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Abstract

In this paper, we construct the real-valued periodic orthogonal wavelets. The
method presented here is new. The decomposition and reconstruction formulas in-
volve only 4 terms respectively. It demonstrates that the formulas are simpler than
that in other kinds of periodic wavelets. Our wavelets are useful in applications
since it is real valued. The relation between the periodic wavelets and the Fourier
series is also discussed.
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1. Introduction

Wavelets have recently received a great deal of attention in such areas as signal
processing and image processing ([12], [8]). Various methods to construct wavelets
have been given ([14], [13], [9], [7]). It is well known that in mathematics and mathe-
matic physics many periodic problems are encountered. In application areas, the input
signals are usually finite length which may lead extra computations. To avoid this,
various efforts have been made ([5], [10], [21]), among which periodization method is
an important approach, i.e., the finite length input signal is first periodized, then a
periodic wavelet is used which motivated an extensive study of periodic wavelets.

Y. Meyer ([14]) studied periodic multiresolutions by periodizing known wavelets.
Perrier and Basdevant ([16]) stated the construction and algorithm of periodic wavelets,
their algorithm makes heavy use of the fast Fourier transform(FFT). Chui and Mhasker[6]
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constructed the trigonometric wavelets. Plonka and Tasche ([17], [18]) studied p-
periodic wavelets for general periodic scaling functions. Their algorithms ([19]) are
based on Fourier technique. Chen Han-Lin made a full study of periodic wavelets when
the scaling functions are derived from different kinds of spline functions (see [1], [2],
(3], [4]). Each equation in the decomposition and reconstruction algorithms involves
only two terms which does not depend on the regularity of the underlying wavelets.
The discret Fourier transform is used implicitly. The approximation error estimations
are also given. Koh, Lee and Tan ([11]) gave a general framework of periodic wavelets
where two terms are obtained and the two-term algorithms operate on the frequency
domain is also realized. Narcowich and Ward[15] investigated the periodic scaling
functions and wavelets generated by continuously differentiable periodic functions with
positive Fourier coefficients. They also discussed the localization of scaling functions
and wavelets. The method of using the periodic wavelets, e.g., to denoise and to detect
singularity, is also pointed out.

Our interest in this paper is to construct real-valued periodic orthogonal wavelets.
The relation between the periodic wavelets and the Fourier series is also discussed. Our
method to construct periodic wavelet is quite different from Narcowich and Ward’s
([15]). The conditions of the underlying function ¢ is original.

This chapter is organized as follows. We will finish this section with some notations.
The periodic scaling functions and nested subspaces will be constructed in Section 1.
In Section 2, the dilation equations and periodic wavelets are discussed. Section 3 will
devoted to the discussion of the relations between periodic wavelets and the Fourier
series. Some examples will be given in Section 4.

We will use the following notations.

Let T'= Kh where K is a positive even integer, h a positive real number, K = 2.
We also use N; := 2/N,K; := 2K, hj := T/K; = h/27. Note that h;K; = hK =

]
T. Lo [0,T] represents the set of all periodic, square-summable functions defined on

1 T —
[0,T], equipped with the inner product < f,g >= ?/ f(x)g(x)dz.
0

2. The Scaling Functions

In this this section, we will construct the scaling functions and discuss their prop-
erties. To do this, we suppose that a compactly supported real valued function ¢(z) €
L?(R) satisfies
(i) For some p € Z%,2p < N the support of ¢ : suppp C [—ph, ph]

(ii) ¢ is refinable, i.e. there exists {cz} € 12, s.t.

o(z) = > crp(2z — kh) (2.1)
keZz
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(iii)
/ p(z)dz # 0 (2.2)
JR

(iv) {o(z — lh)}fif ;1 are linearly independent on [0, T
We note that the summation in condition (2.1) is finite since ¢ is compactly sup-

ported ( cf. [R] ). Therefore we also have

p(x) = > k(2 — kh) (2.3)
k| <p

Definion 2.1. We denote the 29— dilation of ¢ as @7, i.e. ¢/ (z) = p(2/z). The

T-periodization of ¢ is denoted by ®J .

I () == Z @' (x + AT —ahj) for a€Zj€Z" z€l0,T]
AEZ

Our construction will heavely depend on the following two functions

K1
2 )\
Z cos 7% ( ) (2.4)
j71 27r)\oz
Z sin :L‘) for a€Z (2.5)

J

Which can be regarded as the Discrete Cosine Transform (DCT in abbreviation)
and Discrete Sine Transform (DST) of {@&(r)}féal
Definition 2.2. A periodic multiresolution analysis (PMA) is a nested subspace
sequence {Vj};>0 satisfying
i
Vi C Vi forany >0 (2.6)
ii)
Uj>oVj is dense in 10}2 [0, 7] (2.7)
iii) For any j > 0, there exists a function f; in V; such that the hj—shifts of
i Afi( - lhj)}lK:j[;1 produce Vj, i.e.

Vi = span{f;j(- —1h;) : 1=0,---, K; — q}

To construct a PMA, we first note that :

Lemma 2.1.

& () = > Ck@iilg)\(l“) for z €10,T]
[k|<p
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This is a simple conclusion of Definition 2.1 and (2.1)

Therefore, if we define V; = span{®’, : @ = 0,1,---,K; — 1}, then V; C Vj41. To
show that {V}};>0 is a PMRA, we need to verify that

Lemma 2.2. UjZUVj 222 [O,T]

Proof. Let V = U;>0V;, we shall show that v = {0}.

First, for f € V; we have f(z — h;) € V for any j > 0 which implies that V is a
h;j shift invariant space for any j > 0.

Suppose that g(z) € v, then 0 =< f,g >=< f(- — Mhj),g > for N€ Z,j € Z*

Let the Fourier coefficients of f(z) and g(x) be {s,},cz and {n)} ez respectively,

ie.
g(z) = meap(—2midz/T)
AEZ
flz) = Z spexp(—2mipz/T)
nezZ
Then
flz = Ahj) = Z spexp(—2mipz/T)exp(2mipAh; /T)
HEZ
and
0=<f(-— Ahj),g(-) >= Z sufuerp(—2mwipAh;/T)
HeZ
Kj—1
= > > Svruk vt erp(—2mivAh; /T)
v=0 pez
By the DCT theory, we get
ZSV-HLKjﬁU-HLKj =0 for J >0, VZO,l,"',Kj*].

HeZ

Since Z suMy is absolutely convergent. We have
uez

Syl = — Z Sv+uK; ﬁu—l—qu
HEZ A0

tends to zero as 7 — oo, hence
sy, =0 for any veZ

Putting f(x) = @6 note that the support of ¢(z) is contained in one period,
1 (7 ,
Su = /i dlexp(2mizv/T)dx

2
T

1 5 . .
=7 /ZT o(x)exp2mizv27 |T)dx - 277
7
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We obtain

T

1 . .

T /2T o(x)erp(2mizv2 7 /T)dx -2 77, =0
-3

Let j — oco,then we have

P

Recall that (2.2) and suppy C [—ph,ph] C |

ol

o(z)dxn, =0

<3

—L.L]. It follows that m, = 0 for v € Z
which implies that g(z) = 0 and V* = {0}. The Lemma follows.

Now, we turn to discuss the basis in Vj.

Lemma 2.3. Suppose <I>{;l =0,1,---,K; — 1 is defined by Definition 1, then
{@{}l]ijjpp;f is linearly independent in [0,T]

Proof. To this end, suppose that

Kj—l—pfl '
> a@!(z—1hj) =0 for  z€[0,T]
I=—p+1
A change of variable y = 27z yields that

K;j+p—1 ‘
Z ap(y—1h) =0 for y € [0,27T]
I=—p+1
if y is restricted to the subinterval [mT, (m + 1)T],then

mK+p—1+K

> aply—1h) =0

for
I=mK-—-p+1

y € [mT,(m+1)T|

which is equivalent to

mK+p—1+K

> ap(t+mkh —1h) =0

for te[0,T]
I=mK—p+1
therefore
K+p—1
> Cpmrp(t —1h) =0 for  te[0,T]
[=—p+1

By the linear independence of {p(t — lh)}{it’;;ll, we obtain that
=0 for Il=mK-p+1,---,(m+1)K+p—1
when m varies from 0 to 2/ — 1, we have

=0 for l=—p+1,,27K+p—1
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which implies that {7/ (t — lh; i K; +p+1 is linearly independent on [0, T]. The proof of

Lemma 2.3 is finished.

Lemma 2.3 gives a basis for V; which is generally non-orthogonal. Now, we want to
give another basis for V; which is orthogonal. Before doing that, we prove the following
lemma.

Lemma 2.4. For p=0,1,---,K; — 1

2mpa

(I)ﬂ(l") = — > (CY(z) cos 27;{_1{0 + 87 (z) sin )

a=0 J J

Proof. By the definitions of @i, CJ and S/, recall the following trigonometric

identity,
szl 2mlon 2mlon N
oS cos =N,
- K; K; ’
for
ai+ar =0 (mod K;) and a1 —ax #0 (mod Kj)
or

ai —oap =0 (mod K;) and oy +ax#0 (mod Kj)

For 0 < pu < Nj, we have

Kj—1 K;j—1 K;j—1
2mpa 2mpa 21 A«
2 Cal)eos === 3, cos e D cos T (=)
a=0 a=0 A=0
Kj—1 Kzl 277,“041 27‘()\0[2)(1)]( )
= co
A=0 a=0 K;
= N;j(®,(z) + P, ”(x))
Similarly, for 0 < p < Nj, we have
. 2mpa ;
Z Sh(a) sin T = Ny (@ (0) — Tl ()
It follows that for 0 < u < N;
Kj—1
1 ¢ 27l 27 e
W) = X (Clheos T 4 5w sin L)
a=0 J J
Kj—1
; 1 3 - 2w po 27 e
Pl #) = 2 O (Cheos T ) () sin 717
J a=0 J J
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which is eqivalent to

2mpo

; 1 , 2 )
P (x) = X 3 (€Y cos 7;{“.‘1 + 87 () sin

for 0 <pu < Kj—1.
The proof of the lemma is completed.

Theorem 2.1. Suppose CJ, S} is defined by Definition 1, S = {C) : a =
0,1,---, NNy, Sl:ia=1,2 - ,Nj —1}. Then S7 is an orthogonal basis for V.

Proof. First, we note that the periodicity of CJ and SJ.

J o _ _
C C)\K +a T CAKJ*(I’ S S)\K +a S)\KJ «

forxe Z
From the definition of CJ,SJ, we know that each element of S/ can be represented
by the linear combination of {@Zl}azo . Lemma 2.4 and the periodicity of CJ and SJ,
imply that each element of 87 can be represented by linear combination of functions in
S7. Since {@Zl}fial is a basis for V;. Therefore 87 is a basis for V;.

Now, we need only to prove that different elements of S7 are orthogonal.

Only one equality

<C

ay?

CZ;Z >=0 for 0 <aj,as <Nj,a1 #

needs to proved, since others are similar.
By the definition of CJ

(o'R]

recall the periodicity of @%(m) and cosz, for ay # ag,0 <
ap,ap < Nj, a1 # az, we have

K;—-1K;—

27 21 j
<0y ,Ci, >= Z Z cos LA (g 2202 @f\l,q)g\z >
A1=0 A2=0 K; K;
1K
2 A 21
_ Z Z cog 2T 7rK2a2_ / O (1)1 (y + (M — Ma)hj)dy
A1=0 A2=0 K; j
—1-X
21 27 (A 2 (.
= Z Z cos ﬂKlal oS ul 1[;— L ?/ D (y) @4, dy
A1=0 uff,\l J J 0
Kj—1K;—
2 A 2 (A I
— Z Z T 1a1 cos ult 1[;_ pas < &p, @7 >
A=0 p=0 J
K1 K1
27 J 2 2
:Z<<I>%,¢]>cs 'ua2-Zcos TAL g Z2L22
K; K;
u=0 J A1=0 J J

=0
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The theorem follows.

3. Scaling Relations and Periodic Wavelets

In this section, the scaling relations of the orthogonal basis are given and the periodic
wavelets are constructed. We will note that the scaling relations are very simple, each
equation has only four terms which is independent of the regularity of wavelets or
scaling functions and if the underlying function ¢ is symmetric, then only two terms
are involved.

Theorem 3.1. Let CJ, SJ be defined as in Definition 2.1, p(x) satisfy the two-scale
equation (2.3), and

2mpo ' . 2muo
= Z cﬂcos%, (Si: Z ¢y sin ; ,
ul<p 1 ul<p J

Then, we have the following refinable equations

Ci(z) = 04 CIM (z) + 67 S0 (& )+ 0RO (e )+6§jjlas}g£a(z), (3.1)
for 0 <a < N;

Si(x) = 6, I (@) + 09185 (2) + 0 OO o (2) — o3 SIEL (@), (3:2)

for 1 <a<N; -1
Proof. Recall (2.3), Lemma 2.1, Lemma 2.4 and the definition 2.1, we have, for
1 S « S Nj —1

C4()

Kjil 2T\ j
= Z oS o4 ()

A=0 K;

Kj-1
= Z COST Z @ZL+2)\( T)

A=0 3 u<p

Kj-1 Kjp1—1

2w\ 1 ; 2 2 ; 2 2A

= Z cos ¢ Z Cuge Z (CIT1 cos 2r(p + 20y )U-I-S,ZH siniﬂ(’u—i— )V)

A=0 ] |ul<p ] v=0 Kj+1 Kj+1

Kji1—1 Kj—1
i+, 1 gy, TRV 2 A« 2mAv
} Zcu Z c’ —i—SJ 7]) Z cos - cos K,
7 ul<p v=0 A=0
LGyl gt TEEEEVES i+1
=3 > A gy+tK O-fortK- + Sim( 6a+tK + C(t+1) Uzt“)
t=0
j+1 j
50k, -0, -a)
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Since 0¥,(07,

) also possesses periodicity ( antiperiodicity), the equality (3.1) follows
immediately.

The proof of formula (3.2) is similar.

Theorem 3.1 establishes the relations between the basis for V; and Vj;,. Now we
define W; as the orthogonal complement of V; in Vj,1 , that is, W; LV, and Vj;; =
Vj + W;, we will denote this orthogonal sum by

Vier =V D W; (3.3)
A simple conclusion of (2.6), (2.7) and (3.3) is that
W; LW, for j £r

and

L2 [0,7] = Vo pw;

j>0
Now, we construct an orthogonal basis for each W;.

Theorem 3.2. Let 07, (% be defined in Theorem 1, CJ,SJ be defined in Definition
2.1, for 1 < a < Nj — 1, we define Al and B, as follows

‘ T N I AL TR R Es e e | AL S
Azl (LE) = O-Jl(]faccjx_l— + 5K]7OLS£+ - 0-31 C}(jfa - 50& C}(jfa
j PP N Sy NG R B <AL N ~j+1 &g+l
BCJX('I) = 6K]7(¥Cgt+ o U%]fasé+ + 6(1 C}(jfa o 0-31 S}(jfa
and
) T L ) o S
) =G-8 A ) =208, O - S
where
- CJ . SJ . ) ) ~j 7 .
é: HC(;H7 Zy: HS(;H7 U{y:Ué'Hnguu 5a:5a'”SZvH7
« [0}

Then, {A}, : 0 < a < Nj; Bl : 1 < a < Nj — 1} is an orthogonal basis for W;. We
call these Al , B] periodic wavelets.

Proof. From the definitions of A7 and BJ, we know that each element of S/ :=
{Al :0< a< Nj,sz :1 < a < N; — 1} belongs to V; ;1. A simple calculation shows
that

< A SI,>=0

2,0, >=< B}, ,Cl >=< Al |

Si, >=< B}

a1’

which implies that S/ C W;.
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But,
<A£1,A£2>:0 for a1 #az, 0<a,ay <N,
<B&1,B§2>:0 for a1 #az, 1< a0 <N;—1
< Al Bl >=0 for 0<a;<N; 1<ay<N,;-1
and

o il ~j+1 il it
< AL AL S= 0K L7+ 110k, —all” + 1657 1P + 1104 | #0
fOI”OSO(SNj
) ) ~j+1 <11 ~j+1 ~ i1
< B, By >= 10k, ol + 107 _al> + 10, 17+ 165" #0
for1<a<N; -1

which show that S7 is an orthogonal basis for W;, and the proof of the theorem is
finished.

In general, the two-scale equations involve four terms , but, when the underlying
function ¢ is symmetric, i.e. @(z) = @(—x), then, there are only two terms in the
scaling relations and the same in the construction of the basis for W, that is, we have
the following Theorem.

- Theorem 3.3. If p(z) = ¢(—x), and (Szl is defined as in Theorem 3.1, then
o =o.
Proof. By (2.3) and the linear independence of {¢(-—¢h) ﬁtpp:_ll on [0,7], we have,

p(x) =¢(—2) = Y cup(—2x —ph) = Y cup(2z — ph)
lul<p lu[<p

Z (cy —c—p)p(2z —ph) =0 forz e R
lul<p

which shows that ¢, = c_, for |u] < p.

Hence (% = 0, the result follows.

4. Periodic Wavelets and Fourier Series

In this section, we will show that in some special cases, the scaling functions C7,
and SJ will converge to cosine and sine functions respectively which implies that the

scaling functions constructed in this paper have some stationary properties.
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To this end, we suppose that ¢(z) is continuous, suppy C [—%, %] and satisfy the

partition of unity,

> olz+kh)=1 forzeR
keZ

Define operator A7 : C[0,T] — C[0, T] by

Kj—1

Alf(z)= > fluh;)® (z)

pu=0

where ®J,(z) = Y \ez (27 (x + AT) — ph), C[0,T] is the continuous function space on
[0,T]. Then, we have the following theorem.
Theorem 4.1.

lim ||A7f = flloc = 0
j—o0

Proof. We note first that Zlﬁgl @fl(:z;) =1 for z € [0, T], therefore,

K;—1
AT f(z) = fz)] < D |f (@) = f(phy)] - |@](2)]
n=0

= Y |f(@)— fluhy)l- |2 ()|

(2,1 < K41

<M Y f(@) — fluby)

= [§ IS5+
< M(K + 2)maz‘$7t‘§(%+1)hj f(z) = f(2)]

which shows that
lim [[A7f = flloc = 0.
j—00

Corollary 4.1. If ¢(z) is continuous, and satisfies the conditions in Section 2.
C1,8J) are defined by (2.4), (2.5), then

, 2
lim CJ(z) = cos rar for a=0,1,---
J—+oo
. 7 . 2mazx
lim S/(z) = sin for a=12---

j—+o0

Remarks:

1. Corallary 4.1 shows that, for g € C[0,T], let Pjg be the projection of g on Vj,
then, < Pjg,Cg; >, < Pjg,Sgé > are the ”step” approximation of the Fourier
coefficients of g(x).
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2. From the proof of Theorem 4.1, we know that, if f(z) is smooth, and | f'(z)| < My,
then

(K +2)?

A f(2) ~ flo)] < M- My—

hj = My27

where My is a constant independent of j, which shows that the approximation
order is O(277).

5. Example

In this section, we will use the above procedure to construct real value wavelets
with B-spline. We point out that if ¢)(z) is symmetric, the final scaling relations will

be simpler. Therefore we will use centered B-spline of degree 3.
Suppose h =1,T =10 and K = 10.

The B-spline functions are defined as follows:

Hence

and

Putting 4(z) = N3(7). By using the definitions in Section 2, we obtain C, S?, A}/ BJ
for different j and p(z).

Here we only give the pictures of C¥(z), C3(x), CY(x), C3(z). From the figures we
(Z£) while C{(z) is a bad
approximation of cos(4”) But C}(z) approximates cos(4T"”’) very well.

can find CY(z) and C}(z) give good approximations of cos
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