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A ESTIMATE OF THE RATE OF ENTROPY DISSIPATION OFHIGH RESOLUTION MUSCL TYPE GODUNOV SCHEMES�1)Hua-zhong Tang(State Key Laboratory of Sienti� and Engineering Computing, ICMSEC, Chinese Aademyof Sienes, Beijing 100080, China)Ning Zhao(Department of Aerodynamis, Nanjing University of Aeronautis and Astronautis, Nanjing210016, China)AbstratIn this paper, following the paper [7℄, we analysis the \sharp" estimate of therate of entropy dissipation of the fully disrete MUSCL type Godunov shemesby the general ompat theory introdued by Coquel{LeFloh [1, 2℄, and �nd:beause of small visosity of the above shemes, in the vinity of shok wave, theestimate of the above shemes is more easily obtained, but for rarefation wave, wemust impose a \sharp" ondition on limiter funtion in order to keep its entropydissipation and its onvergene.Key words: Hyperboli onservation laws, MUSCL type godunov shemes, Entropydissipation, shok wave, Rarefation wave.1. IntrodutionLet us onsider the Cauhy problems for nonlinear hyperboli salar onservationlaws: �u�t + �f�x = 0; (1.1)u(x; 0) = u0(x) (1.2)where f : <�!< is Lipshitz ontinuous funtions, and the initial data u0(x) is a givenfuntion in L1(R)TL1(R). As it is well-known, this problem in general does not admitsmooth solution, so that weak solutions in the sense of distributions must be onsider.� Reeived Deember 6, 1995.1)This work was supported by the China National Aeronautial Foundation and by the ChinaPostdotoral Siene Foundation.



370 H.Z. TANG AND N. ZHAOMoreover, an entropy ondition must be added in order to ensure the uniqueness of theweak solutions of equation (1.1) and (1.2). The onvergene of high resolution shemeshas been investigated by many authers, suh as Osher and Tadmor [3℄, Vila [5℄,andCoquel and LeFloh [1, 2℄. However, some quantities depending on spae mesh size arealways introdued in their paper. In general, the di�erene shemes only depends onthe ratio of the mesh size but the mesh size. So, the introdution of these quantitiesmay be improper.In this paper, we disuss a lass of the fully disrete MUSCL type Godunov shemesbased on the general theory introdued by Coquel-LeFloh [1, 2℄. In setion 2, wereall the Godunov shemes for salar onservation laws and give its MUSCL type highresolution Godunov shemes. Setion 3 deals with the rate of entropy dissipation of theshemes. We give a ubi estimate of the "sharp" entropy inequalities of the MUSCLtype Godunov shemes in the ase of shok wave. Moreover, we anaylsis the ase ofrarefation wave, and �nd that a "sharp" ondition must be imposed on the limiterfuntions in the ase of rarefation wave, in order to ensure entropy inequalities andonvergene of the above shemes. The above limitations make these shemes fail topreserve the seond order auray.2. The Fully Disrete MUSCL Type Godunov ShemesLet us onsider �nite di�erene shemes in onservative form for onservation laws(1) and (2) un+1j = unj � �(hj+ 12 � hj� 12 ); (2.1)where � = �t=�x is the mesh ratio, and �t and �x are the variable meshsize in timeand spae diretions, respetively. hj+ 12 denotes the numerial uxhj+ 12 = h(uj�s+1; :::; uj+s); h(u; :::; u) = f(u): (2.2)As well known, the weak solution of equation (1.1) and (1.2) is not unique. So let thefuntion U(u) be any onvex funtion,so{alled the entropy funtion, and assoiatedwith entropy funtion F(u) satis�es F 0(u) = U 0(u)f 0(u). (U,F) is alled an entropypair. If the weak solution of equation (1.1) and (1.2) satis�es the following inequality:�U(u)�t + �F (u)�x � 0; (2.3)in the sense of distribution to every entropy pair (U,F), the weak solution is the unquephysial solution of equation (1.1) and (1.2). The inequality (2.3) is alled the entropyinequality (or the entropy ondition). Corresponding to the onservative sheme (2.1),the disrete entropy inequality is de�ned asU(un+1j )� U(unj ) + �(Hj+ 12 �Hj� 12 ) � 0; (2.4)



A Estimate of the Rate of Entropy Dissipation of ... 371where the disrete entropy uxHj+ 12 = H(uj�s+1; :::; uj+s);H(u; :::; u) = F (u): (2.5)In this paper, the given ux f is assumed to be of C2 lass and uniformly onvex. Ourestimates will depend expliitly on the onvexity modulus given byÆ = infu f 00(u) (2.6)the in�mum being taken on all u under onsideration. For the sake of simpliity inthe presentation (it is not a respetion for our purpose and the extension to a generalentropy in immediate) , we shall use in all this setion and the next setion the entropy(U;F ) de�ned by U(u) = u22 ; F (u) = uZ0 vf 0(v)dv; 8u 2 < (2.7)For any uL and uR in < , let xt �! w(xt ;uL; uR) denotes the unique entropy weaksolution to the Riemann problemut + fx(u) = 0; t > 0; x 2 <: (2.8)u(0; x) = ( uL; if x < 0;uR; if x > 0: (2.9)Sine the funtion f is stritly onvex,w(�;uL ; uR) is omposed of either a shok wave(uL > uR) or a rarefation wave (uL � uR).Now,let us disuss the Godunov shemeun+1j = unj � �(hGj+ 12 � hGj� 12 ); (2.10)where hG(b; a) = f(w(0+; b; a)) (2.11)The above sheme admits a following deomposition (Tadmor [4℄)un+1j = (uRj� 12 + uLj+ 12 )2 ; (2.12)whereuRj� 12 = 2�x Z �x20 w( x�t ;unj�1; unj )dx; uLj+ 12 = 2�x Z 0��x2 w( x�t ;unj�1; unj )dx; (2.13)Under the CFL stability restrition on �,�maxu jf 0(u)j � 12 (2.14)



372 H.Z. TANG AND N. ZHAOCoquel and LeFloh [2℄ have given a quadrati estimate of the estimate of the entropydissipation in the Godunov sheme.Now,we will anaysis the sharp entropy inequality of the following MUSCL type onver-sions of the Godunov shemeun+1j = unj � �(f(w(0+; ~uj+ 12 ; ûj+ 12 )� f(w(0�; ~uj� 12 ; ûj� 12 )) (2.15)where ûj+ 12 = unj+1 � �(rj+1)2 (unj+2 � unj+1);~uj+ 12 = unj + �(rj)2 (unj+1 � unj ); (2.16)rj = unj � unj�1unj+1 � unj :and �(r) is the Limiter funtion (see [5℄ for details).Lemma 2.1. If the limiter funtion �(r) satis�es0 � f�(r)r ; �(r)g � 2; (2.17)then 8<: uj+1 � ûj+ 12 � ~uj+ 12 � uj ; ifuj+1 � uj ;uj � ~uj+ 12 � ûj+ 12 � uj+1; ifuj+1 � uj : (2.18)If de�ne�uRj� 12 = 2�x �x2Z0 w( x�t ; ~uj� 12 ; ûj� 12 )dx; �uLj+ 12 = 2�x 0Z��x2 w( x�t ; ~uj+ 12 ; ûj+ 12 )dx; (2.19)then we haveLemma 2.2. Under the CFL ondition (2:14), for eah n in N and eah i in Z, wehave U(�uRj� 12 )� U(ûj� 12 ) + 2�(F (ûj� 12 )� FGj� 12 ) (2.20)= 2�JRj� 12 � 1�x �x2Z0 (w( x�t ; ~uj� 12 ; ûj� 12 )� �uRj� 12 )2dx � A;U(�uLj+ 12 )� U(~uj+ 12 )� 2�(F (~uj+ 12 )� FGj+ 12 ) (2.21)= 2�JRj� 12 � 1�x 0Z��x2 (w( x�t ; ~uj+ 12 ; ûj+ 12 )� �uRj� 12 )2dx � B;



A Estimate of the Rate of Entropy Dissipation of ... 373where the terms JRj+ 12 and JLj+ 12 equal zero exept when the Riemann solution w(�; ~uj+ 12 ,ûj+ 12 ) ontains a shok wave with speed �j+ 12 and, in this latter ase,they are given byJRj+ 12 = 8<: F (~uj+ 12 )� F (ûj+ 12 )� �j+ 12 (U(~uj+ 12 )� U(ûj+ 12 )); if �j+ 12 > 0;0; otherwise (2.22)JLj+ 12 = 8<: F (~uj+ 12 )� F (ûj+ 12 )� �j+ 12 (U(~uj+ 12 )� U(ûj+ 12 )); if �j+ 12 � 0;0; otherwise (2.23)As �rst order Godunov shemes (2.10), we an write equation (2.15) in the followingform: un+1j = (��uRj� 12 + ��uLj+ 12 )2 ; (2.24)where��uRj� 12 = �uRj� 12 +uj+ûj� 12 +2�(f(ûj� 12 )�f(uj));= ûRj� 12 +(1�2��̂j)(uj�ûj� 12 ); (2.25)��uLj+ 12 = �uLj+ 12 +uj+~uj+ 12 +2�(f(uj)�f(ûj� 12 )) = ~uLj+ 12 +(1+2�~�j)(uj� ~uj+ 12 ) (2.26)�̂j = (f(ûj� 12 )� f(uj))ûj� 12 � uj) ;~�j = (f(~uj� 12 )� f(uj))~uj� 12 � uj) ;Next,we will anaysis the entropy dissipation of MUSCL type Godunov shemes (2.15)from the above deomposition forms, based on the general theory introdued by Coqueland LeFloh [2℄.3. The Estimate of Entropy Dissipation of a Shok Wave in MUSCLType Godunov ShemesIn this setion, we will only onsider the following ase: unj+1 � unj and unj � unj�1have the same sign. Beause, otherwise, from the equation(2.16), (2.17), (2.25), and(2.26), we an �nd that ��uRj� 12 = �uRj� 12 ;��uLj+ 12 = �uLj+ 12 : (3.1)So, in this ase, we have the same results as [2℄ in the ase of shok (or rarefation)wave.First,let us disuss the ase of shok wave (uj+1 < uj). By Lemma 2.1, we have



374 H.Z. TANG AND N. ZHAOLemma 3.1. Under the CFL ondition (2:14),U(��uRj� 12 )� U(uj) + 2�(F (uj)� F (ûGj� 12 ) (3.2)= A+ 2�ĴR + U(��uRj� 12 )� U(�uRj� 12 )� (1� 2��̂j)(U(unj )� U(ûj� 12 ));U(��uLj� 12 )� U(uj)� 2�(F (uj)� F (~uGj+ 12 ) (3.3)= B + 2� ~JL + U(��uLj+ 12 )� U(�uLj+ 12 )� (1 + 2�~�j)(U(unj )� U(~uj+ 12 )):where ĴR = F (uj)� F (ûj� 12 )� �̂j(U(uj)� U(ûj� 12 )); (3.4)~JL = F (~uj+ 12 )� F (uj)� ~�j(U(~uj+ 12 )� U(uj)); (3.5)If let �j� 12 ;+ = max(0:; �j� 12 ); �j+ 12 ;� = min(0:; �j+ 12 ),thenRHS(3:2) = A+ 2�ĴR � ��j� 12 ;+(1� 2� �̂j) (3.6)�(rj)rj (1� �(rj�1)2 � �(rj)2rj )(unj � unj�1)2 � ��̂j(1� 2��̂j)4 (�(rj)rj )2(unj � unj�1)2;RHS(3:3) = B + 2� ~JL + ��j+ 12 ;�(1 + 2�~�j) (3.7)�(rj)(1� �(rj)2 � �(rj+1)2rj+1 )(unj+1 � unj )2 + �~�j(1 + 2�~�j)4 (�(rj)2(unj+1 � unj )2:Denote the fourth term of equation (3.6),or(3.7) as (I),(II),respetively. Sine (see[2℄), 1�x �x2Z0 (w( x�t ; ~uj� 12 ; ûj� 12 )� �uRj� 12 )2dx (3.8)= ��j� 12 ;+(1� 2��j� 12 ;+)(~uj� 12 � ûj� 12 )2;1�x 0Z��x2 (w( x�t ; ~uj+ 12 ; ûj+ 12 )� �uLj� 12 )2dx (3.9)= ���j+ 12 ;�(1 + 2��j� 12 ;�)(~uj+ 12 � ûj+ 12 )2;Now, we have the following onlusion:(1) If �̂ � 0 � ~�,then RHS(3:2) � 2�(JRj� 12 + ĴR);RHS(3:3) � 2�(JLj� 12 + ĴL);



A Estimate of the Rate of Entropy Dissipation of ... 375under the CFL ondition (2.14).(2) If 0 � �̂ � ~�,then RHS(3:2) � 2�(JRj� 12 + ĴR) + (I);RHS(3:3) � 2�(JLj� 12 + ĴL)� (I);under the CFL ondition��j+ 12 ;+ � (1� �(rj+1)2rj+1 )2 � (�(rj)2 )22((1 � �(rj+1)2rj+1 )2 + (�(rj)2 )2) : (3.10)(3) If 0 � �̂ � ~�,then RHS(3:2) � 2�(JRj� 12 + ĴR)� (II)RHS(3:3) � 2�(JLj� 12 + ĴL) + (II)under the CFL ondition��j� 12 ;+ � (1� �(rj�1)2 )2 � (�(rj)2rj )22((1 � �(rj�1)2 )2 + (�(rj)2rj )2) : (3.11)Therefore,Lemma 3.2. Conder the shemes (2:15) under the CFL ondition�supu j f 0(u) j � �2 ; 0 � � � 1; (3.12)Suppose that the Riemann solution w(�; ~uj� 12 ; ûj� 12 ) onsists of a shok wave with speed�j� 12 ,and that the Limiter �(r) satis�es0 � f�(r); �(r)r g � (1� �); (3.13)Then we haveU(un+1j )�U(unj )+�(FGj+ 12 �FGj� 12 ) � ��Æ(1��)(j unj �unj�1 j3 + j unj �unj�1 j3) (3.14)Next, we onsider the ase of rarefation wave. Denote�Lj� 12 = f 0(~uj� 12 ); �rj� 12 = f 0(ûj� 12 ); (3.15)�j� 12 = f(ûj� 12 )� f(~uj� 12 )ûj� 12 � ~uj� 12 (3.16)



376 H.Z. TANG AND N. ZHAOin this ase, JRj� 12 = 0; JLj+ 12 = 0 and1�x �x2Z0 (w( x�t ; ~uj� 12 ; ûj� 12 )� �uRj� 12 )2dx � (3.17)��SRj� 12 f Æ12((1� SLj� 12 ) j ûj� 12 � u� j3 +SLj� 12 j ûj� 12 � ~uj� 12 j3)g��SRj� 12 fSLj� 12�Lj� 12 (1� 2��j� 12 )2+2�(1� 2��Rj� 12 )�j� 12 2g j ûj� 12 � ~uj� 12 j21�x 0Z��x2 (w( x�t ; ~uj+ 12 ; ûj+ 12 )��uLj� 12 )2dx � ��(1�SLj+ 12 )( Æ12fSRj+ 12 j ~uj+ 12�u� j3 (3.18)+(1� SRj+ 12 ) j ûj+ 12 � ~uj+ 12 j3)g��(1� SLj+ 12 )f(1 + 2��Lj+ 12 )2��2j+ 12 � (1� SRj+ 12 )(1 + 2��j+ 12 )2�Rj+ 12 g(ûj+ 12 � ~uj+ 12 )2where SR; SL de�ned byS� = ( 1; if �� > 0;0; if otherwise; � = L or R (3.19)and, u� is the soni point(i.e. f 0(u�) = 0).As the above ase, we an �nd :(1) �Lj� 12 > 0; then in order to hold the following "entropy" inequalitiesRHS(3:3) � (II) + 2� ~JL;RHS(3:2) � �(II)� 2� ~JL;we must have the "sharp" ondition:(�(rj)2rj )2 � ��Lj� 12 (1� 2�~�)�~�(1 + 2�~�) f(1� �(rj�1)2 + �(rj)2rj )2 + (�(rj)2rj )2g (3.20)and f�(r); �(r)r g � 3p2(1 + 3p2) (3.21)(2) �Rj� 12 > 0 > �Lj� 12 , then in order to hold the following inequalitiesRHS(3:3) � (II) + 2� ~JLRHS(3:2) � �(II)� 2� ~JL



A Estimate of the Rate of Entropy Dissipation of ... 377we must have the 'sharp' ondition:2(��j� 12 )2(1� 2�~�)(1� �(rj�1)2 � �(rj)2rj )2 (3.22)����(1� 2��̂)�(rj)rj (1� �(rj�1)2 � �(rj)2rj ) + ��̂(1� 2�~�)4 (�(rj)rj )2��~�(1 + 2�~�)4 (�(rj)rj )2 � 0:and f�(r); �(r)r g � (1� s) 3p2(1 + (1� s) 3p2) ; 0 < s < 1 (3.23)Here, we assume u� = sûj+ 12 + (1� s)~uj� 12 .The ase (3) �Rj+ 12 < 0, and (4) �Lj+ 12 < 0 < �Rj+ 12 , are in similar to the above ase(1) and (2), respetively.The ase (5) �Lj+ 12 > 0 > �Rj� 12 , thenRHS(3:2) = (I) + 2�ĴR > 0;and RHS(3:3) = (II) + 2� ~JL > 0:So, we an not give negative estimate of entropy dissipation,beause ~� � �̂. Therefore,for rarefation wave,in order to make the above fully disrete shemes to satisfy disreteentropy inequality, we must make �(r) = 0,i.e.make the above shemes to degenate 1{order auray. In this kind of modi�ment, we an prove the onvergene of the modi�edshemes (see [1, 2, 7℄). 4. ConlusionIn the last setions, we have disussed the estimates of the rate of entropy dissi-pation in fully disrete MUSCL type Godunov shemes by using the theory of Coqueland LeFloh [1, 2℄ for nonlinear hyperboli onservation laws. we have proven: beauseof small visoity of Godunov sheme, the sheme an not obtain the \good" estimateof entropy dissipation in vinity of rarefatiion wave. But under some \sharp" on-dition and modi�ments for Limiter funtion, we an proved the onvergene of thesheme(2.15){(2.16). Unfortunately, in this ase, this modi�ed MUSCL type Godunovsheme will not preserve the seond order auray under these onditions. It should befurther researhed how to disretizate properly the entropy ux suh that the disreteentropy onditions an be better onsistent with the nonlinear stability of the di�ereneshemes for hyperboli onservation laws.
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