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REAL-VALUED PERIODIC WAVELETS: CONSTRUCTION ANDRELATION WITH FOURIER SERIES�1)Han-lin Chen(Institute of Mathemati
s, A
ademia Sini
a, Beijing 100080, China)Xue-zhang Liang(Department of Mathemati
s, Jilin University, Jilin 130023, China)Si-long Peng Shao-liang Xiao(Institute of Mathemati
s, A
ademia Sini
a, Beijing 100080, China)Abstra
tIn this paper, we 
onstru
t the real-valued periodi
 orthogonal wavelets. Themethod presented here is new. The de
omposition and re
onstru
tion formulas in-volve only 4 terms respe
tively. It demonstrates that the formulas are simpler thanthat in other kinds of periodi
 wavelets. Our wavelets are useful in appli
ationssin
e it is real valued. The relation between the periodi
 wavelets and the Fourierseries is also dis
ussed.Key words: Periodi
 wavelet, Multiresolution, Fourier series, Linear independen
e.1. Introdu
tionWavelets have re
ently re
eived a great deal of attention in su
h areas as signalpro
essing and image pro
essing ([12℄, [8℄). Various methods to 
onstru
t waveletshave been given ([14℄, [13℄, [9℄, [7℄). It is well known that in mathemati
s and mathe-mati
 physi
s many periodi
 problems are en
ountered. In appli
ation areas, the inputsignals are usually �nite length whi
h may lead extra 
omputations. To avoid this,various e�orts have been made ([5℄, [10℄, [21℄), among whi
h periodization method isan important approa
h, i.e., the �nite length input signal is �rst periodized, then aperiodi
 wavelet is used whi
h motivated an extensive study of periodi
 wavelets.Y. Meyer ([14℄) studied periodi
 multiresolutions by periodizing known wavelets.Perrier and Basdevant ([16℄) stated the 
onstru
tion and algorithm of periodi
 wavelets,their algorithmmakes heavy use of the fast Fourier transform(FFT). Chui andMhasker[6℄� Re
eived January 4, 1996.1)This work was supported by NNSFC grant.
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onstru
ted the trigonometri
 wavelets. Plonka and Tas
he ([17℄, [18℄) studied p-periodi
 wavelets for general periodi
 s
aling fun
tions. Their algorithms ([19℄) arebased on Fourier te
hnique. Chen Han-Lin made a full study of periodi
 wavelets whenthe s
aling fun
tions are derived from di�erent kinds of spline fun
tions (see [1℄, [2℄,[3℄, [4℄). Ea
h equation in the de
omposition and re
onstru
tion algorithms involvesonly two terms whi
h does not depend on the regularity of the underlying wavelets.The dis
ret Fourier transform is used impli
itly. The approximation error estimationsare also given. Koh, Lee and Tan ([11℄) gave a general framework of periodi
 waveletswhere two terms are obtained and the two-term algorithms operate on the frequen
ydomain is also realized. Nar
owi
h and Ward[15℄ investigated the periodi
 s
alingfun
tions and wavelets generated by 
ontinuously di�erentiable periodi
 fun
tions withpositive Fourier 
oeÆ
ients. They also dis
ussed the lo
alization of s
aling fun
tionsand wavelets. The method of using the periodi
 wavelets, e.g., to denoise and to dete
tsingularity, is also pointed out.Our interest in this paper is to 
onstru
t real-valued periodi
 orthogonal wavelets.The relation between the periodi
 wavelets and the Fourier series is also dis
ussed. Ourmethod to 
onstru
t periodi
 wavelet is quite di�erent from Nar
owi
h and Ward's([15℄). The 
onditions of the underlying fun
tion ' is original.This 
hapter is organized as follows. We will �nish this se
tion with some notations.The periodi
 s
aling fun
tions and nested subspa
es will be 
onstru
ted in Se
tion 1.In Se
tion 2, the dilation equations and periodi
 wavelets are dis
ussed. Se
tion 3 willdevoted to the dis
ussion of the relations between periodi
 wavelets and the Fourierseries. Some examples will be given in Se
tion 4.We will use the following notations.Let T = Kh where K is a positive even integer, h a positive real number,K = 2N .We also use Nj := 2jN;Kj := 2jK;hj := T=Kj = h=2j . Note that hjKj = hK =T: oL2 [0; T ℄ represents the set of all periodi
, square-summable fun
tions de�ned on[0; T ℄, equipped with the inner produ
t < f; g >= 1T Z T0 f(x)g(x)dx:2. The S
aling Fun
tionsIn this this se
tion, we will 
onstru
t the s
aling fun
tions and dis
uss their prop-erties. To do this, we suppose that a 
ompa
tly supported real valued fun
tion '(x) 2L2(R) satis�es(i) For some p 2 Z+; 2p � N the support of ' : supp' � [�ph; ph℄(ii) ' is re�nable, i.e. there exists f
kg 2 l2, s.t.'(x) = Xk2Z 
k'(2x � kh) (2:1)
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tion and Relation with Fourier Series 511(iii) ZR '(x)dx 6= 0 (2:2)(iv) f'(x � lh)gk+p�1l=�p+1 are linearly independent on [0; T ℄We note that the summation in 
ondition (2:1) is �nite sin
e ' is 
ompa
tly sup-ported ( 
f. [R℄ ). Therefore we also have'(x) = Xjkj�p 
k'(2x � kh) (2:3)De�nion 2.1. We denote the 2j{ dilation of ' as 'j, i.e. 'j(x) = '(2jx). TheT -periodization of ' is denoted by �j�.�j�(x) := X�2Z 'j(x+ �T � �hj) for � 2 Z; j 2 Z+ x 2 [0; T ℄Our 
onstru
tion will heavely depend on the following two fun
tionsCj�(x) = Kj�1X�=0 
os 2���Kj �j�(x) (2.4)Sj�(x) = Kj�1X�=0 sin 2���Kj �j�(x) for � 2 Z (2.5)Whi
h 
an be regarded as the Dis
rete Cosine Transform (DCT in abbreviation)and Dis
rete Sine Transform (DST) of f�j�(x)gKj�1�=0 .De�nition 2.2. A periodi
 multiresolution analysis (PMA) is a nested subspa
esequen
e fVjgj�0 satisfyingi) Vj � Vj+1 for any j � 0 (2:6)ii) [j�0Vj is dense in oL2 [0; T ℄ (2:7)iii) For any j � 0, there exists a fun
tion fj in Vj su
h that the hj{shifts offj : ffj(� � lhj)gKj�1l=0 produ
e Vj, i.e.Vj = spanffj(� � lhj) : l = 0; � � � ;Kj � qgTo 
onstru
t a PMA, we �rst note that :Lemma 2.1. �j�(x) = Xjkj�p 
k�j+1k+2�(x) for x 2 [0; T ℄
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on
lusion of De�nition 2.1 and (2:1)Therefore, if we de�ne Vj = spanf�j� : � = 0; 1; � � � ;Kj � 1g, then Vj � Vj+1. Toshow that fVjgj�0 is a PMRA, we need to verify thatLemma 2.2. [j�0Vj = oL2 [0; T ℄Proof. Let V = [j�0Vj , we shall show that v? = f0g:First, for f 2 V ; we have f(x � hj) 2 V for any j � 0 whi
h implies that V is ahj{shift invariant spa
e for any j � 0.Suppose that g(x) 2 v?, then 0 =< f; g >=< f(� � �hj); g > for � 2 Z; j 2 Z+Let the Fourier 
oeÆ
ients of f(x) and g(x) be fs�g�2Z and f��g�2Z respe
tively,i.e. g(x) = X�2Z ��exp(�2�i�x=T )f(x) = X�2Z s�exp(�2�i�x=T )Then f(x� �hj) = X�2Z s�exp(�2�i�x=T )exp(2�i��hj=T )and 0 =< f(� � �hj); g(�) >= X�2Z s����exp(�2�i��hj=T )= Kj�1X�=0 X�2Z s�+�Kj ���+�Kjexp(�2�i��hj=T )By the DCT theory, we getX�2Z s�+�Kj ���+�Kj = 0 for j > 0; � = 0; 1; � � � ;Kj � 1Sin
e X�2Z s��� is absolutely 
onvergent. We haves� ��� = � X�2Z�6=0 s�+�Kj ���+�Kjtends to zero as j !1, hen
es� ��� = 0 for any � 2 ZPutting f(x) = �j0 note that the support of '(x) is 
ontained in one period,s� = 1T Z T2�T2 �j0exp(2�ix�=T )dx= 1T Z T2�T2 '(x)exp(2�ix�2�j=T )dx � 2�j
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tion and Relation with Fourier Series 513We obtain 1T Z T2�T2 '(x)exp(2�ix�2�j=T )dx � 2�j ��� = 0Let j !1,then we have Z T2�T2 '(x)dx��� = 0Re
all that (2.2) and supp' � [�ph; ph℄ � [�T2 ; T2 ℄. It follows that �� = 0 for � 2 Zwhi
h implies that g(x) � 0 and V ? = f0g. The Lemma follows.Now, we turn to dis
uss the basis in Vj .Lemma 2.3. Suppose �jl ; l = 0; 1; � � � ;Kj � 1 is de�ned by De�nition 1, thenf�jl gKj+p�1l=�p+1 is linearly independent in [0; T ℄Proof. To this end, suppose thatKj+p�1Xl=�p+1 
l'j(x� lhj) = 0 for x 2 [0; T ℄A 
hange of variable y = 2jx yields thatKj+p�1Xl=�p+1 
l'(y � lh) = 0 for y 2 [0; 2jT ℄if y is restri
ted to the subinterval [mT; (m+ 1)T ℄,thenmK+p�1+KXl=mK�p+1 
l'(y � lh) = 0 for y 2 [mT; (m+ 1)T ℄whi
h is equivalent tomK+p�1+KXl=mK�p+1 
l'(t+mkh� lh) = 0 for t 2 [0; T ℄therefore K+p�1Xl=�p+1 
l+mk'(t� lh) = 0 for t 2 [0; T ℄By the linear independen
e of f'(t� lh)gK+p�1l=�p+1, we obtain that
l = 0 for l = mK � p+ 1; � � � ; (m+ 1)K + p� 1when m varies from 0 to 2j � 1, we have
l = 0 for l = �p+ 1; � � � ; 2jK + p� 1
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h implies that f'j(t� lhj)gKj+p�1l=�p+1 is linearly independent on [0; T ℄. The proof ofLemma 2.3 is �nished.Lemma 2.3 gives a basis for Vj whi
h is generally non-orthogonal. Now, we want togive another basis for Vj whi
h is orthogonal. Before doing that, we prove the followinglemma.Lemma 2.4. For � = 0; 1; � � � ;Kj � 1�j�(x) = 1Kj Kj�1X�=0 (Cj�(x) 
os 2���Kj + Sj�(x) sin 2���Kj )Proof. By the de�nitions of �j�, Cj� and Sj�, re
all the following trigonometri
identity, Kj�1Xl=0 
os 2�l�1Kj 
os 2�l�2Kj = Njfor �1 + �2 = 0 (mod Kj) and �1 � �2 6= 0 (mod Kj)or �1 � �2 = 0 (mod Kj) and �1 + �2 6= 0 (mod Kj)For 0 � � � Nj, we haveKj�1X�=0 Cj�(x) 
os 2���Kj = Kj�1X�=0 
os 2���Kj Kj�1X�=0 
os 2���Kj �j�(x)= Kj�1X�=0 (Kj�1X�=0 
os 2���1Kj 
os 2���2Kj )�j�(x)= Nj(�j�(x) + �jKj��(x))Similarly, for 0 � � � Nj , we haveKj�1X�=0 Sj�(x) sin 2���Kj = Nj(�j�(x)� �jKj��(x))It follows that for 0 � � � Nj�j�(x) = 1Kj Kj�1X�=0 (Cj� 
os 2���Kj + Sj�(x) sin 2���Kj )�jKj��(x) = 1Kj Kj�1X�=0 (Cj� 
os 2���Kj � Sj�(x) sin 2���Kj )
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h is eqivalent to�j�(x) = 1Kj Kj�1X�=0 (Cj� 
os 2���Kj + Sj�(x) sin 2���Kj )for 0 � � � Kj � 1.The proof of the lemma is 
ompleted.Theorem 2.1. Suppose Cj�; Sj� is de�ned by De�nition 1, Sj = fCj� : � =0; 1; � � � ; Nj, Sj� : � = 1; 2; � � � ; Nj � 1g: Then Sj is an orthogonal basis for Vj.Proof. First, we note that the periodi
ity of Cj� and Sj�.Cj� = Cj�Kj+� = Cj�KJ��; Sj� = Sj�Kj+� = �Sj�KJ��for � 2 ZFrom the de�nition of Cj�; Sj�, we know that ea
h element of Sj 
an be representedby the linear 
ombination of f�j�gKj�1�=0 . Lemma 2.4 and the periodi
ity of Cj� and Sj�imply that ea
h element of Sj 
an be represented by linear 
ombination of fun
tions inSj. Sin
e f�j�gKj�1�=0 is a basis for Vj. Therefore Sj is a basis for Vj .Now, we need only to prove that di�erent elements of Sj are orthogonal.Only one equality< Cj�1 ; Cj�2 >= 0 for 0 � �1; �2 � Nj; �1 6= �2needs to proved, sin
e others are similar.By the de�nition of Cj�, re
all the periodi
ity of �j0(x) and 
osx, for �1 6= �2; 0 ��1; �2 � Nj; �1 6= �2, we have< Cj�1 ; Cj�2 >= Kj�1X�1=0 Kj�1X�2=0 
os 2��1�1Kj 
os 2��2�2Kj < �j�1 ;�j�2 >= Kj�1X�1=0 Kj�1X�2=0 
os 2��1�1Kj 
os 2��2�2Kj � 2T Z T0 �j0(y)�j0(y + (�1 � �2)hj)dy= Kj�1X�1=0 Kj�1��1X�=��1 
os 2��1�1Kj 
os 2�(�1 + �)�2Kj � 2T Z T0 �j0(y)��j�dy= Kj�1X�1=0 Kj�1X�=0 
os 2��1�1Kj 
os 2�(�1 + �)�2Kj < �j0;�j� >= Kj�1X�=0 < �j0;�j� > 
os 2���2Kj � Kj�1X�1=0 
os 2��1�1Kj 
os 2��1�2Kj= 0
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aling Relations and Periodi
 WaveletsIn this se
tion, the s
aling relations of the orthogonal basis are given and the periodi
wavelets are 
onstru
ted. We will note that the s
aling relations are very simple, ea
hequation has only four terms whi
h is independent of the regularity of wavelets ors
aling fun
tions and if the underlying fun
tion ' is symmetri
, then only two termsare involved.Theorem 3.1. Let Cj�; Sj� be de�ned as in De�nition 2.1, '(x) satisfy the two-s
aleequation (2:3), and�j� = Xj�j�p 
� 
os 2���Kj ; Æj� = Xj�j�p 
� sin 2���Kj ;Then, we have the following re�nable equationsCj�(x) = �j+1� Cj+1� (x) + Æj+1� Sj+1� (x) +�j+1Kj��Cj+1Kj��(x) + Æj+1Kj��Sj+1Kj��(x); (3:1)for 0 � � � NjSj�(x) = �Æj+1� Cj+1� (x) +�j+1� Sj+1� (x) + Æj+1Kj��Cj+1Kj��(x)��j+1Kj��Sj+1Kj��(x); (3:2)for 1 � � � Nj � 1Proof. Re
all (2.3), Lemma 2.1, Lemma 2.4 and the de�nition 2.1, we have, for1 � � � Nj � 1Cj�(x)= Kj�1X�=0 
os 2���Kj �j�(x)= Kj�1X�=0 
os 2���Kj Xj�j�p 
��j+1�+2�(x)= Kj�1X�=0 
os 2���Kj Xj�j�p 
� 1K j Kj+1�1X�=0 (Cj+1� 
os 2�(�+ 2�)�Kj+1 + Sj+1� sin 2�(�+ 2�)�Kj+1 )= 1K j Xj�j�p 
� Kj+1�1X�=0 (Cj+1� 
os ���Kj + Sj+1� sin ���Kj )Kj�1X�=0 
os 2���Kj 
os 2���Kj= 12 1Xt=0fCj+1�+tKj�j+1�+tKj + Sj+1�+tKjÆj+1�+tKj + Cj+1(t+1)Kj���j+1(t+1)Kj��+Sj+1(t+1)Kj��Æj+1(t+1)Kj��g



Real-Valued Periodi
 Wavelets: Constru
tion and Relation with Fourier Series 517Sin
e �j�(Æj�) also possesses periodi
ity ( antiperiodi
ity), the equality (3.1) followsimmediately.The proof of formula (3.2) is similar.Theorem 3.1 establishes the relations between the basis for Vj and Vj+1. Now wede�ne Wj as the orthogonal 
omplement of Vj in Vj+1 , that is, Wj?Vj and Vj+1 =Vj +Wj, we will denote this orthogonal sum byVj+1 = VjMWj (3:3)A simple 
on
lusion of (2.6), (2.7) and (3.3) is thatWj?Wr for j 6= rand oL2 [0; T ℄ = V0MMj�0WjNow, we 
onstru
t an orthogonal basis for ea
h Wj.Theorem 3.2. Let �j�;Æj� be de�ned in Theorem 1, Cj�; Sj� be de�ned in De�nition2.1, for 1 � � � Nj � 1, we de�ne Aj� and Bj� as followsAj�(x) := ~�j+1Kj�� ~Cj+1� + ~Æj+1Kj�� ~Sj+1� � ~�j+1� ~Cj+1Kj�� � ~Æj+1� ~Cj+1Kj��Bj�(x) := ~Æj+1Kj�� ~Cj+1� � ~�j+1Kj�� ~Sj+1� + ~Æj+1� ~Cj+1Kj�� � ~�j+1� ~Sj+1Kj��andAj0(x) := ~�j+1Kj ~Cj+10 � ~Æj+10 ~Cj+1Kj AjNj (x) := 2(~Æj+1Nj ~Cj+1Nj � ~�j+1Nj ~Sj+1Nj )where~Cj� = Cj�jjCj�jj ; ~Sj� = Sj�jjSj�jj ; ~�j� = �j� � jjCj�jj; ~Æj� = Æj� � jjSj�jj;Then, fAj� : 0 � � � Nj ;Bj� : 1 � � � Nj � 1g is an orthogonal basis for Wj. We
all these Aj�; Bj� periodi
 wavelets.Proof. From the de�nitions of Aj� and Bj�, we know that ea
h element of Sj :=fAj� : 0 � � � Nj; Bj� : 1 � � � Nj � 1g belongs to Vj+1. A simple 
al
ulation showsthat < Aj�1 ; Cj�2 >=< Bj�1 ; Cj�2 >=< Aj�1 ; Sj�2 >=< Bj�1 ; Sj�2 >= 0whi
h implies that Sj �Wj .



518 H.L. CHEN, X.Z. LIANG, S.L. PENG AND S.L. XIAOBut, < Aj�1 ; Aj�2 >= 0 for �1 6= �2; 0 � �1; �2 � Nj< Bj�1 ; Bj�2 >= 0 for �1 6= �2; 1 � �1; �2 � Nj � 1< Aj�1 ; Bj�2 >= 0 for 0 � �1 � Nj 1 � �2 � Nj � 1and < Aj�; Aj� >= k~�j+1Kj��k2 + k~Æj+1Kj��k2 + k~�j+1� k2 + k~Æj+1� k2 6= 0for 0 � � � Nj< Bj�; Bj� >= k~Æj+1Kj��k2 + k~�j+1Kj��k2 + k~Æj+1� k2 + k~�j+1� k2 6= 0for 1 � � � Nj � 1whi
h show that Sj is an orthogonal basis for Wj, and the proof of the theorem is�nished.In general, the two-s
ale equations involve four terms , but, when the underlyingfun
tion ' is symmetri
, i.e. '(x) = '(�x), then, there are only two terms in thes
aling relations and the same in the 
onstru
tion of the basis for Wj, that is, we havethe following Theorem.Theorem 3.3. If '(x) = '(�x), and Æj� is de�ned as in Theorem 3.1, thenÆj� = 0.Proof. By (2.3) and the linear independen
e of f'(��`h)gK+p�1`=�p+1 on [0; T ℄, we have,'(x) = '(�x) = Xj�j�p 
�'(�2x� �h) = Xj�j�p 
��'(2x� �h)Xj�j�p(
� � 
��)'(2x � �h) = 0 for x 2 lRwhi
h shows that 
� = 
�� for j�j � p.Hen
e Æj� = 0 , the result follows.4. Periodi
 Wavelets and Fourier SeriesIn this se
tion, we will show that in some spe
ial 
ases, the s
aling fun
tions Cj�and Sj� will 
onverge to 
osine and sine fun
tions respe
tively whi
h implies that thes
aling fun
tions 
onstru
ted in this paper have some stationary properties.
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tion and Relation with Fourier Series 519To this end, we suppose that '(x) is 
ontinuous, supp' � [�T2 ; T2 ℄ and satisfy thepartition of unity, Xk2ZZ'(x+ kh) = 1 for x 2 lRDe�ne operator Aj : C[0; T ℄! C[0; T ℄ byAjf(x) = Kj�1X�=0 f(�hj)�j�(x)where �j�(x) = P�2ZZ '(2j(x + �T ) � �h); C[0; T ℄ is the 
ontinuous fun
tion spa
e on[0; T ℄. Then, we have the following theorem.Theorem 4.1. limj!1 jjAjf � f jj1 = 0Proof. We note �rst that PKj�1�=0 �j�(x) = 1 for x 2 [0; T ℄, therefore,jAjf(x)� f(x)j � Kj�1X�=0 jf(x)� f(�hj)j � j�j�(x)j= Xj��[ xh j ℄j�K2 +1 jf(x)� f(�hj)j � j�j�(x)j�M Xj��[ xh j ℄j�K2 +1 jf(x)� f(�hj)j�M(K + 2)maxjx�tj�(K2 +1)hj jf(x)� f(t)jwhi
h shows that limj!1 jjAjf � f jj1 = 0:Corollary 4.1. If '(x) is 
ontinuous, and satis�es the 
onditions in Se
tion 2.Cj�; Sj� are de�ned by (2.4), (2.5), thenlimj!+1Cj�(x) = 
os 2��xT for � = 0; 1; � � �limj!+1Sj�(x) = sin 2��xT for � = 1; 2; � � �Remarks:1. Corallary 4.1 shows that, for g 2 C[0; T ℄, let Pjg be the proje
tion of g on Vj ,then, < Pjg; Cj� >;< Pjg; Sj� > are the "step" approximation of the Fourier
oeÆ
ients of g(x).



520 H.L. CHEN, X.Z. LIANG, S.L. PENG AND S.L. XIAO2. From the proof of Theorem 4.1, we know that, if f(x) is smooth, and jf 0(x)j �M1,then jAjf(x)� f(x)j �M �M1 (K + 2)22 hj =M22�jwhere M2 is a 
onstant independent of j, whi
h shows that the approximationorder is O(2�j). 5. ExampleIn this se
tion, we will use the above pro
edure to 
onstru
t real value waveletswith B-spline. We point out that if  (x) is symmetri
, the �nal s
aling relations willbe simpler. Therefore we will use 
entered B-spline of degree 3.Suppose h = 1; T = 10 and K = 10.The B-spline fun
tions are de�ned as follows:N0(x) = �[� 12 ; 12 ℄(x)Nm(x) = (Nm�1 +N1)(x) = Z 12� 12 Nm�1(x� t)dt; m � 1Hen
e N3(x) = 16 4Xj=0(�1)j 4j!(x� j + 2)3and N3(x) = 2�3 2Xk=�2 4k + 2!N3(2x� k)Putting  (x) = N3(x). By using the de�nitions in Se
tion 2, we obtainCj�; Sj�; Aj�; Bj�,for di�erent j and '(x).Here we only give the pi
tures of C01 (x); C31 (x); C04 (x); C34 (x). From the �gures we
an �nd C01(x) and C31 (x) give good approximations of 
os(�x5 ) while C04 (x) is a badapproximation of 
os(4�x5 ). But C34 (x) approximates 
os(4�x5 ) very well.
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