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Abstract. Taking vibration converter of intelligent damper for drill strings as the study
object, this paper analyzes the influential factors of motion state of the ball and con-
ducts an explicit dynamics simulation by establishing a mechanics model of vibration
converter. The study basis is Newton’s laws of motion, d’alembert’s principle and
hertz contact theory. And we use world coordinate system, rotating coordinate sys-
tem and Frenet coordinate system to deduce kinematics equations of vibration con-
verter.The ultimate result demonstrates that the axial velocity and maximum contact
stress change with the increment of ball diameter and helix angle.It also proves the va-
lidity of our derived kinematics and mechanical models and provides a good consul-
tant value for the design and theoretical arithmetic of vibration converter for intelligent
damper of drill strings.

AMS subject classifications: 51N20, 53A17, 74A10, 74S05
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1 Introduction

As a rotating slender elastic rod, drill strings works under complex conditions. Rock
breaking excitation and borehole constraint during its work exerts axial vibration, lat-
eral vibration and torsional vibration on drill strings (Fig. 1), especially in hard forma-
tion or soft-hard interlayer. These vibrations can cause serious damages on well-drilling.
From variations in weight on bit (WOB) and drilling torque, premature failure of bit, ag-
gravated fatigue of drill strings, thread gluing and fracture, to ground equipment dam-
age, these damages will lead to failure of the valued downhole tools (MWD, LWD and
RSS [1]), overall time rises and huge losses. Therefore, vibration mitigation is greatly
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Figure 1: Bottom hole assembly (BHA) and vibration modes.

needed and drill strings damper is a most effective way. In this field, intelligent dampers
represent the latest tendency of downhole vibration damping techniques [2], which can
monitor real-time drill strings vibration and attenuate it.

The common spring dampers are only able to buffer or eliminate axial vibration. The
air damper, with pressurized inert gas injected into the seal cavity, works well in absorb-
ing vibrations by changing its cavity volume. However, the complexity of seal structure
is a fatal weakness, and the preseted pressure of inert gas also limits its damping capac-
ity [3]. Overcoming all the drawbacks above is the intelligent damper for drill strings,
which can eliminate both axial vibration and torsional vibration simultaneously, as well
as providing a wide damping range and long service life.

Vibration converter, as a key part of the intelligent damper for drill strings, take the
function of converting torsional vibration into axial vibration. This converted axial vi-
bration, adding up with original axial vibration is mitigated simply by the axial damping
elements. To realize that torsional-axial convert, vibration converter usually adopts ball
screw. Ball works as an intermediary for transmitting motion and force as well as trans-
forming rolling friction into sliding friction. Therefore, its motion and stress situation
has direct effects on the motion characteristics of vibration converter. In the general me-
chanical industry, the motion characteristics and mechanical properties of ball have been
much investigated. D. Mundo and H. S. Yan proposed a method for the kinematics op-
timization of ball screw transmission mechanisms [4], Yoshida Takafumi et al. presented
an analytical method which can be used to determine the motion of the ball and the ball
load distribution, and then a parametric study on a ball screw was carried out to esti-



X. H. Zhu and C. L. Lai / Adv. Appl. Math. Mech., 5 (2013), pp. 671-687 673

mate the effectiveness of the method as a design tool [5]. Xuesong Mei et al. developed
a model to analyze the load distribution of ball screws with geometry errors, and made
the opinion that the positive geometry errors of the ball screw result in the increase of the
load on balls or guiding grooves [6]. Xian-Chun Song, Hong-Kui Jiang et al. analyzed
the elastic deformation of high speed ball screw based on the finite element method [7].
These studies pay their attention mainly on the ball screw between the helix angle of
3◦∼17◦, but the vibration converter of intelligent damper for drill strings needs a wider
helix angle for its physical dimension restriction. So far, studies on wider range of helix
angle have not been found among published literatures. As the kinematics and mechan-
ical properties changing with the increase of helix angle, it is essential to investigate the
properties of ball screw at wider helix angle to provide instructions for the design of vi-
bration converter of intelligent damper for drill strings and improvements on the existing
theory of ball screw.

From kinematics aspect, this paper establishes kinematics model for vibration con-
verter to make theoretically calculations and analysis of kinematics characteristics of the
ball. Besides, we also analyze contact in the vibration converter and set up the expres-
sions for contact stress and strain. At last, the final explicit dynamics simulation on the
vibration converter is done by SolidWorks and ABAQUS.

2 Vibration converter model

The designed intelligent damper for drill strings is shown in Fig. 2, and the vibration
converter presented in this paper is part of it. The intelligent damper for drill strings is
coupled to drill strings near bit. The drilling fluid drives the turbine generator to power
the sensor, controller, and MR fluid damper during the work. Meanwhile, the sensor
measures the vibration and provides this information to the controller in the form of
electrical current via which the controller can control the magnitude of the electrical cur-
rent to vary the strength of the aggregate magnetic field, and thus adjust the damping of
the MR fluid. Under normal conditions, MR fluid has the flow characteristics of conven-
tional oil. In the presence of a magnetic field, however, the flow characteristics of the MR
fluid can be changed from semi-solid to liquid in milliseconds. The damper using MR
fluid technology can be regulated efficiently, steplessly, accurately, and reversibly. While
at work, vibration converter converts torsional vibration into axial vibration, then MR
fluid damper attenuates axial vibration.

For the convenience of discussion, the 3D solid model is built (Fig. 3).

Figure 2: Intelligent damper for drill strings.
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Figure 3: Vibration converter model.

3 Kinematics characteristics analysis of ball

In vibration converter which bears working load, the ball contacts raceway surfaces of
mandrel and casing. Whereas a relative movement between mandrel and casing hap-
pens, the ball will move along the helicoid. In this case, the trajectory of ball center is a
helix as well as the trajectories of the two contact points and passes through the center
circle of ball, as shown in Fig. 4. The contact point between ball and raceway surface of
mandrel is A and its trajectory is helix lA, likewise, B and lB for ball and raceway surface
of casing separately, then l for ball center O.

Figure 4: Motion trajectory of ball.

Based on space analytic geometry, suppose the parameter equation of helix l of ball
center O [8]:

l=
{

r0cosθ,r0 sinθ,pθ
}

, (3.1)

where r0 is radius of center circle of ball; θ is parameter angle; p is helix parameter;
p= L/2π, L is lead.

Correspondingly, the parameter equation of helix lA of contact point A is

lA =
{

(r0−rb cosβ)cosθ+rb sinλsinβsinθ,

(r0−rb cosβ)sinθ−rb sinλsinβcosθ,pθ+cosλsinβ
}

, (3.2)
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where rb is ball’s radius; β is contact angle; λ is helix angle.
Similarly, the parameter equation of helix lB of contact point B is

lB =
{

(r0+rb cosβ)cosθ+rb sinλsinβsinθ,

(r0+rb cosβ)sinθ−rb sinλsinβcosθ,pθ+cosλsinβ
}

. (3.3)

The above formulae are under the condition of right-hand raceway surfaces. As for the
left-hand raceway surfaces, take −p instead of p in the formulae. According to the for-
mulae above, the relationships between radii of cylindrical surfaces on which the helices
lie RA, RB and R0 (that is radius of center circle of ball r0),

RA=
√

(r0−rb cosβ)2+r2
bsin2βsin2λ, RB =

√

(r0+rb cosβ)2+r2
bsin2βsin2λ. (3.4)

Because the radii of cylindrical surfaces on which the helices lA, l, lB lie are different,
while at the same lead L, the helix angles λA, λ, λB differ from each other:

λA = tan−1 L

2πRA
= tan−1 p

RA
, λ= tan−1 p

R0
, λB = tan−1 p

RB
. (3.5)

If there exists relative movement between mandrel and casing, ideally, ball center O will
move along the helix l with tangential direction of helix l being its velocity direction. The
tangent equation can be deduced from Eq. (3.1):

−
x−r0cosθ

cosλsinθ
=

y−r0 sinθ

cosλcosθ
=

z−pθ

sinλ
. (3.6)

This tangent goes through ball center O (R0cosθ,R0sinθ,pθ) with its direction number

{l,m,n}={−cosλsinθ,cosλcosθ,sinλ}. (3.7)

In addition, based on Eqs. (3.2)-(3.3), the moving directions of ball in contact points A, B
and tangent equations of helices lA, lB can be obtained. The direction number, for lA is

{l,m,n}={−cosλA sinθ,cosλA cosθ,sinλA}. (3.8)

Also, for lB:

{l,m,n}={−cosλB sinθ,cosλB cosθ,sinλB}. (3.9)

The three corresponding tangents of helices lA, l, lB are spatial crisscross from each other.
By employing space analytic geometry and Eqs. (3.7)-(3.9), the angles γAO, γBO between
lA, lB and tangent of l are obtained:

tanγAO =
db sinλcosλ

d0−db cosβcos2λ
, tanγBO=

db sinλcosλ

d0+db cosβcos2λ
, (3.10)
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Figure 5: The position of the ball center, o′, in the Cartesian coordinates and Frenet coordinate.

where d0 is diameter of center circle of ball; db is diameter of ball.

In the study of kinematics of the vibration converter, three coordinate systems are
needed to describe the motion of the ball and its contact behavior. The first (world) co-
ordination system, ox′y′z′, is fixed with its z′ axis coincident with the axis of mandrel.
The second (rotating) coordination system, oxyz, also has its z axis coincident with the
mandrel axis (Fig. 5), and rotates with the mandrel. The third coordination system, o′tnb,
is the Frenet frame moving with ball center along the trajectory of ball center. This trajec-
tory, with respect to the frame oxyz, is a circular helical line along a circular cylindrical
surface with a mean radius r0, and ϕ denotes the included angle between the first two
coordination systems (Fig. 5).

The coordinate transformation between the first two coordinate systems can be writ-
ten as

x′= xcos ϕ−ysinϕ, y′= xsinϕ+ysinϕ, z′= z. (3.11)

Assuming that a ball has moved an angle θ along the helix angle λ of a mandrel with a
lead dsinλ, then

dsinλ=
θL

2π
, tanλ=

L

2πr0
, (3.12)

where L is lead; d is the distance between two origins, o and o′ (ball center).

The position equation of the ball center, in the rotating coordination system, can be
expressed as [9]

X= r0 cosθx, Y= r0sinθy, Z= r0θtanλz. (3.13)

The coordinate transformation between the Frenet frame of ball center and the rotational
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coordinate system oxyz can be expressed as

x=(−cosλsinθ+cosλcosθ+sinλ)t, (3.14a)

y=(−cosθ−sinθ)n, (3.14b)

z=(sinλsinθ−sinλcosθ+cosλ)b. (3.14c)

Now, Eq. (3.13) can be rewritten in terms of the Frenet frame of ball center as

X= r0sinλtanλθt, Y=−r0n, Z= r0cosλtanλθb. (3.15)

The velocity of ball center, v, can be obtained by differentiating Eq. (3.15) with respect to
time:

dX

dt
=
( r0

cosλ
ω0+r0cosλω

)

t,
dY

dt
=0,

dZ

dt
=−r0sinλωb, (3.16)

where ω0 = dθ/dt is the rotational angular velocity, if a ball moving forward in the t-
direction along the mandrel surface; ω=dϕ/dt is the rotational angular velocity of man-
drel.

It will be shown in the next section that the ball can only move relatively to the man-
drel in the tangential direction of the Frenet frame of ball canter trajectory, because the
ball is confined in the helical groove in direction parallel to the normal plane of the tra-
jectory of ball center. Physically, this means that the contact points between the ball and
the mandrel, as well as between the ball and the casing, must be located on this normal
plane.

In order to locate these contact points, the contact angle, β, is defined as the angle
between the unit normal vector and contact vector. The contact vector is oriented from
the ball center toward the contact point, as shown in Fig. 6. Points A, B represent the
instantaneous contact points between the ball and the casing and between the ball and
the mandrel, respectively, with their contact angles βA, βB.

Figure 6: Location of contact points on the normal plane.
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Figure 7: Coordinate system of ball’s motion analysis.

We now introduce a pair of new coordinate systems iXiYiZi, with i=A,B, between the
ball and the raceway such that the XiYi plane lies on the plane of contact and Zi axis lies
along the common normal of the two contacting bodies. We also assume point contacts
along a diagonal line between the ball and mandrel and casing. The coordinate trans-
formation between the Frenet frame of ball center trajectory and the iXiYiZi coordinate
system is

Xi = t, Yi=(cosβi−sinβi)n, Zi=(cosβi+sinβi)b. (3.17)

The angular velocity due to ball’s spinning is ωR, the components of ωR along the t,
n, b axis are ωt, ωn, ωb, respectively. The o′u axis is coincident with the spinning axis of
a ball, the o′2 axis is the projection of the o′u axis in the o′u plane, the angle between the
o′2 axis and the o′u axis is β, and the angle between the o′2 axis and the −b axis is β′ [6],
as shown in Fig. 7.

It can be seen from Fig. 7, the relationships between ωt, ωn, ωb and ωR are

ωt=ωRcosβsinβ′, ωn=−ωRsinβ, ωb=−ωRcosβcosβ′. (3.18)

By using Eqs. (3.16)-(3.18), the velocities of contact points A, B on the ball, vA, vB, can
be achieved

vA =
[ r0

cosλ
ω0+r0cosλω+rb(ωbcosβA−ωnsinβA)

]

trbωtsinβAn

−(r0sinλω+rbωt cosβA)b, (3.19a)

vB =
[ r0

cosλ
ω0+r0cosλω+rb(ωbcosβB−ωnsinβB)

]

t−rbωtsinβBn

−(r0sinλω−rbωt cosβB)b. (3.19b)

Therefore, it can be seen from Eq. (3.19) that the velocity of ball has correlation with radius
of center circle of ball r0, helix angle of the mandrel λ, ball’s radius rb and angular velocity
of ball’s spinning ωR. Considering the lead L= tanλ2πr0, radius of center circle of ball
and helix angle can be bracketed together. Angular velocity of ball’s spinning is relevant
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Figure 8: Schematic diagram of ball’s motion.

to moment of inertia which depends on ball’s radius with a fifth power relationship. So
ball’s radius is the key factor affecting the velocity of ball.

Suppose the instantaneous velocity of ball center O is v and take ball center O as the
instantaneous center of motion, its velocities at contact points A, B are vA, vB, as Fig. 8
shows. According to Eq. (3.20) and Fig. 8, vA, vB can be decomposed into v′A, v′B, which
parallel to velocity of ball center, and v′′A, v′′B, which perpendicular to velocity of ball
center:

v′A =vA cosγAO, v′B =vB cosγBO, v′′A =vA sinγAO, v′′B =vB sinγBO. (3.20)

The space angles formed by vA, vB and v are on both sides of the helix l, so the veloc-
ity components v′′A, v′′B are in the same direction. Apart from rolling in the tangential
direction of the helix l with the linear velocities v′A, v′B, there also exists sliding motion
perpendicular to line AOB in the raceway, that is the sliding motion on the normal plane.
In addition, there still exists spinning round tangent of l. The composite motion of these
three types is main motion characteristics of ball in vibration converter.

4 Self-locking effect of vibration converter

In vibration converter, the contact states between mandrel, casing and ball depend on
running conditions and stress states. When it is working, the two normal forces acting on
ball are non-collinear, due to manufacturing errors of internal and external raceways and
ball’s sliding. As shown in Fig. 9, the normal forces NA, NB acting on contact points A, B
are non-collinear when the two contact planes clamping the ball are not parallel and have
a included angle 2γ. Under resultant force of NA and NB, the ball tends to move toward
left, thus generates frictions fA, fB at contact points A and B, see Fig. 9. the ball will move
left as the resultant force of NA and NB is greater than that of fA and fB. Alternatively, it
will stand still, which is called self-locking effect with the condition of

γ≤ tan−1µ, (4.1)

where γ is half of the angle included between the two contact planes; µ is coefficient of
sliding friction between ball and plane.
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Figure 9: Schematic diagram of self-locking effect.

Under condition of Eq. (4.1), the ball will go right by friction if one of the two planes
moves toward the right side. Then it can be clamped much closer between the two planes.
With the raise of normal pressure, the friction grows and eventually leads to elastic or
plastic deformation of ball and contact planes at the contact points. There exists such
kind of motion in the contact areas between ball and raceway in vibration converter,
which is called self-locking effect of vibration converter. When ball slides in the normal
plane of raceway, it will be pushed into the raceway and produce a reaction force that
prevents ball’s entrance as a result of self-locking effect. Thus, the friction in vibration
converter has a great fluctuation.

5 Contact stress and strain analysis of ball in vibration converter

5.1 Contact states between ball and mandrel, casing

According to hertz contact theory, the elastic contact between ball and raceways as well
as mandrel and casing can be considered as elastic contact of two free-form surfaces.
The difference lies in principal curvatures in principal planes where the two elastomers
contact.

Fig. 10 is schematic diagram of simplified mechanical model of vibration converter,
with helix angle λ and contact angle β. Where, A and B are contact points between ball
and mandrel and between ball and casing, respectively; R is radius of raceway surface;
db is ball diameter. Among the principal planes of mandrel which pass through contact
point A, one also passes through normal O1A and axis OO1, that is the axial section
shown in Fig. 11(a). Its radius of principal curvature is R. While the other principal plane
passes through axis O1A and perpendicular to axial section, see Fig. 11(b). Consider helix
angle and suppose its radius of principal curvature is R22, then it can be expressed as

R22=O1A/cosλ=(d0−db cosβ)/2cosβcosλ. (5.1)

As for ball, any secant plane that passes through normal of contact point A can be
treated as principal plane of ball and its radius of principal curvature R11 and R12 equals
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Figure 10: Contact state of vibration converter.

(a) (b)

Figure 11: Principal plane of mandrel (through contact point A).

rb. Moreover the two principal planes of mandrel can be taken as two principal planes of
ball. Principal planes of the two curved surface body are coincident.

The four principal curvatures of ball and raceway of mandrel at contact point A are

ρ11=ρ12 =
1

rb
, ρ21=−

1

R
, ρ22 =

2cosβcosλ

(d0−db cosβ)
, (5.2)

where negative principal curvature denotes concave curve.

Similarly, the two principal curvatures of raceway of casing at contact point B are

R21=R, R22=(d0+db cosβ)/2cosβcosλ. (5.3)

For the same reason, radii of principal curvature of ball at contact point B are R11 =
R12 = rb and its principal planes coincide with the two principal planes of raceway of
casing.

The four principal curvatures of ball and raceway of casing at contact point B are

ρ11=ρ12 =
1

rb
, ρ21=−

1

R
, ρ22 =

2cosβcosλ

(d0+db cosβ)
. (5.4)
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5.2 Elastic contact stress and strain of vibration converter

Based on hertz elastic contact theory, when the two free-form surfaces contact under the
pressure P, the stress distribution is a semi-ellipsoid on the ellipse contacting surface [8],
as shown in Fig. 12.

q(x,y)=qmax

√

(

1−
( x

a

)2
−
(y

b

)2)

. (5.5)

Therefore, total pressure P is the integration
∫

S q(x,y)ds of contact stress q(x,y) on the
contact area S. From the view of geometry, the integration equals to the volume of the
semi-ellipsoid, then

P=
2πabqmax

3
. (5.6)

Finally, the maximum contact stress

qmax=
3P

2πab
, (5.7)

where a and b are major semi-axis and minor semi-axis of contact ellipse, respectively,
and can be calculated by

a=α 3

√

m

n
P, b=β 3

√

m

n
P, (5.8a)

m=
4

ρ11+ρ12+ρ21+ρ22
, n=

8

3
[

(1−µ2
1)/E1+(1−µ2

2)/E2

] . (5.8b)

α, β are geometrical factors determined by principal curvatures. E1, E2 and µ1, µ2 are
longitudinal elastic moduli and Poisson’s ratio.

Figure 12: Distribution of contact stress.
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Relative displacement of the two contacting elastomers along the z axis, due to elastic
compression deformation, is called elastic approach, that is

δP =
3P

2πa

(1−µ2
1

E1
+

1−µ2
2

E2

)

J, (5.9)

where J is ellipse integration determined by principal curvatures.
If the two elastomers are steel with elastic module E = 2.1×105MPa and Poisson’s

ratio µ=0.3, it can be rewritten as

δP =8.12×10−7×
3

√

P2∑ρJ

α
, (5.10)

where ∑ρ=ρ11+ρ12+ρ21+ρ22 is called synthetic curvature.
Synthetic curvature of raceway of mandrel is

∑ρs =
2

rb
−

1

R
+

2cosβcosλ

d0−db cosβ
. (5.11)

Synthetic curvature of raceway of casing is

∑ρn =
2

rb
−

1

R
+

2cosβcosλ

d0+db cosβ
. (5.12)

Then,

∆∑ρ=∑ρs−∑ρn =
4dbcos2βcosλ

d2
0−d2

bcos2β
. (5.13)

For the contact points A and B between mandrel and casing, the elastic approaches are
different by discrete in the principal curvatures, despite a same contact pressure P. The
elastic approach between ball and mandrel is larger than that between ball and casing,
which shows the contact stiffness of casing is greater than that of mandrel, and stiffness
is inversely related to the increase of helix angle.

6 Case study

In order to simulate the kinematics characteristics of ball accurately, a Computer Aided
Engineering (CAE) software is employed to analyze the working mechanical behavior.
Because computing time is proportional to the contact element number, possible contact
surfaces are pre-estimated according to theory model analysis. Then, a simplified calcula-
tion model is set by supposing each ball and the contact states of raceways are identical or
at least similar, see Fig. 13 and Table 1. The intelligent damper for drill strings discussed
in this paper is suitable for 8−1/2” borehole where the casing diameter of vibration con-
verter, inside diameter of casing, outside diameter of mandrel, diameter of nozzle and
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Figure 13: Simplified finite element model.

contact angle of ball and raceway are 172mm, 112mm, 110mm, 51mm, and 40◦, respec-
tively. The model built by CAD software is imported into CAE software, when defining
the material properties, contact and friction, meshing, finally applying constraints and
loadings (that is rotational speed of mandrel ω=15r/min).

Apply rotational speed to vibration converter to study the effect of ball diameter on
the kinematics characteristics of ball. The result can be seen from Fig. 14. The axial
velocity of ball decreases gradually and the ball becomes slower and more unstable on
its starting with the increase of ball diameter. Particularly, the ball moves reversely and
its velocity varies greatly when the ball diameter increases to 15mm.

Apply rotational speed to vibration converter to study the effect of helix angle on the
kinematics characteristics of ball. As shown in Fig. 15, the axial velocity of ball decreases
with helix angle decreases from 84◦ to 76◦. Notably, self-locking effect of vibration con-
verter discussed above occurs and the axial velocity of ball approaches almost zero when
the helix angle is 82◦. Therefore, the self-locking effect, besides larger helix angle, should
also be taken into consideration when designing the vibration converter.

Now that the effects of ball diameter and helix angle on ball’s kinematics character-
istics have been studied in above paragraphs, the following will continue in the view of

Table 1: Finite element model.

Material property
Young’s modulus Poisson’s ratio

210GPa 0.3
Element type C3D8R

Element size
Mandrel Ball Casing

5mm 0.5mm 5mm

Boundary condition
Mandrel Casing

U1=U2=UR1=UR2=0 U1=U2=U3=UR1=UR2=UR3=0
Contact type General contact

Friction coefficient
Static friction coefficient Dynamic friction coefficient

0.15 0.003
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Figure 14: Effect of ball diameter on its kinematics characteristics.

Figure 15: Effect of helix angle on ball’s kinematics characteristics.

contact stress. Shown in Fig. 16, while decreasing ball diameter from 15mm to 11mm, the
maximum contact stress of ball increases rapidly and fluctuates greatly, which can lead
to great possibilities of ball premature failure. This also means kinematics characteristics
and contact stress should be comprehensively considered in determining appropriate ball
diameter. In addition, a raise in the number of raceways and ball can reduce the contact
stress of ball and enhance bearing capacity of vibration converter. Fig. 17 shows the effect
of helix angle on contact stress of ball, in which the maximum contact stress of ball de-
creases with the increase of helix angle. At the helix angle of 80◦, the maximum contact
stress of ball reaches its minimal value with a relatively lower fluctuation. In this case,
the performance of vibration converter can be improved.

7 Conclusions

Taking vibration converter of intelligent damper for drill strings as the study subject
and based on Newton’s laws of motion, d’alembert’s principle, hertz contact theory and
world coordinate system, rotating coordinate system, Frenet coordinate system, this pa-
per has deduced kinematics equations of vibration converter, analyzed the influential
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Figure 16: Effect of ball diameter on its contact stress.

Figure 17: Effect of helix angle on contact stress of ball.

factors of motion state of the ball, established mechanics model of vibration converter,
and conducted an explicit dynamics simulation. Altogether, the following conclusions
can be drawn:

1. Under the same condition, contact stiffness of casing is greater than that of mandrel,
and the contact stiffness of casing diminishes with the increase of helix angle.

2. With the increase of ball diameter, axial velocity of ball decreases gradually and the
ball becomes slower and more unstable on its starting.

3. Axial velocity of ball diminishes with the decrease of helix angle. For a better design
of vibration converter, the self-locking effect, besides choosing a larger helix angle,
should also be considered.

4. With decrease in ball diameter, the maximum contact stress of ball increases rapidly
and fluctuates fiercely, which can lead to great possibilities of ball premature failure.
Thus, kinematics characteristics and contact stress should be comprehensively con-
sidered in determining appropriate ball diameter. In addition, a raise in the number
of raceways and ball can reduce the contact stress of ball and enhance bearing ca-
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pacity of vibration converter. Maximum contact stress of ball diminishes with the
increase of helix angle.

5. The parameters for ball screw of vibration converter in intelligent damper for drill
strings (6−3/4”) which often used in 8−1/2” borehole drilling are recommended
as: 40◦ for the contact angle between ball and raceway; 80◦ for the helix angle;
14mm for the width of ball diameter; 112mm for the inside diameter of casing;
110mm for the outside diameter of mandrel; 51mm for the diameter of nozzle.
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