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THE STABILITY AND CONVERGENCE OF COMPUTINGLONG-TIME BEHAVIOUR�1)Hai-jun Wu Rong-hua Li(Institute of Mathemati
s, Jilin University, Chang
hun 130023, China)Abstra
tThe obje
t of this paper is to establish the relation between stability and 
on-vergen
e of the numeri
al methods for the evolution equation ut�Au�f(u) = g(t)on Bana
h spa
e V , and to prove the long-time error estimates for the approxi-mation solutions. At �rst, we give the de�nition of long-time stability, and thenprove the fa
t that stability and 
ompatibility imply the uniform 
onvergen
e onthe in�nite time region. Thus, we establish a general frame in order to prove thelong-time 
onvergen
e. This frame in
ludes �nite element methods and �nite dif-feren
e methods of the evolution equations, espe
ially the semilinear paraboli
 andhyperboli
 partial di�erential equations. As appli
ations of these results we provethe estimates obtained by Larsson [5℄ and Sanz-serna and Stuart [6℄.Key words: Stability, Compatibility, Covergen
e, Rea
tion-di�usion equation, Long-time error estimates. 1. Introdu
tionIn 1978, Ho�[3℄ 
onsidered the long-time behavior 
omputation of nonlinear rea
tion-di�usion equations, whi
h is supposed to have an invariant region S, i.e. any lo
alsolution arising from a point in S is 
onstrained to lie in. Ho� 
onstru
ted a familyof �nit di�eren
e s
hemes for the equations. Under some assumptions he proved thatany traje
tory starting in S will 
onverge to an asymptoti
ally stable equilibrium, andS is also an invariant region of the di�eren
e equations. So Ho� obtained error es-timates uniform in time for the di�eren
e equations. In 1989, Larsson[5℄ studied thelong-time error estimates of �nite-element approximations of rea
tion-di�usion equa-tion (below dimension 3). The distin
tion between [5℄ and [3℄ is that Larsson didn'tassume the equation has a invariant region but has an asymptoti
ally stable hyperboli
equilibrium, and so the traje
tories 
onstri
t to some neighbourhood of the equilibrium.� Re
eived O
tober 17, 1996.1)The Proje
t is supported by the National S
ien
e Foundation of China.



398 H.J. WU AND R.H. LIHowever, by the standard �nite time error estimates one 
an show that the dis
retiza-tion solution will enter this neighbourhood. In 1992, Sanz-Serna and Stuart[6℄ obtainedan error estimates uniform in time for expli
it di�eren
e s
heme of one-dimensionalrea
tion-di�usion equation by using analogous te
hnique of [5℄. Note that all of aboveresults are obtained under the 
ondition that the 
ontinuous traje
tories 
onverge to anasymptoti
ally stable, hyperboli
 equilibrium and they are diÆ
ult to be generalized.In this paper, we'll establish the relation between stability and 
onvergen
e, andthen obtain a suÆ
ient 
ondition of long-time 
onvergen
e of dis
rete methods for moregeneral equation. Under su
h a 
ondition we get an error estimate on the in�nite timeregion. Therefore, we provide an abstra
t frame to prove 
onvergen
e. This methoddosen't assume the existen
e of an equilibrium. It 
an be used to both the �nite elementmethods and the di�eren
e methods, the expli
it s
hemes and the impli
it s
hemes.The paper is outlined as follows: In 2, we give de�nitions of stability, 
ompatibilityand 
overgen
e of dis
rete s
hemes on the in�nite time region. Espe
ially, we obtain atheorem whi
h states that the stability and 
ompatibility imply 
onvergen
e. In 3 and4, we apply this theorem to the problem in [5℄ and obtain the similar results; to theproblem in [6℄ and obtain the same results. In 5 we give an example whose 
ontinuoussolution is periodi
al in time. It 
an't in
lude in the frame of [3℄, [5℄ or [6℄. But we 
anprove the long-time 
onvergen
e of an expli
it di�eren
e s
heme from this theorem.2. The Relation Between Stability and Convergen
eLet V be a Bana
h spa
e with norm k � k. We 
onsider the evolutionary equationsu
h as: ut �Au� f(u) = g(t);u(0) = u0; (2.1)here A and f are operators on a dense subset of V to V . Let u(t) 2 V be a solution of(2.1).Let Vh be a �nite dimensional Bana
h spa
e with norm k � kh. It may or may notbe the subspa
e of V . Let ph be a operator from V to Vh. We denote the dis
retizationof (2.1) as follows: Bh;� (un+1h;� ) = Ch;� (unh;� ) + �gnh;� ; n = 0; 1; 2; � � �u0h;� = u0;h; (2.2)where gnh;� , u0;h 2 Vh, Bh;� and Ch;� are operators on Vh, h is spa
e step-size and � istime step-size, unh;� is the approximation to u(tn)(tn = n�).



The Stability and Convergen
e of Computing Long-time Behaviour 399Let Lh;� (unh;� ) = (Bh;� (un+1h;� )� Ch;� (unh;� ))=�; (2.3)Rnh;� (u) = Lh;� (phu(n�))� gnh;� ; (2.4)N = f1; 2; � � �g; N0 = f0g [N; (2.5)Sh;� = supn2N0 kRnh;� (u)kh; (2.6)enh;� = unh;� � phu(n�); (2.7)�Bnh;� (vh) = Bh;� (phu(n�) + vh)�Bh;� (phu(n�)); (2.8)�Cnh;� (vh) = Ch;� (phu(n�) + vh)� Ch;� (phu(n�)): (2.9)Condition (A). There exist positive numbers �n� , "1;h;� ; "2;h;� ; �;M; T , su
h that,for any n 2 N ,(A1) �Bnh;� has an inverse on fwhjwh 2 Vh; kwhkh � "2;h;�g, andk( �Bnh;� )�1(wh)kh �Mkwhkh; 8wh 2 Vh;(A2)1 For kvhkh � "1;h;� we have k �Cnh;� (vh)kh � �n� k �Bnh;� (vh)kh andk �C0h;� (vh)kh �Mkvhkh;(A2)2 If n� � T , then �n� � 1 +M� ; if n� > T , then �n� � 1� �� ;(A3) "1;h;� �M(aSh;� + bke0h;�kh), "2;h;� � aSh;� + bke0h;�kh,where a = 1� + eM(T+�) � 1M ; b =MeMT : (2.10)We haveTheorem 2.1. Assume that s
heme (2:2) satis�es 
ondition (A) for a pair of h; � ,and ke0h;�kh � "1;h;� ; (2.11)Then the solution of (2:2) exists and satis�eskenh;�kh �M(aSh;� + bke0h;�kh); (n 2 N); (2.12)where a and b are de�ned by (2:10).Proof. From (2.3){(2.9), we have��Rjh;� (u) = �(Lh;� (ujh;� )� Lh;� (phu(j�))) = �Bj+1h;� (ej+1h;� )� �Cjh;� (ejh;� )for any j 2 N0 and so �Bj+1h;� (ej+1h;� ) = �Cjh;� (ejh;� )� �Rjh;� (u): (2.13)



400 H.J. WU AND R.H. LINow, we are going to prove the following proposition by mathemati
al indu
tion: thereexists ejh;� (j � 0) satis�ng (2.13) andkejh;�kh � "1;h;� ; (j 2 N0): (2.14)From (2.11) we know the proposition is 
orre
t for j = 0.Assume that the proposition are 
orre
t for j � n, i.e. there exists ejh;� (0 � j � n)satis�ng (2.13) and kejh;�kh � "1;h;� ; (0 � j � n): (2.15)Now, we are going to prove the proposition for j = n+1. At �rst, we give the estimateon the norm of �Cnh;� (enh;� )� �Rnh;� (u).If n = 0,then from (A2)1 and (2.10) we havek �C0h;� (e0h;� )� �R0h;� (u)kh � �Sh;� + k �C0h;� (e0h;� )kh;� aSh;� + bke0h;�kh: (2.16)For n � 1, then from (A2)1 and (2.15), we havek �Cjh;� (ejh;� )kh � �j�k �Bjh;� (ejh;� )kh; (1 � j � n): (2.17)Moreover, from (2.13),k �Bj+1h;� (ej+1h;� )kh � k �Cjh;� (ejh;� )kh + �Sh;� (0 � j � n� 1): (2.18)Combining (2.17) and (2.18) we getk �Cnh;� (enh;� )� �Rnh;� (u)kh ��Sh;� + �n� k �Bnh;� (enh;� )kh��Sh;� + �n� (k �Cn�1h;� (en�1h;� )kh + �Sh;� ) � � � ��(1 + �n� + � � �+ �n� � � � �1� )�Sh;� + �n� � � � �1�k �C0h;� (e0h;� )kh:If n� � T ,then from (A2)2 we have1 + �n� + � � � + �n� � � � �1� �1 + (1 +M�) + � � �+ (1 +M�)n=(1 +M�)n+1 � 1M� � eM(T+�) � 1M� ;�n� � � � �1� �(1 +M�)n < eMT :If n� > T , let m = [T=� ℄, then from (A2)2,1 + �n� + � � �+ �n� � � � �1� � 1 + (1� ��) + � � �+ (1� ��)n�m�eM(T+�) � 1M� �<1� �1� + eM(T+�) � 1M �;
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e of Computing Long-time Behaviour 401�n� � � � �1� �(1 +M�)m < eMT :Thus, we have the following estimate for both n = 0 and n � 1:k �Cnh;� (enh;� )� �Rnh;� (u)kh � aSh;� + bke0h;�kh: (2.19)Finally, by (A3) we get further estimatek �Cnh;� (enh;� )� �Rnh;� (u)kh � "2;h;� :Now we 
an 
on
lude from (A1) that there exists en+1h;� su
h that�Bn+1h;� (en+1h;� ) = �Cnh;� (enh;� )� �Rnh;� (u):Hen
e, from (2.19) we haveken+1h;� kh = k( �Bn+1h;� )�1( �Cnh;� (enh;� )� �Rnh;� (u))kh;�M(aSh;� + bke0h;�kh): (2.20)By noting (A3) we get ken+1h;� kh � "1;h;� ; (2.21)so the proposition is hold for j = n + 1. By indu
tion, for 8j 2 N0, there exists ejh;�satis�ng (2.13) and also (2.14). Therefore, we have proved the existen
e of the dis
retesolution. And from the pro
edure of the proof we 
an easily 
on
lude (from (2.20))that (2.12) holds for n 2 N . This 
ompletes the proof of Theorem 2.1. #Assume that h and � satisfy a relation (R) (su
h as the mesh size satis�es some
onditions). Now, let us give the de�nitions of 
ompatibility, stability and 
onvergen
eCompatibility: limh;�!0Sh;� = 0:Convergen
e: limh;�!0 supn2N0 kenh;�kh = 0.Stability: There exist h0; �0 > 0, su
h that, if h; � satisfy relation (R), and 0 <h � h0, 0 < � � �0, then s
heme (2.2) satis�es 
ondition (A1) and (A2), here the
onstants �;M; T don't depend on h; � .In [2℄ Guo Ben-yu dis
ussed the stability of the approximation to the general nonlin-ear equation, but his dis
ussions were all on �nite time interval. However, our de�nitionof stability is more 
on
erned with the 
ase of in�nite time intervalTheorem 2.2. Assume that the s
heme (2:2) satis�es the 
onditions of stability,
ompatibility and (A3) for 0 < h � h0, 0 < � � �0 (h; � satisfy (R)). Moreover, theinitial approximation satis�es the propertyke0h;�kh � "1;h;� ; and limh;�!0 ke0h;�kh = 0: (2.22)



402 H.J. WU AND R.H. LIThen the solution of (2:2) exists and satis�es the error estimatekenh;�kh �M(aSh;� + bke0h;�kh); (n 2 N); (2.23)where a; b de�ned by (2:10).As a 
onsequen
e, the approximation unh;� 
onverges to the solution u of (2.1).Proof. Obviously the de�nition of stability and (A3) imply the 
ondition (A).Next, from (2.22) we know the 
onditions of the theorem 2.1 are satis�ed, and hen
ethe estimate (2.23) holds. Finally from 
ompatibility and (2.22) we 
an dedu
e the
onvergen
e of the approximation solution.Remark 1. If "1;h;� ; "2;h;� do not depend on h; � then from 
ompatibility and (2.22)the 
ondition (A3) is satis�ed for suÆ
iently small h; � .Remark 2. Let V1 be a Bana
h spa
e with norm k � k1, qh: Vh ! V1 and r:V ! V1be 
ontinuous operators, satisfykqhk = supvh2Vh kqhvhk1kvhkh � C1; (h � h0); (2.24)limh!0 supt�0 kqhphu� ruk1 = 0; u 2 V: (2.25)Then from the de�nition of the 
onvergen
e we havelimh;�!0 supn2N0 kqhunh;� � ru(n�)k1 = 0: (2.26)Espe
ially, If Vh � V , limh!0 supt�0 kphu�uk1 = 0 (ph : V ! Vh is a proje
tion), k�kh = k�k,and let V1 = V; qh = I; r = I, thenlimh;�!0 supn2N0 kunh;� � u(n�)k = 0: (2.27)Remark 3. In the 
ase of variable time-step dis
retization, we 
an obtain theanalogous results by almost the same argument.3. Appli
ation to the FEMLarsson[5℄ 
onsidered the long-time error estimates of �nite-element approximationsof semilinear paraboli
 problems of the form:ut = �u+ f(u); in 
� (0;1);u = 0; on �
� (0;1);u(�; 0) = u0; in 
; (3.1)
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e of Computing Long-time Behaviour 403here 
 is a bounded domain in Rn (n � 3) with smooth boundary �
, u0 is smoothon �
 with zero boundary values, and f is a smooth fun
tion satisfyingf 0(s) > 0; (s 2 R): (3.2)Larsson obtained the long-time 
onvergen
e and error estimates of impli
it 
om-pletely dis
rete �nite-element method. In this se
tion, we obtain the similar resultsfrom theorem 2.2.The 
orresponding stationary problem is��u = f(u); in 
;u = 0; on �
: (3.3)For any given positive fun
tion w 2 C( �
), we 
onsider the eigenvalue problem withweight w: ��' = �w'; in 
;' = 0; on �
:let �1[w℄ denote its smallest eigenvalue, then �1[w℄ 
an be 
hara
terized as�1[w℄ = inf�2H10 k 5 �k2(w�;�) ; (3.4)and that �1[w℄ > 0. Here k � k and (�; �) denote the usual norm and inner produ
t inL2(
) and H10 (
) is the subspa
e of the standard Sobolev spa
e H1(
) satisfying thehomogeneous Diri
hlet boundary 
ondition.We will assume that (3.3) has a 
lassi
al solution u, whi
h is linearized stable inthe sense that, for some real number Æ > 0,1�1[f 0(u)℄ � Æ < 1: (3.5)Note that �1[f 0(u)℄ is well de�ned be
ause of (3.2). We also assume that u0 2 H2(
)\H10 (
)is su
h that (3.1) has a global 
lassi
al solution u whi
h satis�es u(t) ! u inL2(
) as t!1 andku(�; t)kL1 � B1; 0 � t <1; (3.6)ku(t)kH2 + kut(t)kH2 + kutt(t)kH2 � B2; 0 < t <1: (3.7)In the dis
rete problem to be des
ribed below we repla
e the fun
tion f by a smoothfun
tion ~f , whi
h satis�es~f(s) = f(s); jsj � B1 + 1; (3.8)j ~f(s)j; j ~f 0(s)j; j ~f 00(s)j � K; 8s 2 R; (3.9)



404 H.J. WU AND R.H. LIwhere K depends on B1, of 
ourse. Obviously, this repla
ement does not a�e
t theexa
t solution of (3.1).Let V = H10 (
); Vh � V be the �nite-element spa
e, ph be the Ritz proje
tion fromV to Vh satisfying (5phu;5vh) = (5u;5vh); 8vh 2 Vh; (3.10)kphu� uk � Ch2kukH2 ; 8u 2 H2(
) \H10 (
): (3.11)Let qh the L2(
) proje
tion from V to Vh satisfying(qhu; vh) = (u; vh);8vh 2 Vh: (3.12)Now the impli
it 
ompletely dis
rete �nite-element method for (3.1) with the timestep-size � reads as follows. Find unh;� 2 Vh su
h that�un+1h;� � unh;�� ; ��+(5un+1h;� ;5�) = ( ~f(un+1h;� ); �); 8� 2 Vh; n 2 N0;u0h;� = u0;h: (3.13)Let Ah be the linear operator de�ned on Vh as follows:(Ahuh; vh) = (5uh;5vh); 8uh; vh 2 Vh: (3.14)Set Bh;� (vh) = vh � �Ahvh � �qh ~f(vh); 8vh 2 Vh; (3.15)Ch;� (vh) = vh;8vh 2 Vh: (3.16)Then we 
an rewrite (3.13) asBh;� (un+1h;� ) = Ch;� (unh;� ); n 2 N0:u0h;� = u0;h: (3.17)Theorem 3.1.[5℄ Let f be a �xed smooth fun
tion satisfying (3:2). For 8B1; B2 > 0,and 0 < Æ < 1, there are C0 > 0 and h0 > 0, �0 > 0 su
h that whenever(H1) u is a solution of (3:3) satisfying (3:5);(H2) u0 2 H2(
) \H10 (
) su
h that u(t)! u in L2(
) as t!1;(H3) u satis�es (3:6), (3:7);(H4) the initial approximation u0;h is 
hosen su
h as thatku0;h � u0k � Ch2ku0kH2 ; h < h0: (3.18)
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e of Computing Long-time Behaviour 405Then, for 0 < h � h0, 0 < � � �0, the solution unh;� of dis
rete problem (3:17) existsand satis�es kunh;� � u(n�)k � C0(� + h2); n 2 N0: (3.19)Lemma 3.2.[5℄ There is a 
onstant C su
h that��� 1�1[w1℄ � 1�1[w2℄ ��� � Ckw1 � w2k (3.20)for any pair of weight fun
tions w1 and w2.Now we are going to prove the the 
ompatibility and stability of s
heme (3.17), andthen give the proof of Theorem 3.1.Lemma 3.3. Under the assumptions of Theorem 3:1, the s
heme (3:17) is 
ompat-able and Sh;� � C(� + h2); (3.21)here C is a positive 
onstant.Proof. Form (3.15){(3.17)Rnh;� (u) =(Bh;� (phu((n+ 1)�)) � Ch;� (phu(n�)))�=ph(u((n+ 1)�)� u(n�))� �Ahphu((n+ 1)�)� qh ~f(phu((n+ 1)�)):From (3.1), for 8vh 2 Vh(ut; vh) + (5u;5vh)� ( ~f(u); vh) = 0:Hen
e, by (3.11) and (H3) we have(Rnh;� (u); vh) =�ph(u((n+ 1)�) � u(n�))� ; vh) + (5u((n+ 1)�);5vh�� ( ~f(phu((n+ 1)�)); vh)=�ph(u((n+ 1)�) � u(n�))� � ut((n+ 1)�); vh�+ ( ~f(u((n+ 1)�)) � ~f(phu((n+ 1)�)); vh)��


ph�(u((n+ 1)�)� u(n�))� � ut((n+ 1)�)�


+ k(ph � I)ut((n+ 1)�)k+Kk(ph � I)u((n+ 1)�)kkvhk��


ph Z (n+1)�n� s� n�� utt(s)ds


+ C1h2(kut((n+ 1)�)kH2+ ku((n+ 1)�)kH2 )kvhk � C(� + h2)kvhk;where C is a positive 
onstant depending on kukH2 ; kuttk; kutkH2 . Taking vh = Rnh;� (u),we get kRnh;� (u)k � C(� + h2):



406 H.J. WU AND R.H. LIThis proves the lemma.Lemma 3.4. Let wn = Z 10 ~f 0(phu(n�) + svh)ds:Then there exist "1; T; h0; 0 < Æ1 < 1 su
h that, for h < h0, n� > T , kvhk � "1,1�1[wn℄ � Æ1: (3.22)Proof. By Lemma 3.2,1�1[wn℄ � 1�1[f 0(u)℄ + Ckwn � f 0(u)k= 1�1[f 0(u)℄ + Ckwn � ~f 0(u)k�Æ + C(kwn � ~f 0(phu(n�))k + k ~f 0(phu(n�))� ~f 0(u(n�))k+ k ~f 0(u(n�)) � ~f 0(u)k)�Æ + C�


 Z 10 ( ~f 0(phu(n�) + svh)� ~f 0(phu(n�)))ds


+ k ~f 0(phu(n�))� ~f 0(u(n�))k+ k ~f 0(u(n�)) � ~f 0(u)k�Æ + C�


 Z 10 ~f 00(�1)svhds


+ k ~f 00(�2)(ph � I)u(n�)k+ k ~f 00(�3)(u(n�)� u)k�:From (3.9),(3.11)and (H3) we have1�1[wn℄ � Æ + �C(kvhk+ h2 + ku(n�)� uk):Note that Æ < 1 and (H2), then (3.22) 
an be dedu
ed from above inquality.From (3.15) and (3.16) we have, for 8vh 2 Vh�Bnh;� (vh) = vh � �Ahvh � �qh( ~f(phu(n�) + vh)� ~f(phu(n�))); (3.23)�Cnh;� (vh) = vh: (3.24)Lemma 3.5. S
heme (3:17) is stable under the assumptions of Theorem 3:1.Proof. Let Dh = I � �Ah, then from (3.14) we 
an 
on
lude easily that Dh has aninverse and kD�1h k < 1, (� > 0). Obviously,�Bnh;� (vh) = Dhvh � �qh( ~f(phu(n�) + vh)� ~f(phu(n�))):From (3.9), ~f satis�es global Lips
hitz 
ondition, so there is �0 su
h that �Bnh;� has aninverse for 0 < � � �0.From (3.23),( �Bnh;� (vh); vh) = kvhk2 + � jvhj21 � �( ~f 0(�)vh; vh) � kvhk2 � �Kkvhk2;
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e k �Bnh;� (vh)k � (1� �K)kvhk: (3.25)Let �0 < 12K , then for � � �0 we �ndk �Bnh;� (vh)k � 12kvhk:Hen
e, with 8vh 2 Vh, 0 < � � �0 we havek( �Bnh;� )�1(vh)k � 2kvhk: (3.26)Taking "2;h;� =1, then the 
ondition (A1) is satis�ed for 0 < � � �0.If the assumptions of Lemma 3.4 are satis�ed, then from (3.4) we have(qh(wnvh); vh) = (wnvh; vh) � jvhj21�1[wn℄ � Æ1jvhj21; (3.27)hen
e for 0 < h � h0, kvhk � "1, n� � T ,( �Bnh;� (vh); vh) = kvhk2 + � jvhj21 � �(qh(wnvh); vh) > kvhk2 + �(1� Æ1)jvhj21;thus, there exists �1 su
h that( �Bnh;� (vh); vh) � (1 + �1�)kvhk2:Taking � = �11 + �1�0 , then for 0 < h � h0, kvhk � "1, n� � T , we havekvhk � 11 + �1� k �Bnh;� (vh)k=�1� �1�1 + �1� �k �Bnh;� (vh)k � (1� ��)k �Bnh;� (vh)k: (3.28)On the other hand, from (3.24) k �Cnh;� (vh)k = kvhk: (3.29)The inequality (3.25) shows thatkvhk � 11� �K k �Bnh;� (vh)k =�1 + K�1�K� �k �Bnh;� (vh)k�(1 + 2K�)k �Bnh;� (vh)k: (3.30)In a words, if we take "1;h;� = "1, M = max(2; 2K), and �n� = 1 +M� for n� � T ;while �n� = 1 � �� for n� > T , then from (3.26), (3.28){(3.30), we see the 
onditions



408 H.J. WU AND R.H. LI(A2)1 and (A2)2 satis�ed. Thus s
heme (3.17) is stable. This 
ompletes the proof ofLamma 3.5.Proof of Theorem 3.1. From (H2); (H4) and (3:11) we haveke0h;�k = ku0h;� � phu0k = ku0;h � phu0k � Ch2ku0kH2 : (3.31)Let h0 be small enough, then for 0 < h � h0, we haveke0h;�k � "1;h;� ; limh!0 ke0h;�k = 0:From Lemma 3:3 and 3:5, s
heme (3:17) is stable and 
ompatable. Moreover, sin
e"1;h;� , "2;h;� do not depend on h; � , so Theorem 2:2 holds by Remark 1. Hen
e for0 < h � h0, 0 < � � �0 and n � 1, the approximations unh;� exist and satisfykenh;�k �M(aSh;� + bke0h;�k): (3.32)From (2:10) a � 1� + eM(T+�0) � 1M :By using (3:21), (3:31) to evalute the right hand of (3:32), then we 
an show that thereexists 
onstant C su
h that kenh;�k � C(� + h2);or kunh;� � phu(n�)k � C(� + h2): (3.33)Finally, from (3:11) and (H3) we getkunh;� � u(n�)k �kunh;� � phu(n�)k+ k(I � ph)u(n�)k�C(� + h2) + Ch2ku(n�)kH2 :This 
ompletes the proof of Theorem 3:1.4. Appli
ation to the FDMSanz-Serna and Stuart[6℄ 
onsidered the di�eren
e method for the rea
tion-di�usionproblem of the form: ut = uxx + f(u); 0 < x < 1; t > 0;u(0; t) = u(1; t) = 0; t > 0; (4.1)u(x; 0) = u0(x); 0 < x < 1:



The Stability and Convergen
e of Computing Long-time Behaviour 409The asso
iate expli
it �nite di�eren
e s
heme is as follows:un+1j � unj� = unj+1 � 2unj + unj�1h2 + f(unj ); j = 1; � � � ; J � 1; n 2 N0;un0 = unJ = 0; n 2 N; (4.2)u0j = u0(jh); j = 0; � � � ; J;where unj denotes the approximation to u(xj ; tn), xj = jh; j = 0; � � � ; J; tn = n� .Let Vh = fvjv = (v1; � � � ; vJ�1)T g. De�ne the norms of v su
h askvkh = � J�1Xj=1 hv2j�1=2 (4.3)and kvk1 = max1�j�J�1 jvj j: (4.4)Obviously kvk1 � 1phkvkh: (4.5)Let V = H10 ([0; 1℄), ph be the operator from V to Vh:phu = (u(h); u(2h); � � � ; u((J � 1)h))T : (4.6)We are going to state the assumptions and main theorem given by Sanz-Serna andStuart.Assumptions[6℄:(H1) f(�) 2 C2((a; b); R) for some interval (a; b) � R.(H2) Equation (1.1) have a solution u for whi
h the derivatives uxxxx and utt existand are uniformly bounded for 0 � x � 1, 0 � t � 1. Furthermore, there exists Æ > 0su
h that a+ Æ � u(x; t) � b� Æ; 8(x; t) 2 [0; 1℄ � [0;1):(H3) As t!1, u approa
hes an equilibrium �u. More pre
isely, ku(�; t)� �u(�)k1 !0, where �u satis�es �uxx + f(�u) = 0; 0 < x < 1;�u(0) = �u(1) = 0: (4.7)(H4) �u is an asymptoti
ally stable equilibrium in the sen
e that�max = max�2H10 Z 10 (�(�x)2 + f 0(�u(x))�2)dxZ 10 �2dx < 0: (4.8)



410 H.J. WU AND R.H. LINote that �max is the largest eigenvalue of the problem�� = �xx + f 0(�u)�; 0 < x < 1�(0) = �(1) = 0: (4.9)(H5) The grids are re�ned in su
h a way that�=h2 � � < 1=2(this is relation(R)): (4.10)Theorem 4.1.[6℄ Under the assumptions above, there exist 
onstants h0 and C,depending only upon f; � and u, su
h that, for 0 < h � h0, the numeri
al solutionunh;� = (un1 ; � � � ; unJ�1)T exists for all positive integers n and satis�es the error boundkunh;� � phu(n�)kh � C(� + h2); n 2 N0: (4.11)Now we are going to prove Theorem 4.1 by the general frame established in x2.For vh 2 Vh, setBh;� (vh) = vh; (4.12)Ch;� (vh) = � � � � ; vj + �h2 (vj+1 � 2vj + vj�1) + �f(vj); � � � �T :(v0 = vJ = 0) (4.13)Then the s
heme (4.2) 
an be rewritten asBh;� (un+1h;� ) = Ch;� (unh;� ); n � 0:u0h;� = phu0 (4.14)Lemma 4.2. Under the assumptions above, s
heme (4:14) is 
ompatable.Proof. Set w = Rnh;� (u). Then from (2.3) and (2.4) we havew = [Bh;� (phu((n+ 1)�))� Ch;� (phu(n�))℄=�:From (4.6),(4.12) and (4.13),wj =u((n+ 1)�; jh) � u(n�; jh)� � u(n�; (j + 1)h)� 2u(n�; jh) + u(n�; (j � 1)h)h2� f(u(n�; jh))=ut(n�; jh) + utt(�1; jh)2 � � uxx(n�; jh)� h224 (uxxxx(n�; �2) + uxxxx(n�; �3))� f(u(n�; jh)):



The Stability and Convergen
e of Computing Long-time Behaviour 411From (4.1) and (H2), there exists a 
onstant C, su
h thatjwj j =���utt(�1; jh)2 � � h224(uxxxx(n�; �2) + uxxxx(n�; �3))����C(� + h2); 1 � j � J � 1; (4.15)hen
e kRnh;� (u)kh = kwkh � kwk1 � C(� + h2): (4.16)Thus, s
heme (4.14)is 
ompatable. Furthermore,Sh;� � C(� + h2): (4.17)This 
ompletes the proof of Lemma 4.2.From (4.12) and (4.13), for vh 2 Vh, it is easy to see�Bnh;� (vh) =vh; (4.18)�Cnh;� (vh) =� � � � ; vj + �h2 (vj+1 � 2vj + vj�1)+ �(f(u(n�; jh) + vj)� f(u(n�; jh))); � � � �T : (4.19)Lemma 4.3. Under the assumptions above, s
heme (4:14) is stable.Proof. With "2;h;� = +1, M � 1, then from (4.18) the 
ondition (A1) holds for8h; � .Let vh = (v1; � � � ; vJ�1)T 2 Vh. From (4.19) we 
on
lude that[ �Cnh;� (vh)℄j =vj + �h2 (vj+1 � 2vj + vj�1) + �f 0(�u(jh))vj+ �f 00(�nj )(u(n�; jh) � �u(jh))Vj + �f 00(�nj )v2j =2;where �nj = snj �u(jh) + (1� snj )u(n�; jh);�nj = u(n�; jh) + rnj vjand 0 � snj � 1, 0 � rnj � 1. By using (4.5), the norm of �Cnh;� (vh) satis�esk �Cnh;� (vh)kh � kI + �Akhkvhkh + �K1(k(u(n�; jh) � �u(jh)k1 + kvhkh2ph kvhkh); (4.20)



412 H.J. WU AND R.H. LIwhere K1 = supa+Æ�x�b�Æ jf 00(x)j,A = 0BBBB� �1 h�2h�2 �2 h�2. . . . . . . . .h�2 �J�11CCCCA (4.21)and �j = � 2h2 +f 0(�u(jh)). From the known results we 
an 
on
lude that, as h! 0, thelargest eigenvalue of A 
onverges to the eigenvalue �max de�ned in assumption (H4)(see, for example, [4℄). Furthermore, the smallest eigenvalue satis�es�� � � 4h2 �K2;where K2 = maxff 0(�u(x)), 0 < x < 1g. Sin
e A is symmetri
, hen
e, by (H5) we 
anobtain kI + �Akh � 1� ��; � > 0 (4.22)for h; � suÆ
iently small. From (H3), there exists T > 0, su
h that for n� > TK1ku(n�; jh) � �u(jh)k1 � �=4: (4.23)Let "1;h;� = �ph2K1 , � = �2 . From (4.20), (4.22) and (4.23), there exist h0; �0, su
h thatfor 0 < h � h0, �h2 � �, n� > T , kvhkh � "1;h;� we havek �Cnh;� (vh)kh � (1� ��)kvhkh: (4.24)From (4.20), (4.22) and the assumption, there exists M > 0 su
h that, for 0 < h � h0,�h2 � �, n� � T , kvhkh � "1;h;� , we havek �Cnh;� (vh)kh � (1 +M�)kvhkh: (4.25)Next, by formula (4.18), we obtaink �Bnh;� (vh)kh = kvhkh: (4.26)Thus, if we take �n� = 1+M� for n� � T ; �n� = 1��� for n� � T , then 
ondition (A2)1and (A2)2 hold for 0 < h � h0, �h2 � �. This 
ompletes the proof of Lemma (4.3).Proof of Theorem 4.1. Sin
e ke0h;�kh = 0, Sh;� � C1h2 (from (4:17)), we knowthe 
ondition (A3) holds for suÆ
iently small h0 and �0. Furthermore, from Lemma4:2 and 4:3, the 
onditions in Theorem 2:2 are satis�ed. This 
ompletes the proof ofTheorem 4:1 by using (4:17).



The Stability and Convergen
e of Computing Long-time Behaviour 4135. An ExampleConsider the semilinear paraboli
 problems as followsut = uxx � u2 + g(t; x); 0 < x < 1; t > 0;u(0; t) = u(1; t) = 0; t > 0; (5.1)u(x; 0) = 0; 0 < x < 1;where g(t; x) = sin(2�x)(
os t+ 4�2 sin t+ sin t sin(2�x)): (5.2)The solution of (5.1) is u(t; x) = sin t sin(2�x): (5.3)We 
onsider the forward Euler method with 
entral di�eren
es in spa
e:un+1j � unj� = unj+1 � 2unj + unj�1h2 � �(unj )2 + �g(n�; jh); j = 1; � � � ; J � 1; n 2 N0;un0 = unJ = 0; n 2 N; (5.4)u0j = 0; j = 0; � � � ; J;where unj denotes the approximation to u(n�; jh), Jh = 1.Sin
e the solution of (5.1) does not 
onverge as t!1, it 
an't in
lude in the framesof [3℄, [5℄ and [6℄. But, by using the frame of x2, we 
an prove: For suÆ
iently small hand � satisfying �h2 � 12, the s
heme (5.4) possesses 
onvergen
e uniformly in time.Theorem 5.1. There exist 
onstants h0 and C, su
h that, for 0 < h � h0, �h2 � 12 ,the numeri
al solution unh;� = (un1 ; � � � ; unJ�1)T exists for all positive integers n andsatis�es the error boundkunh;� � phu(n�)kh � C(� + h2); n 2 N0; (5.5)where k � kh and ph are de�ned by (4:3) and (4:6) respe
tively.The proof of Theorem 5.1 is analogous as that of Theorem 4.1.For vh = (v1; � � � ; vJ�1)T 2 Vh, we takeBh;� (vh) = vh; (5.6)Ch;� (vh) = � � � � ; vj + �h2 (vj+1 � 2vj + vj�1)� �v2j ; � � � �T ; (5.7)gnh;� = (g(n�; h); � � � ; g(n�; (J � 1)h))T ; (5.8)then we 
an rewrite s
heme (5.4) asBh;� (un+1h;� ) = Ch;� (unh;� ) + �gnh;� ; n 2 N0;



414 H.J. WU AND R.H. LIu0h;� = 0: (5.9)Lemma 5.2. S
heme (5:9) is 
ompatable, and haveSh;� � C(� + h2); (5.10)where C is a 
onstant.Proof. We ommit the proof be
ause it is straightward.From (5.6) and (5.7) we have�Bnh;� (vh) = vh; (5.11)�Cnh;� (vh) = � � � � ; vj + �h2 (vj+1 � 2vj + vj�1�� 2� sin(n�) sin(2j�h)vj � �v2j ; � � � �T :(5.12)Lemma 5.3. If �h2 � 12 , then the s
heme (5:9) is stable.Proof. Let A = 1h2 0BBBB��2 11 �2 1. . . . . . . . .1 �21CCCCAThe eigenvalues of A are �4 sin2(k�h=2)h2 , (k = 1; � � � ; J�1) (see [1℄), hen
e, from (5.12)we have k �Cnh;� (vh)kh � (1� ��h)kvhkh + 2�kvhkh + �phkvhk2h; (5.13)where �h = �2 sin2(�h=2)(�h=2)2 . Sin
e sinx � x � 16x3, (x � 0), there exists h0 su
h that,�h � 9 for 0 < h � h0. Let "1;h;� = ph2 , then for 0 < h � h0 and kvhkh < "1;h;� , wehave k �Cnh;� (vh)kh � (1� 9� + 2� + �=2)kvhkh � (1� 6�)kvhkh:Note that (5.11), and take � = 6, M = 1, T = 0, �n� = 1 � �� , then the 
onditions(A2)1 and (A2)2 hold for 0 < h � h0, �h2 � 12. This 
ompletes the proof of lemma 5.3.Proof of Theorem 5.1. From (5:10) and ke0h;�kh = 0 we 
an 
on
lude that, the
ondition (A3) holds for suÆ
iently small h0 and 0 < h � h0, �h2 � 12 . On the otherhand, from lemma 5:2 and 5:3 we see Theorem 2:2 holds. Then from (5:10) we 
andedu
e Theorem 5:1.The following numeri
al results veri�ed the long-time 
onvergen
e of s
heme (5.4)in a sense.



The Stability and Convergen
e of Computing Long-time Behaviour 415time t error (L2 norm) error (maximum norm)10.00000 5.6708982E-04 8.3100796E-0420.00000 9.1236364E-04 1.3898611E-0330.00000 9.6483884E-04 1.4952421E-0340.00000 7.0018758E-04 1.0771155E-0350.00000 2.1183636E-04 3.1808019E-0460.00000 3.3865144E-04 4.8586726E-0470.00000 7.8310986E-04 1.1746287E-0380.00000 9.8119921E-04 1.5131235E-0390.00000 8.5874501E-04 1.3295412E-03100.0000 4.5624792E-04 6.9254637E-045000.000 9.7848591E-04 1.5147328E-035010.000 7.5847126E-04 1.1598468E-035020.000 2.9577641E-04 4.3708086E-045030.000 2.5466483E-04 3.6710501E-045040.000 7.2789006E-04 1.0963678E-035050.000 9.7230350E-04 1.5004277E-035060.000 8.9846307E-04 1.3860464E-035070.000 5.3234241E-04 8.0072880E-045080.000 2.2076156E-06 3.6954880E-065090.000 5.2837259E-04 7.8123808E-045100.000 8.9519034E-04 1.3697147E-0310000.00 1.7128926E-04 2.4917722E-0410010.00 6.7269686E-04 1.0180473E-0310020.00 9.6278504E-04 1.4868975E-0310030.00 9.3699095E-04 1.4405847E-0310040.00 6.0683367E-04 9.0640783E-0410050.00 8.7746092E-05 1.2588128E-0410060.00 4.5683002E-04 6.7991018E-0410070.00 8.6307735E-04 1.3242960E-0310080.00 9.9076249E-04 1.5313625E-0310090.00 7.9297303E-04 1.2033582E-0310100.00 3.4287336E-04 4.9999356E-04Here h = 149 , � = 0:0001.Now let us explain the fa
t that the numeri
al solution has long-time 
onvergen
ein another way. In fa
t, we 
an prove, in a sense, s
heme (5.4) has a solution with



416 H.J. WU AND R.H. LIperiod 2� (the same as the period of the 
ontinuous solution).Theorem 5.4. There exist h0, C > 0, su
h that, for �h2 � 12 and � = 2�m (m 2 N),s
heme (5:9) has a solution �unh;� with period 2�, i.e.�u0h;� = �umh;� ; (5.14)and having the following estimate:k�unh;� � phu(n�)kh � C(� + h2); n 2 N0: (5.15)Remark. Sin
e gnh;� = gn+mh;� , (n � 0), therefore (5.14) implies �unh;� = �un+mh;� .Proof. From x2, ekh;� = ukh;� � phu(k�) satis�es the following equationek+1h;� = �Ckh;� (ekh;� ) + �Rkh;� (u): (5.16)Sin
e phu(n�) = (� � � ; sin(n�) sin(2j�h); � � �)T has period 2�, it is suÆ
ient to proveequation (5.16) has a solution of period 2� satisfying (5.15). LetDk(vh) = �Ckh;� (vh) + �Rkh;� (u); (5.17)then one 
an transform (5.16) intoek+1h;� = Dk(ekh;� ): (5.18)Let Z = fvhjvh 2 Vh, kvhkh � "1;h;�g. Then for 8vh 2 Z we havekDk(vh)kh �(1� ��)"1;h;� + �Sh;�="1;h;� � ��("1;h;� � Sh;�� ) � "1;h;� ;hen
e, Dk is a operator from Z to Z.For 8v1h; v2h 2 Z, from (5.12) and (5.17) we 
on
lude thatkDk(v1h)�Dk(v2h)kh �kI + �Akkv1h � v2hkh + 2�kv1h � v2hkh + �kph(v21h � v22h)kh�(1� ��h + 2� + 2�ph"1;h;� )kv1h � v2hkh:Let h0 be suÆ
iently small su
h that lemma 5.3 holds. Then from the proof of thelemma we 
on
lude thatkDk(v1h)�Dk(v2h)kh �(1 � 9� + 2� + �)kv1h � v2hkh=(1 � ��)kv1h � v2hkh: (5.19)



The Stability and Convergen
e of Computing Long-time Behaviour 417De�ne T k by T k = DkDk�1 � � �D0; (k � 0): (5.20)Obviously T k is a stri
t 
ontra
tion in Z. Moreover, for 8v1h, v2h 2 Z we havekT k(v1h)� T k(v2h)kh � (1� ��)k+1kv1h � v2hkh: (5.21)From (5.18) and (5.20), ek+1h;� = T k(e0h;� ); (k � 0): (5.22)Sin
e Tm�1 is a stri
t 
ontra
tion in Z, it has a �xed point. So there exists �ekh;� 2 Zsatis�es (5.22) and �e0h;� = �emh;� ; (this implies �u0h;� = �umh;� ); (5.23)hen
e �ekh;� is a solution of period 2�.From (5.21) and (5.22), for 8e0h;� 2 Z, enh;� de�ned by (5.22) satis�esk�enh;� � enh;�kh = kT n�1(�enh;�) � T n�1(enh;� )kh � 2(1 � ��)n"1;h;� : (5.24)If taking e0h;� = 0, then from theorem 5.1 we getkenh;�kh � C1(� + h2); n � 0: (5.25)From (5.24), there exists N > 0 su
h that, for n > N ,k�enh;� � enh;�kh � C1(� + h2);hen
e, for n > N , we havek�enh;�kh � C(� + h2); (C = 2C1):By using (5.23) we 
on
lude thatk�enh;�kh � C(� + h2); 8n � 0 (5.26)This is (5.15). Thus we 
omplete the proof of theorem 5.4.In fa
t, from the proof of theorem 5.4 we 
an also 
on
lude that, this periodi
solution is asymptoti
ally stable (see (5.24)).By theorem 5.4, we 
an understand easily why the numeri
al solution has long-time
onvergen
e.
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