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Abstract

The object of this paper is to establish the relation between stability and con-
vergence of the numerical methods for the evolution equation u; — Au — f(u) = g(t)
on Banach space V', and to prove the long-time error estimates for the approxi-
mation solutions. At first, we give the definition of long-time stability, and then
prove the fact that stability and compatibility imply the uniform convergence on
the infinite time region. Thus, we establish a general frame in order to prove the
long-time convergence. This frame includes finite element methods and finite dif-
ference methods of the evolution equations, especially the semilinear parabolic and
hyperbolic partial differential equations. As applications of these results we prove
the estimates obtained by Larsson [5] and Sanz-serna and Stuart [6].

Key words: Stability, Compatibility, Covergence, Reaction-diffusion equation, Long-

time error estimates.

1. Introduction

In 1978, Hoff?®! considered the long-time behavior computation of nonlinear reaction-
diffusion equations, which is supposed to have an invariant region S, i.e. any local
solution arising from a point in S is constrained to lie in. Hoff constructed a family
of finit difference schemes for the equations. Under some assumptions he proved that
any trajectory starting in S will converge to an asymptotically stable equilibrium, and
S is also an invariant region of the difference equations. So Hoff obtained error es-
timates uniform in time for the difference equations. In 1989, Larssonl® studied the
long-time error estimates of finite-element approximations of reaction-diffusion equa-
tion (below dimension 3). The distinction between [5] and [3] is that Larsson didn’t
assume the equation has a invariant region but has an asymptotically stable hyperbolic

equilibrium, and so the trajectories constrict to some neighbourhood of the equilibrium.
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However, by the standard finite time error estimates one can show that the discretiza-
tion solution will enter this neighbourhood. In 1992, Sanz-Serna and Stuartl® obtained
an error estimates uniform in time for explicit difference scheme of one-dimensional
reaction-diffusion equation by using analogous technique of [5]. Note that all of above
results are obtained under the condition that the continuous trajectories converge to an
asymptotically stable, hyperbolic equilibrium and they are difficult to be generalized.
In this paper, we’ll establish the relation between stability and convergence, and
then obtain a sufficient condition of long-time convergence of discrete methods for more
general equation. Under such a condition we get an error estimate on the infinite time
region. Therefore, we provide an abstract frame to prove convergence. This method
dosen’t assume the existence of an equilibrium. It can be used to both the finite element
methods and the difference methods, the explicit schemes and the implicit schemes.
The paper is outlined as follows: In 2, we give definitions of stability, compatibility
and covergence of discrete schemes on the infinite time region. Especially, we obtain a
theorem which states that the stability and compatibility imply convergence. In 3 and
4, we apply this theorem to the problem in [5] and obtain the similar results; to the
problem in [6] and obtain the same results. In 5 we give an example whose continuous
solution is periodical in time. It can’t include in the frame of [3], [5] or [6]. But we can

prove the long-time convergence of an explicit difference scheme from this theorem.

2. The Relation Between Stability and Convergence

Let V' be a Banach space with norm || - ||. We consider the evolutionary equation

such as:

up — Au — f(u) = g(t),
u(0) = uo, (2.1)

here A and f are operators on a dense subset of V to V. Let u(t) € V be a solution of
(2.1).

Let Vj, be a finite dimensional Banach space with norm | - ||5. It may or may not
be the subspace of V. Let py, be a operator from V' to V. We denote the discretization
of (2.1) as follows:

Bh,T(u;zl,tl) = Ch,T(uZ,T) + 7'9}7,77 n=01,2---

“?m = ug p, (2.2)

where gj ., ugp € Vi, By, and Cj ; are operators on Vj, h is space step-size and 7 is

time step-size, u} _ is the approximation to wu(t,)(t, = n7).
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Let

L (uh ) = (B (up ') = Chr(uh )/, (2.3)

hr(U) = Lz (pru(nT)) = gh - (2.4)
N:{1727}7 NU:{O}UN7 (25)
Shr = sup ||Rp - (u)]|n, (2.6)

n€eNg

GZ,T = UZ,T - phu(nT)7 (27)
By, (vn) = B (pru(nt) +va) — Bhr (pru(nt)), (2.8)
Chr(vn) = Chr(pru(nT) + vp) — Cpr(pru(nt)). (2.9)

Condition (A). There exist positive numbers 07, €1, 7, €24+, p. M, T, such that,
for any n € N,
(A1) B! has an inverse on {wp|wy € Vj, |wp|n < eapr}, and

1B} )~ (wp)lln < M|wplln,  Ywp € Vi
(A2); For |vp||n < €1,n,r we have ||C',’Z’T(vh)”h < 9?|\B,’1‘7T(vh)||h and
ICh - (w)lln < Mllon|n;

(A2)g If nT < T, then 07 <1+ Mr7; if nT > T, then 07 < 1 — p7;
(43) e1nr > M(aShs +blle) 1), €207 > aShz + b€y I,

where L M@y .
a=;+T,b:Me . (2.10)
We have
Theorem 2.1. Assume that scheme (2.2) satisfies condition (A) for a pair of h, T,
and
leh,ln < evnrs (2.11)

Then the solution of (2.2) exists and satisfies
leh - lln < M(aSpr +bllej -lln),  (n € N), (2.12)

where a and b are defined by (2.10).
Proof. From (2.3)—(2.9), we have

TR (1) = (L (u,) ~ Lo lonuir) = B €2 — O (el,)
for any 5 € Ny and so

B Y e)t) = C) (e),) — TR}, (u). (2.13)

T
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Now, we are going to prove the following proposition by mathematical induction: there

exists e;”(j > 0) satisfing (2.13) and
Hei,THh < e1nr, (4 € No). (2.14)

From (2.11) we know the proposition is correct for j = 0.
Assume that the proposition are correct for j < n, i.e. there exists ei ,(0<j<n)

satisfing (2.13) and
lehrlln < €1nr, (0< 5 < ). (2.15)

Now, we are going to prove the proposition for j = n+ 1. At first, we give the estimate
on the norm of C’}Z,T(ezﬁ) — 7R}, (u).
If n = 0,then from (A2); and (2.10) we have

ICh.+(eh,r) = TR - (W)lln < 7Shr + |Ch - (eh Iy < aSpr + blleh - ln- (2.16)
For n > 1, then from (A2); and (2.15), we have
ICh o (b lIn < OLIBS (€5, )y (1< j < m). (2.17)
Moreover, from (2.13),
1575 Dln < 1Ch (e ) n+78hr (05 <m—1), (2.18)
Combining (2.17) and (2.18) we get

ICh - (eh ;) — TR (u)lln <TSh .+ 07(IBE (eh ) In
<78 + 072 (1CH (eh ) ln +7Spr) < -
SO0 e 0208 + 07 01 CO () )

If nT < T,then from (A2)s we have

1+0)+ 4020, <I+(1+M7)+---+ (1+ M7)"

(1+Mr)"*! —1 < eM(T+7) —17
M - M

0r 0L <(1+ M) < M7,

T

If nt > T, let m = [T/7], then from (A2),,

) eM(T—|—7')_1
1+9¢+---+9¢---97S1+(1fp7)+---+(1—m)"*m(T)

1.1 M(T+7) _



The Stability and Convergence of Computing Long-time Behaviour 401
or - 0L <(1+ M7)™ < ML
Thus, we have the following estimate for both n = 0 and n > 1:
ICp (€)= TR (w)ln < aShr + bl I (2.19)
Finally, by (A3) we get further estimate
ICR (e ) = TR ()0 < e
Now we can conclude from (A1) that there exists ez’tl such that
B ehth) = O (ef,) — mRY ().
Hence, from (2.19) we have
el = 1B (CR (el r) = TR ()llny € M(aShys +blleh ). (2:20)

By noting (A3) we get

leh T I < et (2.21)

so the proposition is hold for j = n 4+ 1. By induction, for Vj € Ny, there exists egm
satisfing (2.13) and also (2.14). Therefore, we have proved the existence of the discrete
solution. And from the procedure of the proof we can easily conclude (from (2.20))
that (2.12) holds for n € N. This completes the proof of Theorem 2.1.  #

Assume that h and 7 satisfy a relation (R) (such as the mesh size satisfies some
conditions). Now, let us give the definitions of compatibility, stability and convergence

Compatibility: lim Sj . = 0.

h,7—0

Convergence: lim sup e} ||n = 0.
h,T*)OneNO ’

Stability: There exist hg, 79 > 0, such that, if h, 7 satisfy relation (R), and 0 <
h < hg, 0 < 7 < 79, then scheme (2.2) satisfies condition (A1) and (A2), here the
constants p, M, T don’t depend on h, .

In [2] Guo Ben-yu discussed the stability of the approximation to the general nonlin-
ear equation, but his discussions were all on finite time interval. However, our definition
of stability is more concerned with the case of infinite time interval

Theorem 2.2. Assume that the scheme (2.2) satisfies the conditions of stability,
compatibility and (A3) for 0 < h < hy, 0 < 7 < 79 (h,7 satisfy (R)). Moreover, the

initial approximation satisfies the property

leh,slln < etz and Jim leh,lln = 0. (2:22)
—0

)
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Then the solution of (2.2) exists and satisfies the error estimate
leh,rlln < M(aSp, +bleh - lln). (n € N), (2.23)

where a,b defined by (2.10).

As a consequence, the approximation uZ’T converges to the solution u of (2.1).

Proof. Obviously the definition of stability and (A3) imply the condition (A).
Next, from (2.22) we know the conditions of the theorem 2.1 are satisfied, and hence
the estimate (2.23) holds. Finally from compatibility and (2.22) we can deduce the
convergence of the approximation solution.

Remark 1. If &y 5, ;, €2, do not depend on h, 7 then from compatibility and (2.22)
the condition (A3) is satisfied for sufficiently small h, 7.

Remark 2. Let V; be a Banach space with norm || - ||1, gn: Vi, = Vi and mV — V)

be continuous operators, satisfy

llgnvallx

lgnll = sup <O, (h < ho), (2.24)
oneVi |[vnlln

lim sup ||gpppu — rull1 =0, weV. (2.25)

h—0 >0

Then from the definition of the convergence we have

lim sup |[gnuyp, , — ru(nT)|[r1 = 0. (2.26)

,T*)O n€Ng
Especially, If V}, C V, %m% sup ||ppu—ully =0 (py : V. — Vj is a projection), ||-||n =[],
=0 4>0

and let Vi =V, g, = I,7 = I, then

lim sup [up , —u(n7)|| = 0. (2.27)

h,T*)O n€Ng

Remark 3. In the case of variable time-step discretization, we can obtain the

analogous results by almost the same argument.

3. Application to the FEM

Larsson!®l considered the long-time error estimates of finite-element approximations

of semilinear parabolic problems of the form:

wg = Au+ f(u), in Q x(0,00),
u =0, on I x (0,00), (3.1)
u(+,0) = ug, in €,
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here Q is a bounded domain in R" (n < 3) with smooth boundary 09, ug is smooth

on  with zero boundary values, and f is a smooth function satisfying
f'(s) >0, (s€R). (3.2)

Larsson obtained the long-time convergence and error estimates of implicit com-
pletely discrete finite-element method. In this section, we obtain the similar results
from theorem 2.2.

The corresponding stationary problem is

—Au= f(u), in €,

u =0, on 0. (3:3)

For any given positive function w € C(Q), we consider the eigenvalue problem with

weight w:
—Ap =pwp, in Q,

p =0, on Of.

let p11[w] denote its smallest eigenvalue, then p;[w] can be characterized as

2
wiw] = inf LYXI (3.4)

xery (wx; x)
and that ui[w] > 0. Here || - || and (-,-) denote the usual norm and inner product in

Ly(2) and H}(€) is the subspace of the standard Sobolev space H!((2) satisfying the
homogeneous Dirichlet boundary condition.
We will assume that (3.3) has a classical solution u, which is linearized stable in

the sense that, for some real number § > 0,

1
@] =< .

Note that ju;[f’(u)] is well defined because of (3.2). We also assume that ug € H2(2) N
H{}(2)is such that (3.1) has a global classical solution u which satisfies u(t) — u in
Ly(Q) as t — oo and

[u(, )| Lo < B1,0 <t < o0, (3.6)
lu@)l 2 + w2 + llwa @)z < B2, 0 <t < oo. (3.7)

In the discrete problem to be described below we replace the function f by a smooth

function f, which satisfies

F(s) = f(s),]s| < Bi+1, (3.8)
1Fs), 1F )], I (s)| < K, Vs€R, (3.9)
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where K depends on Bj, of course. Obviously, this replacement does not affect the
exact solution of (3.1).

Let V = H{(S2),V, C V be the finite-element space, p, be the Ritz projection from
V to V), satisfying

(Vpnru, vvn) = (Vu, 7op), Vo € Vp, (3.10)
pn — |l < CR2Jull 2, Vu € HA(Q) N HL(Q). (3.11)

Let qp, the Ly(£2) projection from V' to V}, satisfying
(gnu; vp) = (u,vn),Yop € V. (3.12)
Now the implicit completely discrete finite-element method for (3.1) with the time
step-size 7 reads as follows. Find u} _ € V}, such that

n+1

n
(uh,T — Up 7

X) (Ut vx) = (Fupth),x),  ¥x € Vin € No,

“2,7 = Ug - (3.13)

T

Let A, be the linear operator defined on V), as follows:

(Apup,vp) = (Vun, Von), Vup,vp € V. (3.14)

Set
Bhr(vn) = vp — TApop — Tqnf(vi), Vo € Vi, (3.15)
Ch,T('Uh) = vp, Yo, € Vj,. (3.16)

Then we can rewrite (3.13) as

Bh,T(uZ’tl) = ChyT(uZ’T), n € Ny.

“2,7 = U . (3.17)

Theorem 3.1.05) Let f be a fized smooth function satisfying (3.2). ForVBy, By > 0,
and 0 < § < 1, there are Cy > 0 and hg > 0, 79 > 0 such that whenever
H1) u is a solution of (3.3) satisfying (3.5);
H2) ug € H?(Q) N HY(Q) such that u(t) — u in Lo() as t — oo;
H3) u satisfies (3.6), (3.7);
H4) the initial approzimation gy, is chosen such as that

(
(
(
(

||U0,h — U[]H < Ch2||u0||Hz,h < h[]. (318)
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Then, for 0 < h < hg, 0 < 7 < 19, the solution up of discrete problem (3.17) exists

and satisfies
|up » —u(nT)]| < Co(T + h?),n € Ny. (3.19)

Lemma 3.2.15 There is a constant C such that

1 1
| - < Cllwy - w (3.20)
pifw] o wo]

for any pair of weight functions wi and w,.
Now we are going to prove the the compatibility and stability of scheme (3.17), and
then give the proof of Theorem 3.1.

Lemma 3.3. Under the assumptions of Theorem 3.1, the scheme (3.17) is compat-

able and
Sh. < O(1 + h?), (3.21)

here C 1is a positive constant.
Proof. Form (3.15) (3.17)

(Bhr(pru((n +1)7)) = Cp - (pru(nT)))

Ry (u) =

_pa(u((n + 117) —u(nT)) Apppu((n +1)7) — gnf (pru((n + 1)7)).

From (3.1), for Vv, € V},

(u, vn) + (U, 7on) — (F(u), vp) = 0.

Hence, by (3.11) and (H3) we have

(R 7 (u), vn

) (el ) o)

)
pul(n + 1)7)), on)
(0 7)) 1)),

+ (fu((n + 1)7)) = Flprul(n + 1)7)), vp)
ul(n +1)7) — ulnt
S(th(( ((n + )T) ( ))_Ut )H
+ l(pr, — I)u t((n+1)7)||+KH(ph* Du((n + 1)7)][[|va]|
(D)7 g — 7
<(Jon | L a()ds| + Crb? (lua(n + 1)7)l| o

+lu((n +1)7)g2)llonll < C(7 + h?)l[vall,

+ (vul(n +1)7), vor)
~(flp
pa(u(

A

where C' is a positive constant depending on ||u| g2, ||we ||, |1t 2. Taking vy, = R} (u),
we get
IR, ()| < C(r+h?).
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This proves the lemma.
Lemma 3.4. Let |
wy, = / f(pru(nT) + svp)ds.
Jo

Then there exist e1,T, hy,0 < &1 < 1 such that, for h < hg, nt > T, |jvy| < &1,

! < 05. (3.22)
i [wy]

Proof. By Lemma 3.2,

1 1 ,

e S+ Cll — ()]
1
m+0||wn— Fwll N
<8+ C(|lwy — f'(pru(nn) | + 1| (pau(nT)) — f'(u(nT))|

+ 1 (u(nr)) = F'(w)])
<5+0(H/ (pnu(n) + svn) — ' (pru(nr))) ds
+ 1 (pru(nr)) = f((nr)l + I|f (w(nr)) = F'(w)]
<o+ / 7€) svnds | + 1 £ (€) (pn — Dulnr)| + | (&) (uw(nr) — w)ll).

From (3.9),(3.11)and (H3) we have

1
i [w]

<6+ C(|lonll + 1* + [u(nt) — ul)).

Note that 6 < 1 and (H2), then (3.22) can be deduced from above inquality.
From (3.15) and (3.16) we have, for Vo, € V},
By (vn) = vn — TApvn — Taqn(f(pau(n7) +vp) — f(pau(n))), (3.23)
CY;:,T(’Uh) = Up. (324)
Lemma 3.5. Scheme (3.17) is stable under the assumptions of Theorem 3.1.
Proof. Let Dy = I — 7Ay, then from (3.14) we can conclude easily that Dj, has an
inverse and ||D,;1|| <1, (r > 0). Obviously,

B () = Dyon — man(f (pru(nt) + va) — f(pau(n))).

From (3.9), f satisfies global Lipschitz condition, so there is 79 such that B,’:T has an
inverse for 0 < 7 < .
From (3.23),

(B (o), on) = lonll® +7lonlt = 7(f' (€)on, vn) > llonll* — K [|on ],
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and hence
| Bh - (vn)ll > (1 = 7K)||log]]- (3.25)

1
Let 19 < 2K’ then for 7 < 7y we find

= 1
185 (on) |l = 5 [lonll-
Hence, with Vv, € Vj, 0 < 7 < 79 we have
1(Bi )~ (on) || < 2[|o- (3.26)

Taking €9, » = 00, then the condition (A1) is satisfied for 0 < 7 < 7.

If the assumptions of Lemma 3.4 are satisfied, then from (3.4) we have

(gn(wnon), vn) = (wnvp, vp) < < &1 |vpl3, (3.27)
hence for 0 < h < hy, ||vp|| < e, nT > T,
(B, - (vn),vn) = llvnll” + 7lval} — 7(an(wavn), va) > llopll® + 7(1 = 61)|vali,

thus, there exists p; such that

(BR - (o), 0n) > (14 p17) o 1.

Taking p = . +pf1)1707 then for 0 < h < hg, ||vp|| < €1, nT > T, we have
o)l <—— 1B, (on)]
Urll =7 + o T vh
,T = =
=(1= T IBR )l < (1= pr)IBE (0] (3.28)

On the other hand, from (3.24)

ICR@i)ll = [[on]. (3.29)
The inequality (3.25) shows that
1 _ Kt _
< B} =(1 By
lonll < T 1Bh- el =(1+ 7752 1Bh(wn)]
<(1+2K7) 1B} (o) (3.30)

In a words, if we take €15, = €1, M = max(2,2K), and 07 =14 M7 for nt < T}
while 07 = 1 — pr for nT > T, then from (3.26), (3.28)—(3.30), we see the conditions
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(A2); and (A2)y satisfied. Thus scheme (3.17) is stable. This completes the proof of
Lamma 3.5.
Proof of Theorem 3.1. From (H2),(H4) and (3.11) we have

e+ | = lluf» = pruoll = luon — pauoll < Ch?|lug| 2. (3.31)
Let hg be small enough, then for 0 < h < hgy, we have
leh -l < €1 lim [lef || = 0.
: h—0 '

From Lemma 3.3 and 3.5, scheme (3.17) is stable and compatable. Moreover, since
€1,h,r> €2,h,r do not depend on h,7, so Theorem 2.2 holds by Remark 1. Hence for
0<h<hy 0<7<71and n > 1, the approximations uZ,T exist and satisfy

ek Il < M (aSp,- + blieh -1)- (3.32)
From (2.10)
1 eMTHm) q
<4 -
a < ; + i

By using (3.21), (3.31) to evalute the right hand of (3.32), then we can show that there

exists constant C such that
lep |l < C(r + B?),

or
|up » — pru(nT)| < C(1 + h2). (3.33)

Finally, from (3.11) and (H3) we get

up » —u(nT)|| <||lup , — pru(nT)| + |(I = pr)u(nT)||
<C(1 4 h?) + Ch?||u(nT)|| 2.

This completes the proof of Theorem 3.1.

4. Application to the FDM

Sanz-Serna and Stuart!® considered the difference method for the reaction-diffusion

problem of the form:

Up = Uz + f(u), 0<z <1, t>0,
u(0,t) =u(l,t) =0, ¢>0, (4.1)
u(z,0) =ug(z), 0<z<l.
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The associate explicit finite difference scheme is as follows:

ul = 2u? +ul '
T = hQJ ! +f(u;l)ﬂ .7:1a"'7J*1,nEN0,

n
0
U?ZUO(]h), j:07"'7J7

where u} denotes the approximation to u(z;,t,), z; = jh,j =0,---,J,t, = n7.
Let Vi, = {v|v = (v1,---,v5_1)T}. Define the norms of v such as
J—1
1/2
Jolln = (3 wo3) (4.3)
j=1
and
[olec = | max  o;]. (4.4)
Obviously
1
VU|loo < —=||v]h- 4.5
[0lloe < \/E” B (4.5)
Let V = H{ ([0, 1]), ps be the operator from V to Vj,:

We are going to state the assumptions and main theorem given by Sanz-Serna and
Stuart.

Assumptions!%l:

(H1) f(-) € C?*((a,b), R) for some interval (a,b) C R.

(H2) Equation (1.1) have a solution u for which the derivatives uz4,, and uy exist
and are uniformly bounded for 0 < z < 1, 0 < ¢t < oc. Furthermore, there exists § > 0
such that

a+0 <u(z,t) <b-—10, V(z,t)e€]0,1]x]0,00).

(H3) As t — oo, u approaches an equilibrium u. More precisely, ||u(-, 1) — (") oc —

0, where u satisfies

(H4) u is an asymptotically stable equilibrium in the sence that

1
/ (—(62)” + f'(())¢)dz
Amax = mayg 0 I < 0. (48)
pEH] P o
0
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Note that Apax is the largest eigenvalue of the problem

>‘¢:¢xw+f’(ﬂ)¢7 O<z<1
$(0) = ¢(1) = 0. (4.9)

(H5) The grids are refined in such a way that
7/h? < p < 1/2(this is relation(R)). (4.10)

Theorem 4.1.8 Under the assumptions above, there exist constants hg and C,
depending only upon f,u and u, such that, for 0 < h < hg, the numerical solution
)T

up . = (ul,---,uy_,)" exists for all positive integers n and satisfies the error bound

|uf . — ppu(nT)|n < C(r + h*), n € Np. (4.11)

Now we are going to prove Theorem 4.1 by the general frame established in §2.

For v, € Vp,, set

By, - (vn) = vp, (4.12)
T T

Ch,r(vn) = ( K e ﬁ(”ﬂ-l = 205 +vj-1) + 7f(v), ) :

(UO =vy = 0) (413)

Then the scheme (4.2) can be rewritten as

Bh’T(uZ,tl) = Chr(up,); n>0.

ug’T = phrug (4.14)

Lemma 4.2. Under the assumptions above, scheme (4.14) is compatable.
Proof. Set w = R} (u). Then from (2.3) and (2.4) we have

w = [Bhr(pru((n +1)7)) = Cp 7 (pru(n7))]/ 7"
From (4.6),(4.12) and (4.13),

iy~ D7.h) —u(wrijh)  u(nr, (j + D) — 2u(nr jh) +u(nr, (G~ Dh)
T h?
— f(u(nt, jh))
Utt(flajh)
2

=u;(nt,jh) + T — Uge(nT, jh)
hZ
- ﬂ(“xmx(”ﬂ &) + Uggar(nT,€3)) — f(u(nT, jh)).
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From (4.1) and (H2), there exists a constant C, such that

. 2
|wj‘ :‘ MT h (Ua:a:a:a;(nTu 62) + UIIII(nTu 63))‘

24
<C(r+h?), 1<j<J-1, (4.15)
hence
IRy (w)ln = wla < llwlls < C(r + 7). (4.16)

Thus, scheme (4.14)is compatable. Furthermore,
Shr < C(T+h?). (4.17)

This completes the proof of Lemma 4.2.
From (4.12) and (4.13), for v;, € V}, it is easy to see

B;Ll,T(vh) =Uh, (418)

~ T
Ch 7(vn) =('-'=Uj + 25 (i1 = 205 +vj1)

T (f(ulnr, jh) +v;) — flulnr,gh)).---) (4.19)

Lemma 4.3. Under the assumptions above, scheme (4.14) is stable.

Proof. With egp , = 400, M > 1, then from (4.18) the condition (A1) holds for
Vh,T.

Let vy = (v1,---,v5-1)T € V}. From (4.19) we conclude that

[CF - (vn)]j =vj + %(Uﬂl — 20 +wvj 1) + 71 (a(jh))v;
+ 71" (0] ) (u(nT, jh) — u(ih)V; + 71" ()05 /2,

where

nj = sfa(jh) + (1= s})u(nr, jh);

£ = u(n,jh) +riv;
and 0 < s7 <1, 0 <r} <1. By using (4.5), the norm of C}?,T(Uh) satisfies

=n . . Uh||h
1CE o)l < 1T + 7 Allllonln + 7K (lu(nr, 55 — aGmlloe + 220 101, (4.20)

2vh
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where K7 = sup |f”(-T)|a
a+0<z<b—¢

A= L (4.21)

h—2 054

2
and 0; = ~72 + f'(u(gh)). From the known results we can conclude that, as h — 0, the
largest eigeﬁvalue of A converges to the eigenvalue A,y defined in assumption (H4)

(see, for example, [4]). Furthermore, the smallest eigenvalue satisfies

L4

A > *ﬁ - K27
where K9 = max{f'(a(z)), 0 < z < 1}. Since A is symmetric, hence, by (H5) we can
obtain

I+ 7A||p <1—ar, a>0 (4.22)

for h, 7 sufficiently small. From (H3), there exists T' > 0, such that for n7 > T

Ki|lu(nt,jh) — u(jh)]c < a/4. (4.23)
h
Let €147 = %, p= %. From (4.20), (4.22) and (4.23), there exist hg, 79, such that
1
for 0 < h < hy, % <, nt >T, ||lvp||n < €14, we have

ICh - (on)In < (1 = p7)|lvnlln- (4.24)

From (4.20), (4.22) and the assumption, there exists M > 0 such that, for 0 < h < hyg,

po
72 <p,nt <T, ||vp||n < €1, we have

ICH - (n)lln < (1 + M)||vpn. (4.25)

Next, by formula (4.18), we obtain

1B - (on)[n = llvnlln- (4.26)

Thus, if we take 0 = 14+ M7 for nt <T'; 67 =1— pr for nT > T, then condition (A2);
and (A2)y hold for 0 < h < hyg, % < p. This completes the proof of Lemma (4.3).
Proof of Theorem 4.1. Since ||e?L’T||h =0, Sp, < C1h? (from (4.17)), we know
the condition (A3) holds for sufficiently small hy and 7. Furthermore, from Lemma
4.2 and 4.3, the conditions in Theorem 2.2 are satisfied. This completes the proof of

Theorem 4.1 by using (4.17).
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5. An Example
Consider the semilinear parabolic problems as follows

Up = Ugy —u’ +g(t,z), 0<z<1,1t>0,
u(0,t) = u(l,t) =0, t >0, (5.1)
u(z,0) =0, 0 <z <1,
where
g(t, z) = sin(27wz)(cost + 4n° sint + sintsin(27z)). (5.2)

The solution of (5.1) is
u(t,z) = sintsin(2wx). (5.3)

We consider the forward Euler method with central differences in space:

T u? Wl - 2u”
: T "= - hQJ L _T(U?)Q—FT‘Q(nT,jh), j:17'”7J_17n€N0’
uy =u7=0, mneN, (5.4)

where u} denotes the approximation to u(nr,jh), Jh = 1.
Since the solution of (5.1) does not converge as t — oo, it can’t include in the frames

of [3], [5] and [6]. But, by using the frame of §2, we can prove: For sufficiently small A

. . T . . .
and 7 satisfying 72 < o the scheme (5.4) possesses convergence uniformly in time.

1
Theorem 5.1. There exist constants hy and C, such that, for 0 < h < hg, % < 2’
the numerical solution u’ﬁ’T = (u’f,---,u?fl)T ezxists for all positive integers n and

satisfies the error bound
luh - = pru(nT)|ln < C(1 + h?),n € Ny, (5.5)

where || - || and pp, are defined by (4.3) and (4.6) respectively.
The proof of Theorem 5.1 is analogous as that of Theorem 4.1.

For vy, = (vy,---,v51)7 € V}, we take
Bh7(vp) = v, (5.6)
T 9 r
Ch,r(vp) = (---,vj + ﬁ(vﬂl = 2vj +wvj 1) — TUF, - ) , (5.7)
g;Ll,T = (g(nTu h)a T 79(”7-7 (J - 1)h))T7 (58)

then we can rewrite scheme (5.4) as

Buo(ut) = Chouf,) + 705, ne N,

,T
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hr=0. (5.9)
Lemma 5.2. Scheme (5.9) is compatable, and have

Sh. < O(1 + h?), (5.10)

where C' is a constant.
Proof. We ommit the proof because it is straightward.
From (5.6) and (5.7) we have

By (on) = on, (5.11)
=n T . . . 2 T
Ch . (vn) = ( ,Vj + ﬁ(vjﬂ — 205 + vj,l) — 27 sin(n7) sin(2j7h)v; — Tv], - - ) .
(5.12)
T 1 )
Lemma 5.3. If 72 < 2’ then the scheme (5.9) is stable.
Proof. Let
-2 1
1 1 -2 1
1 -2
—4sin’(kmh/2
The eigenvalues of A are s1nh(2 mh/2) ,(k=1,---,J—1) (see [1]), hence, from (5.12)
we have
~ T
ICE +(on)lln < (1= 7An) lonlln + 27 [Jon |l + —=llvall7, (5.13)
vh
2 sin’(wh /2 1
where Ay = ”m—(ﬂ/) Since sinz > © — 6:1:3, (x > 0), there exists hg such that,

(wh/2)?

h
Ap > 9 for 0 < h < hg. Let g1, = g, then for 0 < h < hg and |lvp|lp < €147, We
have
ICh ()l < (1 =97 + 27 +7/2)lva |l < (1 — 67)]vgln-

Note that (5.11), and take p = 6, M =1, T = 0, 07 = 1 — pr, then the conditions
1
(A2); and (A2)9 hold for 0 < h < hy, % < 7 This completes the proof of lemma 5.3.

Proof of Theorem 5.1. From (5.10) and ||e?m||h = 0 we can conclude that, the

|
condition (A3) holds for sufficiently small hy and 0 < h < hg, — < 5+ On the other

2
hand, from lemma 5.2 and 5.3 we see Theorem 2.2 holds. Then from (5.10) we can
deduce Theorem 5.1.
The following numerical results verified the long-time convergence of scheme (5.4)

in a sense.
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time ¢ error (L2 norm)

error (maximum norm)

10.00000 5.6708982E-04
20.00000 | 9.1236364E-04
30.00000 | 9.6483884E-04
40.00000 7.0018758E-04
50.00000 2.1183636E-04
60.00000 | 3.3865144E-04
70.00000 7.8310986E-04
80.00000 | 9.8119921E-04
90.00000 | 8.5874501E-04
100.0000 | 4.5624792E-04

5000.000 | 9.7848591E-04
5010.000 | 7.5847126E-04
5020.000 | 2.9577641E-04
5030.000 | 2.5466483E-04
5040.000 | 7.2789006E-04
5050.000 | 9.7230350E-04
5060.000 | 8.9846307E-04
5070.000 | 5.3234241E-04
5080.000 | 2.2076156E-06
5090.000 | 5.2837259E-04
5100.000 | 8.9519034E-04

10000.00 1.7128926E-04
10010.00 | 6.7269686E-04
10020.00 | 9.6278504E-04
10030.00 | 9.3699095E-04
10040.00 | 6.0683367E-04
10050.00 | 8.7746092E-05
10060.00 | 4.5683002E-04
10070.00 | 8.6307735E-04
10080.00 | 9.9076249E-04
10090.00 | 7.9297303E-04
10100.00 | 3.4287336E-04

1
Here h = —, 7 = 0.0001.
49

8.3100796E-04
1.3898611E-03
1.4952421E-03
1.0771155E-03
3.1808019E-04
4.8586726E-04
1.1746287E-03
1.5131235E-03
1.3295412E-03
6.9254637E-04

1.5147328E-03
1.1598468E-03
4.3708086E-04
3.6710501E-04
1.0963678E-03
1.5004277E-03
1.3860464E-03
8.0072880E-04
3.6954880E-06
7.8123808E-04
1.3697147E-03

2.4917722E-04
1.0180473E-03
1.4868975E-03
1.4405847E-03
9.0640783E-04
1.2588128E-04
6.7991018E-04
1.3242960E-03
1.5313625E-03
1.2033582E-03
4.9999356E-04

415

Now let us explain the fact that the numerical solution has long-time convergence

in another way. In fact, we can prove, in a sense, scheme (5.4) has a solution with
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period 27 (the same as the period of the continuous solution).

1 2
Theorem 5.4. There exist hg, C > 0, such that, for % < 3 and =L (m € N),
m
scheme (5.9) has a solution uj, . with period 2, i.e.

up . = up, (5.14)
and having the following estimate:
ip » — pru(nT)|[h < C(T + h2), n € Nj. (5.15)

Remark. Since g, = g™, (n > 0), therefore (5.14) implies up , = aptm.
Proof. From §2, e’,’“m = u'fL’T — ppu(kT) satisfies the following equation

ehr = Chnleh,) + 7R} (u). (5.16)

Since ppu(nt) = (- --,sin(n7) sin(2j7h), - - )1 has period 2, it is sufficient to prove

equation (5.16) has a solution of period 27 satisfying (5.15). Let
D*(uy) = G, (on) + 7R, (1) (5.17)
then one can transform (5.16) into
eptt = DMep ). (5.18)
Let Z = {vp|vp, € Vi, ||vn|ln < €14,7}. Then for Vo, € Z we have
ID* (vn)ln <(1 = pT)ernr + 7h~
=c1n,r — PT(E1hr — %) < Eihr

hence, D is a operator from Z to Z.
For Yuip,vep € Z, from (5.12) and (5.17) we conclude that

1D* (v15) — D¥(van) I < + T A|ll|v1n — vanlln + 27 Join — vanlln + Tllpn (0T, — v3,) [l
21

<(1—7TAp 427 + \/Eﬁl,h,T)”Ulh — van||n-

Let hgy be sufficiently small such that lemma 5.3 holds. Then from the proof of the

lemma we conclude that

D" (v1) — D¥(van)[ln <(1 = 97 + 27 + 7)||v1n — vanlln
=(1 = p7)[lvin — v2n|n- (5.19)
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Define T* by
TF = DEDF1...DY (k> 0). (5.20)

Obviously T* is a strict contraction in Z. Moreover, for Yup, vo, € Z we have
IT*(010) = T*(van)In < (1 = p7)** o1 = vanlln- (5.21)

From (5.18) and (5.20),
eyt =1T"ep ), (k> 0). (5.22)

Since 7™~ ! is a strict contraction in Z, it has a fixed point. So there exists é’fL L €2
satisfies (5.22) and

ey, = ey, (thisimplies u) =} ), (5.23)

hence éﬁ . 1s a solution of period 2.

From (5.21) and (5.22), for Ve%ﬁ € Z, e}, . defined by (5.22) satisfies
len - — ehrlln = 1" (e )~ T"Heh ) la < 201 — p7) "1 (5.24)
If taking egﬁ = 0, then from theorem 5.1 we get
len - lln < Cr(r + h*), n>0. (5.25)
From (5.24), there exists N > 0 such that, for n > N,
leh - — eh lln < Cilr + h?),
hence, for n > N, we have
1€h,+lln < C(1 +h%), (C=2C).
By using (5.23) we conclude that
lef Al < C(r +h?), ¥n>0 (5.26)

This is (5.15). Thus we complete the proof of theorem 5.4.

In fact, from the proof of theorem 5.4 we can also conclude that, this periodic
solution is asymptotically stable (see (5.24)).

By theorem 5.4, we can understand easily why the numerical solution has long-time

convergence.
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