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CORRECTION METHODS FOR STEADY INCOMPRESSIBLEFLOWS�1)Jian Li(State Key Laboratory of Sienti� and Engineering Computing, ICMSEC, Chinese Aademyof Sienes, Beijing 100080, China)AbstratCorretion methods for the steady semi-periodi motion of inompressible uidare investigated. The idea is similar to the inuene matrix to solve the lak of vor-tiity boundary onditions. For any given boundary ondition of the vortiity, theoupled vortiity-stream funtion formulation is solved. Then solve the governingequations with the orretion boundary onditions to improve the solution. Theseequations are numerially solved by Fourier series trunation and �nite di�erenemethod. The two numerial tehniques are employed to treat the non-linear terms.The �rst method for small Reynolds number R = 0 � 50 has the same results asthat in M. Anwar and S.C.R. Dennis' report. The seond one for R > 50 obtainsthe reliable results.Key words: Inompressible ow, vortiity, stream funtion, numerial solution.1. IntrodutionFor semi-periodi inompressible uid ows, S.C.R. Dennis and o-workers[1�4℄ solvethe vortiity-stream funtion formulation of the governing equations by the series trun-ation and �nite di�erene method. Sine no boundary ondition for the vortiity, theypropose the vortiity integral onditions based on Green identity. These methods aree�etive. But the vortiity integral onditions are impliit. In this paper, the orre-tion method with expliit boundary onditions is proposed. We investigate the steadytwo-dimensional semi-periodi ow near an in�nite array of moving plane walls. Thisexample is developed by M. Anwar and S.C.R. Dennis[3℄. They get the numerial so-lutions by Fourier series and �nite-di�erene approximations. Their series trunationmethod loses e�etiveness for R > 50. In the omputations by the orretion method,we adopt the two numerial tehniques to treat the non-linear terms for the variousranges of R. The �rst method is expliit. The vortiity transport equation with givenboundary onditions and the Poisson equation for the stream funtion with Dirihletboundary onditions are solved respetively. Then solve a homogeneous problem toorret the solutions. The numerial results for R = 0� 50 are the same as that in [3℄.The seond method is to solve the oupled vortiity-stream funtion formulation with�Reeived Otober 21, 1996.1)This work is supported by the National Nature Siene Foundation of China.



420 J. LIany given boundary ondition of the vortiity. Then again solve the governing equa-tions with the orretion boundary onditions to improve the solution. The numerialresults for R > 50 are reliable. Sine the expliit boundary ondition of the vortiity,di�erene equation of the oeÆients of Fourier series an be solved by diret methodin expliit method. This saves the omputational work.2. Governing EquationsThe vortiity-stream funtion formulation of the steady state inompressible ow isas follows, ( r2� = R �� �y ���x � � �x ���y� ;r2 = ��; (2.1)where  and � are the dimensionless stream funtion and vortiity respetively, R isthe Reynolds number.We onsider the example of steady semi-periodi ow as in [3℄. The ow is gen-erated by the motion of an in�nite array of walls along the y-diretion. The veloityomponents of the moving wall are u = 0, v = � sin y, (�1 � y � 1). Sine the owis periodi and antisymmetrial for y, the boundary onditions are = 0; � �x = sin y; for x = 0;� ! 0;  ! 0; as x!1; = � = 0; for y = 0 and y = �:3. Method of Corretion SolutionWe expand � and  as Fourier series with respet to y,8>><>>: �(x; y) = 1Pn=1 gn(x) sinny; (x; y) = 1Pn=1 fn(x) sinny:By substituting the above series into (2.1), we an get a system of di�erential equationsfor Fourier oeÆients gn and fn,( g00n � n2gn = rn; n = 1; 2; � � � ;f 00n � n2fn = �gn; n = 1; 2; � � � ; (3.1)wherern = R2 1Xp=1f(jn� pj fjn�pj � (n+ p)fn+p)g0p � p(f 0n+p + sgn(n� p)f 0jn�pj)gpg;and sgn(n� p) denotes the sign of (n� p), with sgn(0) = 0. The boundary onditionsin terms of fn and gn are fn(0) = 0, f 0n(0) = Æn, fn(1) = 0, gn(1) = 0, n = 1; 2; � � �,where Æ1 = 1, Æn = 0, n = 2; 3; � � �.



Corretion Methods for Steady Inompressible Flows 421This nonlinear problem an be solved by the iterative method. Then we an treat thenonlinear terms by expliit and impliit methods. The seond order ordinary equationsan be approximated by �nite di�erene method.3.1. Expliit orretion methodIn the iterative proedure, the nonlinear terms are treated expliitly. Then theiterative proedure is( (g(k+1)n )00 � n2g(k+1)n = r(k)n ; n = 1; 2; � � � ;(f (k+1)n )00 � n2f (k+1)n = �g(k+1)n ; n = 1; 2; � � � :The orretion method is to deompose the problem into a nonhomogeneous onewith given boundary onditions and a homogeneous one with orretion boundaryonditions. The nonhomogeneous problem is as follows8>>>>><>>>>>: (g(k+1)�;n )00 � n2g(k+1)�;n = r(k)n ; n = 1; 2; � � � ;(f (k+1)�;n )00 � n2f (k+1)�;n = �g(k+1)�;n ; n = 1; 2; � � � ;g(k+1)�;n (0) given ; g(k+1)�;n (1) = 0; n = 1; 2; � � � ;f (k+1)�;n (0) = 0; f (k+1)�;n (1) = 0; n = 1; 2; � � � : (3.2)While the homogeneous orretion problem is8>>>>><>>>>>: (g(k+1)��;n )00 � n2g(k+1)��;n = 0; n = 1; 2; � � � ;(f (k+1)��;n )00 � n2f (k+1)��;n = �g(k+1)��;n ; n = 1; 2; � � � ;g(k+1)��;n (1) = 0; n = 1; 2; � � � ;f (k+1)��;n (0) = 0; f (k+1)��;n (1) = 0; (f (k+1)��;n )0j1 = Æn � (f (k+1)�;n )0j1; n = 1; 2; � � � :(3.3)Then g(k+1)n = g(k+1)�;n + g(k+1)��;n and f (k+1)n = f (k+1)�;n + f (k+1)��;n are the (k+1)�th iterativeapproximations of gn and fn.3.2. Impliit orretion methodThe iterative proedure is( (g(k+1)n )00 � n2g(k+1)n + R2 (2n)f (k)2n (g(k+1)n )0 + R2 n(f (k)2n )0g(k+1)n = ~r(k)n ; n = 1; 2; � � � ;(f (k+1)n )00 � n2f (k+1)n = �g(k+1)n ; n = 1; 2; � � � ;where~r(k)n = R2 1Xp=1;p6=nf[jn� pj f (k)jn�pj�(n+p)f (k)n+p℄(g(k)p )0�p[(f (k)n+p)0+sgn(n�p)(f (k)jn�pj)0℄g(k)p g:This problem an also be solved by the orretion method. First, the following problemis onsidered8>>>>><>>>>>: (g(k+1)�;n )00 � n2g(k+1)�;n + R2 (2n)f (k)2n (g(k+1)�;n )0 + R2 n(f (k)2n )0g(k+1)�;n = ~r(k)n ; n = 1; 2; � � � ;(f (k+1)�;n )00 � n2f (k+1)�;n = �g(k+1)�;n ; n = 1; 2; � � � ;g(k+1)�;n (0) given; g(k+1)�;n (1) = 0; n = 1; 2; � � � ;f (k+1)�;n (0) = 0; f (k+1)�;n (1) = 0; n = 1; 2; � � � :(3.4)



422 J. LINext, the orretion problem is8>>>>><>>>>>: (g(k+1)��;n )00 � n2g(k+1)��;n + R2 (2n)f (k)2n (g(k+1)��;n )0 + R2 n(f (k)2n )0g(k+1)��;n = 0; n = 1; 2; � � � ;(f (k+1)��;n )00 � n2f (k+1)��;n = �g(k+1)��;n ; n = 1; 2; � � � ;g(k+1)��;n (1) = 0; n = 1; 2; � � � ;f (k+1)��;n (0) = 0; f (k+1)��;n (1) = 0; (f (k+1)��;n )0j1 = Æn � (f (k+1)�;n )0j1; n = 1; 2; � � � :(3.5)Then g(k+1)n = g(k+1)�;n + g(k+1)��;n and f (k+1)n = f (k+1)�;n + f (k+1)��;n .4. Numerial MethodFor omputational onveniene, the variable x is transformed z = e�x. Then (3.1)is the following form ( z2g00n + zg0n � n2gn = rn; n = 1; 2; � � � ;z2f 00n + zf 0n � n2fn = �gn; n = 1; 2; � � � ; (4.1)wherern = �Rz2 1Xp=1f(jn� pj fjn�pj � (n+ p)fn+p)g0p � p(f 0n+p + sgn(n� p)f 0jn�pj)gpg:The boundary onditions beome fn = gn = 0, for z = 0, n = 1; 2; � � �, fn = 0,f 0n = �Æn, for z = 1.LetM be a positive integer. The interval (0, 1) is divided intoM sub-intervals, eahwith the length h = 1M . All derivatives in (4.1) are approximated by entral-di�erenequotients. The di�erene equations at zj = jh are( (z2j + h2 zj)gj+1;n � (2z2j + n2h2)gj;n + (z2j � h2 zj)gj�1;n = rj;nh2;(z2j + h2 zj)fj+1;n � (2z2j + n2h2)fj;n + (z2j � h2 zj)fj�1;n = �gj;nh2:When the expliit orretion method is used, (3.2) an be solved by the above sheme.For simpliity, we drop the supersripts k; k + 1. The boundary onditions aregn(0) = 0; gn(1) given ; fn(0) = 0; fn(1) = 0: (4.2)We usually take gn(1) to be the value of the k�th iteration. The exat solutions of (3.3)are gn = �2nf 0n(1)zn, fn = f 0n(1)zn ln z. So the expliit orretion method saves theomputational work. In the impliit orretion method adopted, the di�erene shemeof (3.4) is8>>><>>>: �z2j + h2zj � h2nRzjfj;2n�gj+1;n � �2z2j + n2h2 + 12nRzjf 0j;2nh2�gj;n+�z2j � h2 zj + h2nRzjfj;2n�gj�1;n = ~rj;nh2;�z2j + h2zj�fj+1;n � (2z2j + n2h2)fj;n + �z2j � h2 zj�fj�1;n = �gj;nh2:



Corretion Methods for Steady Inompressible Flows 423The boundary onditions are (4.2). While the di�erene sheme of (3.5) is8>>>>>><>>>>>>:
�z2j + h2zj � h2nRzjfj;2n�gj+1;n � �2z2j + n2h2 + 12nRzjf 0j;2nh2�gj;n+�z2j � h2 zj + h2nRzjfj;2n�gj�1;n = 0;�z2j + h2zj�fj+1;n � (2z2j + n2h2)fj;n + �z2j � h2 zj�fj�1;n = �gj;nh2;gn(0) = 0; gn(1) = 1; fn(0) = 0; fn(1) = 0;where  is determined by the following formulation Z 10 zn�1gndz = �f 0n(1):By the numerial integration, = �f 0n(1)=nh2 gn(1) + hM�1Xj=1 gj;n(jh)n�1o:Then gj;n, fj;n are the numerial solutions of (3.5).For the iterative proedure onverging, the relaxation is employed. If g(k+1), f (k+1)are obtained by orretion method, the new values of (k + 1)-th approximations aregiven by ( g(k+1) = !g(k) + (1� !)g(k+1);f (k+1) = !f (k) + (1� !)f (k+1);where 0 � ! � 1 is a relaxation parameter.5. Numerial ResultsFor the various ranges of R, results are omputed by the expliit and impliitorretion methods. The alulations are arried out with h = 0:025. We take N termsof the series. In Table 1, N and ! are given for di�erent R.

Fig.1. Streamlines for R = 10 Fig.2. Streamlines for R = 40



424 J. LIThe results are obtained by the expliit orretion methodfor R = 10 and R = 40. Curves of the stream-funtion  are shown in Fig.1 and Fig.2. For the ases R = 70; 120,the impliit orretion method is used. Fig.3-4 desribe theresults of the onstant stream-funtion  . The results arenearly the same as that by �nite di�erene method in [3℄.These show that the orretion methods are e�etive andfeasible.
Table 1. N and !for di�erent RR N !0 510 1040 14 0.170 18120 22 0.01

Fig.3. Streamlines for R = 70 Fig.4. Streamlines for R = 120Referenes[1℄ S.C.R. Dennis, Gau-Zu Chang, Numerial solutions for steady ow past a irular ylinderat reynolds numbers up to 100, J. Fluid Meh., 42(1970), 471.[2℄ S.C.R. Dennis, J.D.A. Walker, Calulation of the steady ow past a sphere at low andmoderate reynolds, J. Fluid Meh., 48(1971), 771.[3℄ M. Anwar, S.C.R. Dennis, Numerial methods for steady visous ow problems, omputersand uids, 16(1988), 1.[4℄ S.C.R. Dennis, M. Ng, P. Nguyen, Numerial solution for the steady motion of a visousuid inside a irular boundary using integral onditions, J. Comput. Phys., 108(1993),142.


