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INTERIOR ERROR ESTIMATES FOR NONCONFORMINGFINITE ELEMENT METHODS OF THE STOKES EQUATIONS�Xiao-bo Liu(Department of Mathematis and Computer Siene Clarkson University Box 5815, Potsdam,NY 13699-5815, USA)AbstratInterior error estimates are derived for nononforming stable mixed �nite ele-ment disretizations of the stationary Stokes equations. As an appliation, interioronvergenes of di�erene quotients of the �nite element solution are obtained forthe derivatives of the exat solution when the mesh satis�es some translation in-variant ondition. For the linear element, it is proved that the average of thegradients of the �nite element solution at the midpoint of two interior adjaenttriangles approximates the gradient of the exat solution quadratially.Key words: Interior error estimates, Nononforming element, Stokes equations.1. IntrodutionInterior error estimates for �nite element disretizations (onforming) were �rstintrodued by Nitshe and Shatz[14℄ for seond order salar ellipti equations in 1974.They proved that the loal auray of the �nite element approximation is boundedin terms of two fators: the loal approximability of the exat solution by the �niteelement spae and the global approximability measured in an arbitrarily weak Sobolevnorm on a slightly larger domain. Sine then, interior estimates of this nature havebeen obtained by Douglas, Jr. and Milner for mixed methods of the seond ordersalar ellipti equations[8℄, Douglas, Jr., Gupta, and Li for the hybrid method[7℄, byGastaldi for a family of elements for the Reissner-Mindlin plate model[12℄, by Arnoldand Liu for onforming �nite element methods for the Stokes equations[1℄, and by Liu fornononforming methods for the seond order ellipti equations[13℄. For a omprehensivereview on this subjet, see [17℄.Reently, some quite interesting appliations of interior estimates have been foundin the areas of a posteriori error analysis and adaptive mesh re�nement. In 1988Eriksson and Johnson[11℄ introdued two a posteriori error estimators based on loaldi�erene quotients of the numerial solution. Their analysis was based on the inte-rior onvergene theory in [14℄ and [15℄. In 1991, Babu�ska and Rodr��guez[2℄ studiedthe estimators of Zhu and Zienkiewiz[19℄, [20℄ by using the interior estimate results ofBramble and Shatz[15℄. For other appliations in this diretion, please refer to [9℄, [10℄� Reeived November 6, 1995.



476 X.B. LIUand [3℄. Through these investigations, it is now widely believed that the asymptotiexatness of a posteriori estimators essentially depends on some kind of superapproxi-mation property of the �nite element method. Interior error estimates, however, o�era standard approah to derive interior superonvergenes.The aim of this paper is to establish interior error estimates for nononforming�nite element approximations to solutions of the Stokes equations. Note that nonon-forming methods are attrative for the Stokes problems for two reasons: (1) the inf-supondition is easy to satisfy; (2) divergene-free nodal bases an be onstruted. Inaddition, sine the pressure an be eliminated �rst (when disontinuous funtions areused to approximate the pressure), the veloity an be found through solving a positivesystem and thereafter, some preonditioned multigrid methods may be inorporatedfor onstruting fast solvers.The method used here and the struture of this paper losely follows that in [1℄.Setion 2 presents notations and preliminaries. Setion 3 introdues hypotheses forthe �nite element spaes, whih atually apply for both nononforming and onformingmethods. In Setion 4, we introdue the interior equations and derive some basiproperties of their solutions. Setion 5 gives the preise statement of our main resultand its proof. In Setion 6 we prove interior onvergenes of di�erene quotients of the�nite element solution to the derivatives of the exat solution when the �nite elementspae is de�ned over meshes with ertain translation invariant property. An interiorsuperonvergene is obtained as an example appliation.2. Notations and PreliminariesLet 
 denote a bounded domain in R2 and �
 its boundary. We shall use the usualstandard L2-based Sobolev spaes Hm = Hm(
), m 2 Z, with the norm k�km;
. Reallthat for m 2 N, H�m denotes the normed dual of ÆH m, the losure of C10 (
) in Hm.We use the notation (�; �) for both the L2(
)-innerprodut and its extension to a pairingof ÆH m and H�m. If 
 =[j 
j for some disjoint open sets 
j, then let Hmh (
) = fu 2L2(
) and uj
j 2 Hm(
j), for all jg with the norm kukhm;
 = �Xj kuk2m;
j�1=2. If X isany subspae of L2, then X̂ denotes the subspae of elements with average value zero.We use boldfae type to denote 2-vetor-valued funtions, operators whose values areetor-valued or tensor-valued funtions, and spaes of vetor-valued funtions. This isillustrated in the de�nitions of the following standard di�erential operators:div� = ��1=�x+ ��2=�y; grad p = � �p=�x�p=�y � ; grad � = � ��1=�x ��1=�y��2=�x ��2=�y � :For any funtion � that is di�erentiable on eah 
i where 
 =[i 
i, a family of disjointopen sets 
i, we de�ne the pieewise version (with notation divh) of its divergene tobe the funtion obtained by omputing div� element-wise. The pieewise version of thegradient operator an be de�ned similarly and is denoted by gradh.



Interior Error Estimates for Nononforming Finite Element Methods of the Stokes Equations 477The letter C denotes a generi onstant, not neessarily the same in eah ourrene,but always independent of the meshsize parameter h.Let G be an open subset of 
 and s an integer. If � 2 Hs(G),  2 H�s(G), and! 2 C10 (G), then j(!�;  )j � Ck�ks;Gk k�s;G;with the onstant C depending only on G, !, and s. For � 2 Hs(G), 	 2 H�s+1(G)de�ne R(!;�;	) = (�(grad!)t; grad	)� (grad�;	(grad
)t): (2.1)Then jR(!;�;	)j � Ck�ks;Gk	k�s+1;G: (2.2)If, moreover, 	 2 H�s+2, we have the identity(grad (!�); grad	) = (grad�;grad (!	)) +R(!;�;	):The following lemma states the well-posedness and regularity of the Dirihlet prob-lem for the generalized Stokes equations on smooth domains. (Beause we are interestedin interior estimates we really only need this results when the domain is a disk.) Forthe proof see [16, Chapter I, x 2℄.Lemma 2.1. Let G be a smoothly bounded plane domain and m a nonnegativeinteger. Then for any given funtions F 2 Hm�1(G), K 2 Hm(G)\ L̂2(G), there existuniquely determined funtions� 2 Hm+1(G) \ ÆH 1(G); p 2 Hm(G) \ L̂2(G);suh that ���� gradp = F;div� = K:Moreover, k�km+1;G + kpkm;G � C(kFkm�1;G + kKkm;G);where the onstant C is independent of F and K.3. Nononforming Finite Element SpaesIn this setion we ollet assumptions on the nononforming mixed �nite elementspaes that will be used in the paper.Let 
 � R2 be the bounded open set on whih we solve the Stokes equations and leth denote a mesh size parameter. We denote by Vh the �nite element spae that is usedto approximate the veloity, and by Wh the �nite element subspae of L2(
) that isfor the pressure. Let Zh denote the �nite element spae of ontinuous pieewise linearfuntions (for triangular elements) or bilinear funtions (for retangular elements), and



478 X.B. LIUYh the spae of pieewise onstants or ontinuous linear funtions. Remember thatV h = Vh � Vh and Zh = Zh � Zh. For 
0 � 
, de�neV h(
0) = f�j
0 j� 2 V hg; ÆV h(
0) = f� 2 V hjsupp� � 
0gSets Wh(
0), ÆW h(
0), Zh(
0), ÆZ h(
0), and Yh(
)0 an be de�ned similarly.If Gh � 
 is a union of elements, letV h(Gh) = f�j� 2 V h(Gh) and vanishes at the nodes on �Ghg:Let G0 and G be onentri open disks with G0 b G b 
, i.e, G0 � G and G � 
.We assume that there exists a positive real number h0 suh that for h 2 (0; h0℄, thefollowing properties hold.A1. Approximation property. We will assume that V h ontainsZh andWh ontainsYh. Consequently,(1) If � 2H2(G), then there exists a ontinuous funtion �I 2 V h suh thatk�� �Ik1;G � Chj�j2;G:(2) If p 2 H1(G), then there exists a pI 2Wh, suh thatkp� pIk0;G � Chkpk1;G:Furthermore, if � and p vanish on GnG0, respetively, then �I and pI an be hosen tovanish on 
nG.A2. Superapproximation property. Let ! 2 C10 (G), � 2 V h, and p 2 Wh. Thenthere exists  2 V h(G) and q 2 ÆW h(G), suh thatk!��  kh1;
 � Chk�kh1;G;k!p� qk0;
 � Chkpk0;G;where C depends only on G and !.A3. Stability property. There is a positive onstant , suh that for all h 2 (0; h0℄there is a domain Gh, G0 b Gh b G for whihinfp2Ŵh(Gh)p6=0 sup�2V h(Gh)�6=0 (divh�; p)Ghk�kh1;Ghkpk0;Gh � A4. Inverse property. For the set Gh in A3 and eah nonnegative integer m ther isa onstant C for whihk�kh1;Gh � Ch�1�mk�k�m;Gh ; for all � 2 V h;kpk0;Gh � Ch�mkpk�m;Gh ; for all p 2Wh:A5. Consisteny property. Let Gh be the set in A3. ThenXT�Gh Z�T  � nds = 0; for all 2 V h(Gh) (3.1)



Interior Error Estimates for Nononforming Finite Element Methods of the Stokes Equations 479Moreover, if � 2 ÆH 1(Gh) and  2 Vh or � 2 H1(Gh) and  2 V h(Gh), then��� XT�Gh Z�T � � n ds��� � Ch�(k�k0;Gh + kdiv�k0;Gh)k kh1;Gh ; (3.2)and ��� XT�Gh Z�T pn �  ds��� � Ch�kpk1;Ghk kh1;Ghfor p 2 ÆH 1(Gh) and  2 V h(Gh). Here � is a real positive number, the onstant Cdepends only on the minimal angle of elements in Gh, and n = (n1; n2)t is the outwardnormal diretion of �T .When Gh = 
, property A3 is the standard stability ondition for Stokes elements.It will usually hold as long as Gh is hosen to be a union of elements. The followingresult will be used from time to time to onstrut loal projetions.Lemma 3.1. Let Gh be a subdomain for whih the stability inequality in A3 holds.Then for � 2 H1h(Gh) and p 2 L2(Gh), there exist unique �� 2 Vh(Gh), and �p 2Ŵh(Gh) suh that(gradh(�� ��);gradh )� (divh ; p� �p) = 0; for all  2 Vh(Gh); (3.3)(divh(�� ��); q) = 0; for all q 2 Ŵh(Gh): (3.4)Moreover,k����kh1;Gh+p��p�ZGh pdx0;Gh � C�Z 2V̂h(Gh) k�� kh1;Gh+Zq2Wh(Gh) kp�qk0;Gh�In addition, the funtion �p an be found with the property ZGh(p� �p)dx = 0 and thespae Ŵh(Gh) in (3:4) an be replaed by Wh(Gh) if the funtion � is in ÆH 1(Gh) and(3:1) in A5 holds.Proof. The unique existene is guaranted by Prop 2.15 in [5℄. The estimate an beobtained by using a similar argument as in Prop 2.16 of [5℄.For onforming methods, XT2Gh Z�T � nids equals zero. So A5 an be onsidered asa measurement on the degree of ontinuity of the �nite element spae. It is well-knownthat the Crouzeix-Raviart family elements[6℄ satisfy (3.2) with � = 1.The superapproximation property is disussed as Assumptions 7.1 and 9.1 in [17℄for onforming elements, but the arguments an be arried over to most nononformingones. The inverse inequality property for the ontinous elements is well-known[17℄. Aproof that holds for both onforming and nononforming elements an be found in [13℄.Many �nite element spaes are known to have the superapproximation property. Inpartiular, it was veri�ed in [4℄ for Lagrange and Hermite elements.We need two tehnial results for the analysis in Setion 5.



480 X.B. LIULemma 3.2. Let Gh be a union of elements, p 2 L2(Gh), and �I 2 �Vh(Gh). Thenthere is a onstant C, independent of h; p, and �I suh that(p; �I)Gh � C(h�kpk0;Gh + kpk�1;Gh)k�Ikh1;Gh ; (3.5)where the onstant � is as in A5.Proof. If we an prove that for any �I 2 �Vh(Gh), there exists a funtion � 2 ÆH(Gh)with the properties: k�k1;Gh � Ck�Ikh1;Gh ; (3.6)k�� �Ik0;G)h � Ch�k�Ikh1;Gh : (3.7)Then a straighforward omputation yields (3.5):j(p; �I)Gh j �j(p; �I � �)Gh j+ j(p; �)Gh j � C(h�kpk0;Ghk�Ikh1;Gh + kpk�1;Ghk�k1;Gh)�C(h�kpk0;Gh + kpk�1;Gh)k�Ikh1;Gh :To prove the existene of suh a funtion, onsider a variational problem: �nd afuntion � 2 ÆH 1(Gh) suh that(grad�;grad ) = (gradh�I ;grad ); for all 2 ÆH 1(Gh): (3.8)Obviously this is uniquely solvable. Moreover,kgrad�k0;Gh � kgradh�Ik0;Gh :So (3.6) is satis�ed. To prove (3.7), note thatk�� �Ik0;Gh = supK2L2(Gh)K 6=0 (�� �I ;K)GhkKk0;Gh :For any K 2 L2(Gh), onsider the boundary value problem:��� = K; in Gh; � = 0; on �Gh:It is easily seen that the solution � 2 ÆH 1(Gh) and �� 2 L2(Gh) with the estimatek�k1;Gh + k��k0;Gh � CkKk0;Gh : (3.9)Applying integration by parts yields(�� �I ;K)Gh = XT�Gh n(grad(�� �I);grad�)T � Z�T (�� �I)n � grad�dso= XT�Gh Z�T �In � grad�ds;



Interior Error Estimates for Nononforming Finite Element Methods of the Stokes Equations 481where we use (3.8). Then, by (3.2) and (3.9) we obtainj(�� �I ;K)Gh j � Ch�(kgrad�k0;Gh + k��k0;Gh)k�Ikh1;Gh � Ch�kKk0;Ghk�Ikh1;Gh ;whih results in (3.7).Lemma 3.3. Let G be a disk, Gh; Gh b G, be a union of elements, and ! 2C10 (Gh). Further assume that � 2 �Vh(Gh) and  2 Vh. Then we havejR(!; �;  )j � C(k k0;Gh + h�k kh1;G)h)k�kh1;Gh : (3.10)Proof. By de�nition (Ref. (2.1))R(!; �;  ) = (�(grad!)t;gradh;  )� (gradh�;  (grad!)t);so it is enough to prove that the �rst tem above is bounded by the right hand side of(3.10). From the proof of Lemma 3.2, there exists a funtion �0 2 ÆH 1(Gh) with theproperties k�0k1;Gh � Ck�kh1;Gh ; k�� �0k0;G)h � Ch�k�kh1;Gh : (3.11)Obviously(�(grad!)t;gradh ) = ((� � �0)(grad!)t;gradh ) + (�0(grad!)t;gradh ) (3.12)and j((�� �0)(grad!)t;gradh )j � Ch�k�kh1;Ghk kh1;Gh : (3.13)In addition,(�0(grad!)t;gradh ) =� XT�Gh n(div(�0(grad!)t);  )T � ZT nt�0(grad!)t dso�Ck�0k1;Gh(k k0;Gh + h�k kh1;Gh); (3.14)where we used (3.2) in the last step. Combining (3.11){(3.14) yields the desired result.Before we get to the next setion, we introdue some notations. Let L and Q beliner funtionals on the spae ÆV h(G) and Wh(G), respetively, we de�nekLk�1;G = sup 2ÆV h(G) 6=0 jL( )jk kh1;Gand kQk0;G = supq2 ÆW h(G)q 6=0 jQ(q)jkqk0;G :4. Interior Duality EstimatesLet (�; p) 2H1 � L2 be some solution to the generalized Stokes equations���+ gradp = F ;



482 X.B. LIUdiv � = K:Regardless of the boundary onditions used to speify the partiular solution, (�; p)satis�es (grad�;grad )� (div ; p) = (F ;  ); for all  2 ÆH 1;(div�; q) = (K; q); for all q 2 L2:Similarly, regardless of the partiular boundary onditions, the �nite element solution(�h; ph) 2 V h �Wh satis�es(gradp�h;gradh )� (divh ; ph) = (F ;  ); for all  2 ÆV h;(divh�h; q) = (K; q); for all q 2Wh:Applying integration by parts yields(gradh(�� �h);gradh )� (divh;  ; p� ph)= XT�
 Z�T nt(grad�� pI) ds; for all  2 ÆV h (4.1)(divh(�� �h); q) = 0; for all q 2Wh; (4.2)where I is the two by two identity matrix. The interior error analysis only depends onthe above interior disretization equations.Our goal here is to estimate funtion satisfying (4.1) and (4.2). We will use thesame duality tehniques as in [1℄ and [14℄. To simplify notations, we onsider a pair offuntions (�; p) 2 (H1 + V h)� L2 that satis�es(gradh�;gradh )� (divh;  ; p) = L( ); for all  2 ÆV h (4.3)(divh�; q) = Q(q); for all q 2Wh; (4.4)for some given linear funtionals L and Q, whih may represent onsisteny errors outof using nononforming elements or numerial integrations.Theorem 4.1. Let G0 b G be onentri open disks with losures ontained in 
and s an arbitrary nonnegative integer. Then there exists a onstant C suh that if(�; p) 2 (H1 + V h)� L2 satis�es (4:3) and (4:4), we havek�k0;G0 + kpk�1;G0 �C(h�k�kh1;G + h�kpk0;G + k�k�s;G+ kpk�1�s;G + kLk�1;G + kQk0;G); (4.5)where � is de�ned in A5. Moreover, if L( ) = 0 for all  2 ÆZ h(G) and Q(q) = 0 forany q 2 Yh, thenk�k0;G0 + kpk�1;G0 � C(h�k�kh1;G + h�kpk0;G + k�k�s;G + kpk�1�s;G): (4.6)In order to prove the theorem we �rst establish a lemma.



Interior Error Estimates for Nononforming Finite Element Methods of the Stokes Equations 483Lemma 4.2. Under the hypotheses of Theorem 4:1, there exists a onstant C forwhih k�k�s;G0 + kpk�s�1;G0 �C(h�k�kh1;G + h�kpk0;G + k�k�s�1;G+ kpk�s�2;G + kLk�1;G + kQk0;G):Moreover, the last two terms an be taken away if L( ) = 0 for any  2 Zh andQ(q) = 0 for any q 2 Yh.Proof. Let G0 be a disk suh that G0 b G0 � G. Choose a funtion ! 2 C10 (G0)whih is identially 1 on G0. Also hoose a funtion Æ 2 C10 (G0) with integral 1. Thenkpk�s�1;G0 � k!pk�s�1;G = supg2 ÆH s+1(G)g 6=0 (!p; g)kgks+1;G : (4.7)Now (!p; g) = �!p; g � Æ ZG gdx�+ (!p; Æ) ZG gdxand learly ���(!p; Æ) ZG gdx��� � Ckpk�s�2;Gkgk0;G:Sine g � Æ ZG ddx 2 Hs+1(G) \ L̂2(G) it follows from Lemma 2.1 that exist � 2Hs+2(G) \ ÆH 1(G) and P 2 Hs+1(G) \ L̂2(G) suh that���+ gradP = 0; (4.8)div� = g � Æ ZG gdx: (4.9)Furthermore, k�ks+2;G + kPks+1;G � Ckgks+1;G: (4.10)Then, by (4.9), we obtain�g � Æ ZG gdx; !p� =(div�; !p) = (div(!�); p)� (grad!; p�)=(div(!�)I ; p) + f(div[w�� (!�)I ℄; p)� (gradw; p�)g= : A1 +B1: (4.11)Here the supersript I is the approximation operator spei�ed in property A1 of Setion3. Choosing  = (!�)I in (4.3), we getA1 :=(div(!�)I ; p) = (gradh�;grad(!�)I)�L((!�)I)=(gradh�;grad(!�)) + (gradh�;grad[(!�)I � !�℄)�L((!�)I)=(gradh(!�);grad�)�L((!�)I) + fR(!;�; �)+ (gradh; �;grad[(!�)I � !�℄)g



484 X.B. LIU= : A2 �L((!�)I) +B2; (4.12)where R is de�ned in (2.1). Next, by using (4.8) and integration by parts we obtainA2 :=(gradh(!�);grad�) = (divh(!�); P ) + n XT�Gh Z�T !nt(grad�� PI)�dso= : (divh�; !P ) + (grad!; P�) +A3=f(divh�; !P � (!P )I) + (grad!; P�)g +Q((!P )I) +A3= : B3 +Q((!P )I) +A3where we applied (4.4) in the last step.Applying the approximation property A1, the onsisteny property A5, (2.2), andthe Cauhy-Shwartz inequality, we getjB1j � C(hk�k2;Gkpk0;G + k�ks+2;Gkpk�s�2;G);jB2j � C(k�k�s�1;Gk�ks+2;G + hk�kh1;Gk�k2;G);jB3j � C(hk�kh1;GkPk1;G + k�k�s�1kPks+1;G); (4.13)jA3j � Ch�(k�k2;G + kPk1;G)k�kh1;G;jL((!�)I)j � CkLk�1;G(k�k1;G + hk�k2;G);jQ((!P )I)j � CkQk0;G(kPk0;G + hkPk1;G):Substituting (4.10) into (4.13) and ombining the result with (4.7), (4.11), and (4.12),we arrive at (4.5) (note that usually � � 1). Using a similar duality argument, one anprove that k�k�s;G0 is also bounded above by the right hand side of (4.5). We omit ithere. For the treatment when V h is onforming, please refer to [1℄.Inequality (4.6) is obvious from the above proof.Proof of Theorem 4.1. This an be ahieved by iteriation ([1℄, [14℄).5. Interior Error EstimatesIn this setion we state and prove the mian result of this paper, Theorem 5.3. Firstwe obtain in Lemma 5.1 a bound on solutions of the homogeneous disrete system. InLemma 5.2 this bound is iterated to get a better bound, whih is then used to establishthe desired loal estimate on disks. Finally Theorem 5.3 is extends this estimate toarbitrary interior domains.Lemma 5.1. Let L be a linear funtional on V h and Q a linear funtional on Wh.Assume that (�; p) 2 V h �Wh satis�es(gradh�;gradh )� (divh;  ; p) = L( ); for all  2 ÆV h; (5.1)(divh�; q) = Q(q); for all q 2 ÆW h (5.2)Then for any onentri disks G0 b G b 
, and any nonnegative integer t, we havek�kh1;G0 + kpk0;G0 �C(h�k�kh1;G + h�kpk0;G



Interior Error Estimates for Nononforming Finite Element Methods of the Stokes Equations 485+ k�k�t;G + kpk�t�1;G + kLk�1;G + kQk0;G); (5.3)where C = C(t;G0; G).Proof. Let Gh, G0 b Gh b G, be as in Assumption A4. Let G0 and G1 bedisk onentri with G0 and G, suh that G0 b G1 b Gh b G0 b G, and onstrut! 2 C10 (G1) with ! � 1 on G0. Set ~� = !� 2H1h(Gh), ~p = !p 2 L2(Gh). By Lemma3.1, we na de�ne funtions � ~� 2 �V h(Gh) and �~p 2 Ŵh(Gh) by the equations(gradh(~�� � ~�);gradh )� (divh~p� �~p) = 0; for all  2 �V h(Gh); (5.4)(divh(~�� � ~�); q) = 0; for all q 2 Ŵh(Gh): (5.5)Furthermore, there exists a onstant C suh thatk~�� � ~�kh1;Gh + ~p� �~p� ZGh ~pdx0;Gh�C� inf 2 �V h(Gh) k~� kh1;Gh + infq2Wh(Gh) k~p� qk0;Gh��Ch(k�kh1;G0 + kpk0;G0); (5.6)where we used the superapproximation property in the last step.To prove (5.3), note thatk�kh1;G0 + kpk0;G0 �k~�kh1;Gh + k~pk0;Gh � k~�� � ~�kh1;Gh+ ~p� �~p� ZGh ~pdx0;Gh + k� ~�kh1;Gh + k�~pk0;Gh +  ZGh !pdxGh�Ch(k�kh1;G0 + kpk0;G0) + kpk�1;G0 + k� ~�kh1;Gh + k�~pk0;Gh : (5.7)Next, we bound k� ~�kh1;Gh . In (5.4) we take  = � ~� to obtain, for a positive onstantC1, C1(k� ~�kh1;Gh)2 �(gradh� ~�;gradh� ~�)=(gradh ~�;gradh� ~�)� (divh� ~�; ~p� �~p): (5.8)For the �rst term on the right hand side of (5.8), we have(gradh ~�;gradh� ~�) =(gradh(!�);gradh� ~�)=(gradh�;gradh(!� ~�))�R(!; � ~�; �) = (gradh�;gradh(!� ~�)I)+ f(gradh�;grad[!� ~�� (!� ~�)I ℄)�R(!; �~;�)g= : G1 +H1: (5.9)To bound G1, we take  = (!� ~�)I in (5.1) to getG1 =(divh(!� ~�)I ; p) +L((!� ~�)I)=(divh(!� ~�); p) + (divh[(!� ~�)I � !� ~�℄; p) +L((!� ~�)I)



486 X.B. LIU=(divh� ~�; !p) + f(grad!; p� ~�) + (div[(!� ~�)I � !� ~�℄; p)g+L((!� ~�)I)= : (divh� ~�; ~p) +H2 +L((!� ~�)I): (5.10)Combining (5.8), (5.9), and (5.10), we obtianC1k� ~�k21;Gh �(divh� ~�; ~p) +H1 +H2 � (divh� ~�; ~p� �~p) +L((!� ~�)I)=(divh� ~�; �~p) +L((!� ~�)I) +H1 +H2: (5.11)Taking q = �~p in (5.5) yields(divh� ~�; �~p) =(divh ~�; �~p) = (divh(!�); �~p) = (divh�;w�~p) + (grad!; �~p�)=f(divh�;w�~p� (!�~p)I) + (gradw; �~p�)g+Q((!�~p)I)= : H3 +Q((!�~p)I) (5.12)where we used (5.2) at the last step. Applying he Shwarz inequality, Lemma 3.3,inequality (5.6), and the superapproximation property A2, we getjH1j � C(h�k�kh1;G0 + k�k0;G0)k� ~�kh1;Gh ;jH2j � C(kpk�1;Gh + h�kpk0;Gh)k� ~�kh1;Gh ;jH3j � C(hk�kh1;G0 + k�k0;G0)k�~pk0;Gh ;jL((!� ~�)I)j � CkLk�1;Gk� ~�kh1;Gh ;jQ((!� ~�)I)j � CkQk0;Gk� ~�k0;Gh ;Combining the above three inequalities with (5.11) and (5.12), and using the arithmetri-geometry mean inequality, we arrive at(k� ~�kh1;GH )2 �C1(h2�(k�kh1;G0)2 + k�k20;G0 + h2�kpk20;Gh + kpk2�1;Gh)+ C2(k�k0;G0 + hk�kh1;G0 + kQk0;G)k�~pk0;Gh+ CkLk�1;Gk� ~�kh1;Gh : (5.13)Next we estimate k�~k0;Gh . By using the inf-sup ondition,k�~pk0;Gh � C sup 2 �V h(Gh) 6=0 (divh ; �~p)Ghk kh1;Gh : (5.14)To deal with the numberator on the right hand side of (5.14), we apply (5.4),(divh ; �~p) =(divh ; ~p)� (gradh(~�� � ~�);gradh )=(divh ; !p)� (gradh(~�� � ~�);gradh )=(divh(! ); p)� (gradh(~�� � ~�);gradh )� (grad!; p )=(divh(! )I ; p)� (gradh(~�� � ~�);gradh )+ (divh(! � (! )I); p)� (grad!; p ): (5.15)



Interior Error Estimates for Nononforming Finite Element Methods of the Stokes Equations 487We use (5.1) to attak (divh(! )I ; p) and get(divh(! )I ; p) =(gradh�;grad(! )I)�L((! )I)=(gradh�;gradh(! )) + (gradh�;gradh[(! )I � ! ℄)�L((! )I)=(gradh(!�);gradh ) + fR(w; ; �) + (gradh�;grad[(! )I � ! ℄)g�L((! )I) =: (gradh ~�;gradh ) +M1 �L((! )I): (5.16)Combining (5.13) and (5.16), we get(divh ; �~p) =(gradh� ~�;gradh ) + f(divh(! � (! )I); p)� (gradw; p )g +M1 �L((! )I )= : (gradh� ~�;gradh ) +M2 +M1 �L((! )I ): (5.17)Then applying the superapproximation property, the Shwarz inequality, and Lemma3.3, we arrive at jM1j � C(k�k0;G0 + h�k�kh1;G0)k kh1;Gh ;jM2j � C(h�kpk0;Gh + kpk1;Gh)k kh1;Gh ;j(gradh� ~�;gradh )j � Ck� ~�kh1;Ghk kh1;Gh ;jL((! )I)j � CkLk�1;Ghk kh1;Gh :Combining (5.14) and (5.17) with the above three inequalities, we obtaink�~pk0;Gh �C(h�k�kh1;G0 + k�k0;G0 + h�kpk0;Gh+ kpk�1;Gh + kLk�1;G0 + k� ~�kh1;Gh): (5.18)Substituting (5.18) into (5.13), we obtaink� ~�kh1;Gh �C(h�k�kh1;G0 + k�k0;G0 + h�kpk0;Gh+ kpk�1;G)h + kLk�1;G0 + kQk0;G): (5.19)Thus, substituting (5.19) bak into (5.18), we �nd that k�~pk0;Gh is also bounded aboveby the right hand side of (5.19). Therefore, from (5.7) we obtaink�kh1;G0 + kpk0;G0 �C(h�k�kh1;G0 + k�k0;G0 + h�kpk0;Gh+ kpk�1;Gh + kLk�1;G0 + kQk0;G):Applying Theorem 4.1 for the ase with G0 inplae of G0, we �nally arrive atk�kh1;G0 + kpk0;G0 �C(h�k�kh1;G + k�k�t;G + h�kpk0;G+ kpk�t�1;G + kLk�1;G + kQk0;G):By a standard iteration argument, one an prove the following[1;14℄.



488 X.B. LIULemma 5.2. Suppose the onditions of Lemma 5:1 are satis�ed. Thenk�kh1;G0 + kpk0;G0 � C(k�k�t;G + kpk�t�1;G + kLk�1;G + kQk0;G): (5.20)We now state the main result of the paper.Theorem 5.3. Let 
0 b 
1 b 
. Suppose that (�; p) 2 H1 � L2 (the exatsolution) satis�es �j
1 2 Hm(
1) and pj
1 2 Hm�1(
1) for some integer m > 0.Assume that (�h; ph) 2 V h�Wh (the �nite element solution) is given so that (4:1) and(4:2) hold. Let t be a nonnegative integer. Then there exists a onstant C dependingonly on 
1;
0 and t, suh thatk�� �hkh1;
0 + kp� phk0;
0 �(k�k1;
1 + kpk0;
1 + �(�; p;
1)+ k�� �hk�t;
1 + kp� phk�t�1;
1); (5.21)k�� �hkh0;
0 + kp� phk�1;
0 �(h�k�k1;
1 + h�kpk0;
1 + h��(�; p;
1)+ k�� �hk�t;
1 + kp� phk�t�1;
1); (5.22)with �(�; p;
1), de�ned in (5:32) below, represents the onsisteny error of the �niteelement spae V h (the order of this term depends on both V h and the smoothness ofsolution (�; p) on 
1), and � is given in (3:2).This theorem will follow easily from a slightly more loalized version.Lemma 5.4. Suppose the hypotheses of Theorem 5:3 are ful�lled and, in addition,that 
0 = G0 and 
1 = G1 are onentri disks. Then the onlusion of the theoremholds.Proof. Let G00 b G0 be further onentri disks stritly ontained between G0 andG and let Gh be a domain stritly ontained between G0 and G for whih propertiesA3 and A4 hold. Thus G0 b G00 b G0 b G b 
:Take ! 2 C10 (G0) identially 1 on G00 and set ~� = w�, ~p = !p. Let � ~� 2 �V h(G),�~p 2Wh(G) be de�ned by(gradh(~�� � ~�);gradh )� (divh ; ~p� �~p) = 0; for all  2 V h(Gh); (5.23)(divh(~�� � ~�); q) = 0; for all q 2Wh(Gh): (5.24)together with ZGh �~pdx = ZGh ~pdx. Then using Lemma 3.1 and A1 we havek~�� � ~�hkh1;Gh + k~p� �~phk0;Gh � C� inf 2barV h(Gh) k~��  kh1;Gh + infq2Wh(Gh) k~p� qk0;Gh��C(k�k1;Gh + kpk0;Gh): (5.25)



Interior Error Estimates for Nononforming Finite Element Methods of the Stokes Equations 489Let's now estimate k� � �hk1;G0 and kp � phk0;G0 . First, the triangle inequalitygives usk�� �hkh1;G0 + kp� phk0;G0 � k�h � � ~�kh1;G0 + kph � �~pk0;G0+ k� ~�� �hkh1;G0 + k�~p� phk0;G0�~�� � ~�kh1;Gh + k~p� �~pk0;Gh + k� ~�� �hkh1;G0 + k�~p� phk0;G0�C(k�kh1;Gh + kpk0;Gh + k� ~�� �hkh1;G0 + k�~p� phk0;G0): (5.26)From (5.23), (5.24) and (4.3), (4.4) we �nd(gradh(�h � � ~�);gradh )� (divh ; ph � �~p)= XT�Gh Z�T nt(grad�� pI) ds; for all  2 ÆV (G00);(divh(�h � � ~�); q) = 0; for all q 2Wh(G00):De�ne �(�; p;Gh) = sup 2 ÆV (Gh) 6=0 XT�Gh Z�T nt(grad�� pI) dsk kh1;Gh (5.27)We next apply Lemma 5.2 to �h� � ~� and ph� �~p with G replaed by G00. Then itfollows from (5.20) thatk�h � � ~�k1;G0 + kph � �~pk0;G0 � C(k�h � � ~�k�t;G00 + kph � �~pk�t�1;G00) + �(�; p;G00)�C(k�� �hk�t;G00 + kp� phk�t�1;G00 + k�h � � ~�k�t;G00+ kph � �~pk�t�1;G00 + �(�; p;Gh))�C(k�� �hk�t;G + kp� phk�t�1;G + k~�� � ~�kh1;Gh+ k~p� �~pk0;Gh + �(�; p;Gh)):In the light of (5.26), (5.25), and the above inequality, we havek�� �hkh1;G0 + kp� phk0;G0 �k�k1;G + kpk0;G + �(�; p;G)+ k�� �hk�t;G + kp� phk�t�1;G): (5.28)To prove a loal version of (5.22), we note that L( ) = 0 for any ontinuous funtion . Then apply Theorem 4.1 to the disks G0 and G0 and getk�� �hk0;G0 + kp� phk�1;G0 � C(h�k�� �hkh1;G0 + h�kp� phk0;G0+ k�� �hk�t;G0 + kp� phk�t�1;G0):Then, applying (5.28) with G0 replaed by G0, we obtain the desired resultk�� �hk0;G0 + kp� phk�1;G0 � C(h�k�k1;G + h�kpk0;G + h��(�; p;G)



490 X.B. LIU+ k�� �hk�t;G + kp� phk�t�1;G):Proof of Theorem 5.3. The argument here is same as in Theorem 5:1 of [14℄ and[1℄. We skip it here.Let ÆU h denote the largest subspae fo ontinuous funtions in ÆV h. Then it is easilyseen that we an derive the following result from Theorem 5.3.Corollary 5.5. Under the onditions of Theorem 5:3, we havek�� �hkh1;
0 + kp� phk0;
0 �C� inf 2 ÆU h k��  k1;
1 + infq2Wh kp� qk0;
1+ �(�; p;
1) + k�� �hk�t;
1 + kp� phk�t�1;
1�;k�� �hk0;
0 + kp� phk�1;
0 �C�h� inf 2 ÆU h k��  k1;
1 + h� infq2Wh kp� qk0;
1+ h�hi(�; p;
1) + k�� �hk�t;
1 + kp� phk�t�1;
1�:Now we apply the above result to the ase when the veloity is approximated by thek-h order Crouzeix-Raviart elements and the pressure by the disontinuous pieewisefuntions of order k � 1. It is easy to hek that the properties A1{A5 are satis�ed.Moreover, the following holds[6℄:�(�; p;
1) � Chl(k�kl+1 + kpkl;
1); with 1 � l � k;for the k-th order element, if � 2 H l+1(
1) and p 2 H l(
1). We then have (one analso hek that � = 1):Theorem 5.6. Let V h be the spae of the k-th order Crouzeix-raviart nononform-ing triangular elements and Wh the spae of disontinuous (k�1)-th order polynomials.For some domians 
0 b 
1 b 
, assume that � 2 H l(
1) and p 2 H l � 1(
1) with1 � l � k+1. Let t be an arbitrary integer. Then there is a onstant C depending onlyon 
0, 
1, and t, and a positive number h1 suh that for h 2 (0; h1℄k�� �hkh1;
0 + kp� phk0;
0 �C(hl�1k�kl;
1 + hl�1kpkl�1;
1+ k�� �hkt;
1 + kp� phk�t�1;
1);k�� �hk0;
0 + kp� phk�1;
0 �C(hlk�kl;
1 + hlkpkl�1;
1+ k�� �hk�t;
1 + kp� phk�t�1;
1):6. Convergene of Di�erene QuotientsThis setion is based onthe fundamental investigation in Nitshe and Shatz [14,Setion 6℄. Our goal is to obtain the onvergene of di�erene quotients of the �-nite element solution to the derivative fo exat solution in some interior domain forwhih the �nite element spae is translation invariant. Here we will only onsider theCrouzeix-Raviart family of elements. As an appliation, we will prove the interior su-peronvergene of some lass of di�erene quotients of the �nite element solution to thederivatives of the exat solution.



Interior Error Estimates for Nononforming Finite Element Methods of the Stokes Equations 491The notations used here follow those in [16, Setion 6℄.Let � = (�1; �2) and � = (�1; �2). For any funtion f(x), letT �h f(x) = f(x+ �h):A general di�erene operator an be written asD�hf = Xj�j�M C��(h)T �h f; (6.1)for some integer M . Here the notation onvention is that D�hf approximates D�f withD� the di�erential operator. As usual, the vetor version of D�h is expressed by a boldfae symbol, i.e., D�h .We will say that the mesh is uniform and translation invariant on a neighborhoodof 
0, 
1, if there is an h1 (in general depending on �, 
0, and 
1) suh that for allh 2 (0; h1℄,T �h� 2 ÆV h(
1) for all � 2 ÆV h(
0); and T �h q 2 ÆW h(
1) for all q 2 ÆW h(
0); (6.2)with j�j �M for some �xed integer M (as in (6.1)).We have the following result.Theorem 6.1. Let Vh be the spae of the k-th order Crouzeix-Raviart elementand Wh the spae of the (k � 1)-th order disontinuous element. Moreover, supposethat the mesh is uniform and translation invariant on a neighborhood of 
0, i.e., (6:2)is satis�ed. Let D�h (D�h ) be a �nite di�erene operator in the form of (6:1), and tany nonnegative integer, �xed and arbitrary. If 1 � l � k + 1, � 2 H l+j�j(
1), andp 2 H l�1+j�j(
1), then there exist an h0 suh that for all h 2 (0; h0℄kD�h(�� �h)k0;
0 + kD�h (p� ph)k�1;
0) � C(hlk�kl+j�j;
1 + hlkpkl�1+j�j;
1+ k�� �hk�t;
1 + kp� phk�t�1;
1 + kp� phk�t�1;
1); (6.3)with C = C(t;
0;
1; j�j).Proof. Choose two intermediate domains 
00 and 
01 suh that 
0 b 
00 b 
01 b
1. Then, by using the fat that the di�erentiation and the �nite di�erene operatorommute, it is easily seen that for h suÆiently small and  2 ÆV h(
0) and q 2 ÆW h(
0)(gradhD�h(�� �h);gradh )� divh ;D�h (p� ph)) = (gradh(�� �h);D��h  )� (divhD��h  ; p� ph) =: L(D��h  )and (divhD�h(�� �h); q) = (divh(�� �h);D��h q) = 0;where D��h (D��h ) denotes the di�erene operator adjoint to D�h(D�h ) with respet to theL2 inner produt. On the other hand, from using integration by parts, we get for any 2 ÆV h(
1), L(D��h  ) = XT�
1 Z�T nt(grad�� pI)D��h  ds



492 X.B. LIU= XT�
1 Z�T nt(gradD�h��D�hpI) ds:ThereforekLk�1;
00 � Chl(kD�h�kl;
01 + kD�hpkl�1;
01) � Chl(k�kl+j�j;
1 + kpkl�1+j�j;
1):Then applying Theorem 5.6 for t0 = t+ j�j yieldskD�h(�� �h)k0;
0 + kD�h (p� ph)k�1;
0 � C(hl(kD�h�kl;
1 + hlkD�hpkl�1;
1+ kD�h(�� �h)k�t0;
00 + kD�h (p� ph)k�t0�1;
00)�C(hlk�kl+j�j;
1 + hlkpkl�1+j�j;
1 + k�� �hk�t;
1 + kp� phk�t�1;
1);where we use the fat thatkD�h(�� �h)k�t0;
00 � Ck�� �hk�t;
1and kD�h (p� ph)k�t0�1;
00 � Ckp� phk�t�1;
1 ;with C independent of h; � and p, and �h and ph. So (6.3) is proved.The di�erene operator D�h is said to approximate a derivative D� with order ofauray r in L2 if for any pair of domains 
0 b 
1kD�f �D�hfk0;
0 � C(
0;
1)hrkfkr+j�j;
1 ;for all h suÆiently small and u 2 Hr+j�j(
1). We have the following results:Theorem 6.2. Suppose that the onditions of Theorem 6:1 are satis�ed and letD�h (D�h) approximate D�(D�) with order of auray r in L2. Furthermore, let t bea nonnegative integer, �xed but arbitrary. Then there exists an h1 suh that for allh 2 (0; h1℄kD���D�h�hk0;
0 + kD�p�D�hphk�1;
0�C(hrk�kr+j�j;
1 + hrkpkr�1+j�j;
1 + k�� �hk�t;
1 + kp� phk�t�1;
1);with C = C(t;
0;
1).As a onrete example of the above Theorem, let us assume that V h is the spaeof nononforming linear elements and Wh the spae of pieewise onstants. Let 
 be aonvex polygon. Assume further that F is smooth. Then for any 
0 b 
 and D�h (D�h)a di�erene operator of seond order auray (r = 2 and j�j = 1),kD���D�h�hk0;
0 + kD�p�D�hphk�1;
0�Ch2(k�k3;
1 + kpk2;
1 + k�k2;
 + kpk1;
);with 
0 b 
1 b 
. This is an interior superonvergene result in energy norm. Toobtain similar result in maximum norm, we use the tehnique of Bramble, Nitshe,



Interior Error Estimates for Nononforming Finite Element Methods of the Stokes Equations 493and Wahlbin [bramble nitshe wahlbin℄ where interior estimates in maximum normwere obtained by using only the inverse inequalities and the interior error estimates inenergy norms, we obtain kD���D�h�k1;
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