Thusthe onstrained problem (P )I an be handled by the methods disussed in setion 2.4. General Integer ProgramIn this setion, we onsider the following general problem(P )I ( min f(x)s.t. x 2 SI ;



Nonlinear Integer Programming and Global Optimization 185where SI = fx 2 XI : gi(x) � 0, i = 1; � � � ;mg, XI is the set of integer points in abounded losed box X whose verties all are integral latties, f(x), gi(x), i = 1; � � � ;mare ontinuous funtions, SI is not empty. Let p(x) = mXi=1max(0; gi(x)), F (x; �) =f(x)+� � p(x), 0 < mI � minx2XInSI p(x), f � maxx2XI f(x), f � minx2XI f(x). By Theorem 3.1,if � > f � fmI , minx2XI F (x; �) = minx2SI f(x). In order to desribe the relationship betweenproblem (P )I and its orresponding ontinuous one, we need the following de�nition.De�nition 4.1. Suppose " > 0 is suÆiently small. x0 = (x01; � � � ; x0n)T is alledan "-integer point, if for anyi 2 f1; � � � ; ng, there exists an integer ki, suh thatjx0i � kij � "; i = 1; � � � ; n:Sine F (x; �) = f(x) + � � p(x) is ontinuous, there exists a positive number M�suh that jF (x; �)j � M�, 8x 2 X. Let p1(x) = nXi=1 j sin�xij, � > f � fmI . Now wedisuss the relationship between optimal solutions of problem minx2XI F (x; �) and problemminx2X F (x; �) + �1 � p1(x).Lemma 4.1. If x0 is not an "=2-integer point, then p1(x0) > ", 0 < " < 1=2.Proof. Sine x0 is not an "=2-integer point, there exists an index i0 2 f1; � � � ; ng,suh that for any integer k, jx0i0 � kj > "2 :Espeially, let k satisfy the following inequalities"2 < jx0i0 � kj � 12 :Thus by Lemma 2.1, we havej sin(x0i0 � k)�j � 2� � jx0i0 � kj � � > ":And p1(x0) = nXi=1 j sinx0i�j > ";whih ompletes the proof. 2Let S" = fx 2 X : 0 < p1(x) � "g. Denote by G�1 the set of optimal solutions toproblem ( min F (x; �) + �1 � p1(x)s.t. x 2 X:We haveTheorem 4.1. If �1 > 2M�=", then G� � XI [ S".



186 L.S. ZHANG, F. GAO AND W.X. ZHUProof. If there exists some x� 2 G�1 , suh that x� 2 Xn(XI [ S"), then p1(x�) > ",and F (x�; u) + �1 � p1(x�) > �M� + 2M�" � " =M�: (4.1)But for all x0 2 XI , F (x0; �) + �1 � p1(x0) = F (x0; �) �M�: (4.2)(4.1) and (4.2) show that x� is not a global optimal solution to problem( min F (x; �) + �1 � p1(x)s.t. x 2 X;whih ontradits the assumption that x� 2 G�1 . Therefore, G�1 � XI [ S". 2Theorem 4.1 means that any one of the global optimal solutions to problemminx2X F (x; �) + �1 � p1(x)is an "=2-integer point.Theorem 4.2. Let Æ > 0, andÆ � 8><>: min F (xI ; �)� f�s.t. F (xI ; �) > f�xI 2 XI ;where f� is the optimal value of problem minx2XI F (x; �). There exists a small positivenumber "(Æ) suh that if �1 > M�"(Æ) , then for any one of the global optimal solutions toproblem minx2X F (x; �)+�1 � p1(x), say x�, its nearest integer point is an optimal solutionto problem minx2XI F (x; �).Proof. For any xI 2 XI , for Æ > 0, there exists some positive number "(Æ) < 1=2,suh that jF (x; �) � F (xI ; �)j < Æ; 8x 2 fx 2 X : kx� xIk1 � "(Æ)g;sine F (x; �) is a ontinuous funtion. ThusF (x; �) > F (xI ; �)� Æ; 8x 2 fx 2 X : kx� xIk1 � "(Æ)g:Furthermore, if an integer point, say yI 2 XI , is not an optimal solution to problemminx2XI F (x; �), thenF (x; �) > F (yI ; �)� Æ =(F (yI ; �)� f�)� Æ + f� � f�;8x 2 fx 2 X : kx� yIk1 � "(Æ)g;



Nonlinear Integer Programming and Global Optimization 187where f� is the optimal value of problem minx2XI F (x; �). ThusF (x; �) + �1 � p1(x) � F (x; �) > f�;for all x 2 fx 2 X : kx� yIk1 � "(Æ), F (yI ; �) > f�, yI 2 XIg. But by Theorem 4.1,if �1 > M�="(Æ), then G�1 � XI [ S2"(Æ), andF (x0; �) + �1 � p1(x0) � f�; for all x0 2 G�1 :Hene for any x0 = (x01; � � � ; x0n)T 2 G�1 , its nearest integer point, say k = (k1; � � � ; kn)T ,satisfying that jx0i � kij � "(Æ); i = 1; � � � ; nis in X by Lemma 2.2 and is an optimal solution to problem minx2XI F (x; �). 25. Interval Branh-and-Bound AlgorithmIt has been turned out that interval analysis provides a natural framework foronstruting inlusion funtions for a lass of funtions whih an be given in expliitanalytial form. And interval Branh-and-Bound method has found good appliationsin global optimization (see Ratshek and Rokne [1988℄). So in this setion, we presentan interval Branh-and-Bound algorithm for problem (UP�)1 in setion 2 to �nd anoptimal solution to problem (UP )I , provided that f(x) is stated in expliit analytialform.Suppose that Y is a bounded losed box, Y � X. Denote by F (Y ) an inlusion fun-tion for f(x) over Y , here F (Y ) an be alulated by interval mathematis methods (seeRatshek and Rokne [1988℄). Denote by ubF (Y ), lbF (Y ) the upper and lower bound-aries of F (Y ) respetively, and by w(Y ) the width of box Y , i.e., w(Y ) = max1�i�nw(Yi),here Yi is an interval in R1, Y = Y1 � Y2 � � � � � Yn. Obviously, lbF (F ) is also a lowerbound of f(xI), xI 2 YI , here YI is the set of integer points in Y .For problem (UP�)1, let � satisfy the ondition of Theorem 2.4, where M;L, m arepreviously alulated; otherwise, let � be large enough.The Branh-and-Bound approah an be stated in general terms as follows. Webiset the box Y into two sub-boxes. Over eah sub-box, alulate a lower bound onthe objetive funtion f(x)+�p0(x), here p0(x) = nXi=1 sin2 �xi. For the sub-box with thesmaller lower bound of f(x) +�p0(x), take a point in it, say x0. Then f(x0) + �p0(x0)provides an upper bound on the optimal value of problem (UP�)1. Using these boundswe disard ertain sub-boxes over whih the integer optimal value of f(x) is not lowerthan f(x0)+�p0(x0). Obviously, we hope to �nd an upper bound on the optimal valueof problem (UP�)1 as small as possible, sine we think that the earlier a smaller upperbound an be found, the more the omputational ost is redued. Now we desribe thealgorithm in detail.Interval Branh-and-BOUND AlgorithmStep 0. Let Y := X, set list L := f(Y )g, f� = +1.



188 L.S. ZHANG, F. GAO AND W.X. ZHUStep 1. Calulate lbF (Y ).Step 2. Choose a oordinate diretion k Parallel to whih Y has an edge of themaximum length. Biset Y normal to diretion k Obtaining boxes V1; V2 suh thatY = V1 [ V2; (int V1) \ (int V2) = ;:Step 3. Remove y from list L.Step 4. For Vl, l = 1; 2,4.1. If w(Vl) < 1, then there exists at most one integer point in Vl. Denote theinteger point in Vl, if exists, by x0, let f� := minff�; f(x0)g, and let x� be the inumbentsolution providing f�. Omit Vl.4.2. Else alulate lbF (Vl). For the box with the smaller lower bound of f(x), takean integer point in it, say y0. If f(x) is ontinuously di�erentiable, using y0 as an initialpoint, we an apply methods for loal optimal solutions to problem (UP�)1 over thebox Vl to �nd a lower funtion value than f(y0)+�p0(y0). If done, denote the solutionalso by y0. Let f� := minff�; f(y0) + �p0(y0)g, and let x� be the inumbent solutionproviding f�. Enter Vl into list L suh that the widths of the boxes in list L derease.Step 5. For any box Z in list L, if lbF (Z) � f�, delete Z from list L.Step 6. If L is empty, end, the losest integer point to x� is an optimal solutionto problem (UP )I ; else denote the box with the maximum width in list L by Y , go toStep 2.Remark. Aording to Ratshek and Rokne [1988℄, the inlusion funtion F (Z)for f(x) over a box Z is required to satisfy the following onditionubF (Z)� lbF (Z)! 0; if w(Z)! 0:The algorithm has the following properties.Theorem 5.1. Sine X is a bounded box, and by Steps 2{5 of the algorithm, it isobvious that the algorithm terminates after �nite steps.Theorem 5.2. After the algorithm terminates, the losest integer point to theinumbent solution x� is an optimal solution to problem (UP )I .Proof. Denote by T the set of boxes having been deleted in Step 5 in the algorithm.After the algorithm terminates, list L is empty, and we get f�, x� andlbF (Z) � f�; 8Z 2 T:Thus f(xI) � f(x�) + �p0(x�) = f�; 8xI 2 ZI ; Z 2 T:Moreover, for any box having been omitted in Step 4.1 of the algorithm, there existsat most one integer point in it, and at this integer point, the funtion value of f(x)is not lower than f�. So far all xI 2 XI , f(xI) � f�. Furthermore, by Theorem 2.4,it is obvious that the losest integer point to the inumbent solution x� is an integeroptimal solution to problem (UP )I . 2



Nonlinear Integer Programming and Global Optimization 1896. Numerial ExperimentsIn this setion, we onvert four integer programming problems into unonstrainedontinuous ones by the penalty funtion method disussed in setion 3.1, the theorydisussed in this paper, and use the interval Branh-and-Bound algorithm developedin setion 5 to solve them. For the �rst problem, the numerial result is omparedwith that of Ge [1989℄ by the Filled Funtion method. For the last two problems, thenumerial results are ompared with those of Conley [1980℄ by the Monte-arlo method.Problem 1. (Ge [1989℄).min x1 + 10x2s.t. 66x1 + 14x2 � 1430� 82x1 + 28x2 � 13060 � xi � 100; xi : integer; i = 1; 2:Its minimal solution is (7; 70)T .Problem 2. min (x1 � 10)2 + (x2 � 20)2s.t. 2x1 � x2 = 00 � xi � 200; xi : integer; i = 1; 2:Its minimal solution is (10; 20)T .LetFF: denote the number of funtion evaluations by the Filled Funtion method (Ge[1990℄).BB: denote the number of funtion evaluations by the Branh-and-Bound algorithmdeveloped in Setion 5. omputational resultsproblem 1 2FF 404BB 203 159Problem 3 (Conley [1980℄, p.102).min x22 + x23 + 17x25 + x510 + x5x10 � x21 � x1x2 � x1x3� 8x24 � 6x36 � x4x5x6x7 � x38 � x49 � 18x3x6x7s.t. 0 � xi � 99; xi integer; i = 1; � � � ; 10:Conley looked at 106 possible solutions, and found the solution (70, 66, 66, 98,97, 95, 95, 9, 99, 9)T with minimum �1:975 � 108. Our interval Branh and Boundalgorithm alulates 37447 boxes (inluding single integer points) and �nds the solution(99, 50, 99, 99, 99, 99, 99, 99, 99, 0)T with the minimum �2:16 � 108. The number offuntion evaluations is about 74894.



190 L.S. ZHANG, F. GAO AND W.X. ZHUProblem 4 (Conley [1980℄, P.119).min 6x21 + 18x22 + 7x23 � 2x1 � 16x2 � 31x3 � 12x1x2x3s.t. x1 + x2 + 2x3 � 2000x1 + 17x2 � 8000x2 + 5x3 � 4000x1 + 7x2 + 2x3 � 200x1 + x2 + x3 � 200x21 + x2x3 � 9000 � xi � 999; xi integer; i = 1; 2; 3:Conley looked at a sample of 8� 105 points, and took the solution (720; 424; 428)Twith minimum �1; 560; 310; 784. Our interval Branh and Bound algorithm alulates5401 boxes (inluding single integer points) and �nds the solution (758, 426, 408)T withthe minimum �1:573 � 109. The number of funtion evaluations is about 10802.Referenes[1℄ H.P. Benson, S.S. Erengu, R. Horst, A note on adapting methods for ontinuous globaloptimization to the disrete ase, Ann. Oper. Res., 25 : 1{4 (1990), 243{252.[2℄ V.K. Chihinadze, The disrete  -transformation method in integer programming, Comput.Maths. Math. Phys., 30 : 1 (1991), 170{178.[3℄ W. Conley, Computer Optimization Tehniques, Pertroelli Books In., 1980.[4℄ M.R. Garey, D.S. Johnson, Computer and Intratability-A Guide to the Theory of NP-ompleteness, Freeman, New York, 1979.[5℄ R. Ge, A ontinuous approah to nonlinear integer programming, Applied Math. and Com-putation, 34 (1989), 39{60.[6℄ R. Ge, A �lled funtion method for �nding a global minimizer of a funtion of severalvariables, Mathematial Programming, 46 (1990), 191{204.[7℄ A.V. Levy, A. Montalvo, The tunnelling algorithm for the global minimization of funtions,SIAM J. Si. Sta. Comput., 6 (1985), 15{28.[8℄ G.L. Numhauser, L.A. Wolsey, Integer and Combinatorial Optimization, John Wiley &Sons, 1988.[9℄ H. Ratshek, J. Rokne, New Computer Method for Global Optimization, Ellis HorwoodSeries in Mathematis and Its Appliation, 1988.[10℄ A.H.G. Rinooy Kan, G.T. Timmer, Global Optimization, In: Hand-Books in OperationsResearh and Management Siene, 1 Ed., G.L. Numhauser, A.H.G. Rinooy Kan, M.J.Todd, 1988.[11℄ A. Shrijver, Theory of Linear and Integer Programming, John Wiley & Sons, 1986.


