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CALCULATION OF PENALTIES IN ALGORITHM OF MIXEDINTEGER PROGRAMMING SOLVING WITH REVISED DUALSIMPLEX METHOD FOR BOUNDED VARIABLES�1)Yi-ming Wei(Institute of Poliy and Management, CAS, Beijing 100080, P.R. China)Qing-huai Hu(Wuhan Institute of Chemial Tehnology, Wuhan 430073, P.R. China)AbstratThe branh-and-bound method with the revised dual simplex for bounded vari-ables is very e�etive in solving relatively large-size integer linear programmingproblems. This paper, based on the general forms of the penalties by Beale andSmall and the stronger penalties by Tomlin, desribes the modi�ations of thesepenalties used for the method of bounded variables. The same examples from Pe-tersen are taken and the satisfatory results are shown in omparison with thoseobtained by Tomlin.Key words: Penalties, Stronger penalties, The revised dual simplex method forbounded variables. 1. IntrodutionThe studies on the branh-and-bound algorithm of integer programming have beenarried out sine 60's. The e�orts in improving the algorithm are mainly onentratedon speeding up the related LP solution for eah node and making better seletion of nodeand branh for examing in order to approah the optimal solution as quik as possible.As a better strategy to estimate the problem bound and to selet branh, Beals andSmall proposed the penalties in 1965[2℄, and then Tomlin made modi�ations or exten-sions in 1969 by riterion for abandoning unpro�table branhes. This stronger riterionis obtained by making use of Gomory utting-plane onstraints. These modi�ationshave been inorporated into the famous UMPIRT system and are used suessfullyto solve many large pratial mixed integer programming problems[3;7℄. Moreover inaspet of speeding up solution of the LP problem for eah node seleted, the authorwould reommend the revised dual simplex method for bounded variables in whih abranh is treated by introduing an additive bounded restrition as that with a loweror upper bound hange. Thus a proedure of sensitivity analysis to this hange is ar-ried out in a ontinuous way based on the present basis inverse. The method works� Reeived Otober 8, 1997.1)This work was supported by the Chinese Postdotoral Siene Fundation.



546 Y.M. WEI AND Q.H. HUvery fast and beomes one of the main reasons of satisfatory solution speed. Sinethe penalties dedued by Beale and Small and th estronger penalties by Tomlin areall general formulas used for the dual simplex or revised dual simplex method withoutonsideration of bounded variables. As further modi�ations or extensions, this pa-per desribes alulation of penalties and stronger penalties for the branh-and-boundalgorithm of mixed integer linear programming solving with the revised dual simplexmethod for bounded variables. In manifesting the e�etiveness of the algorithm forbounded variable not only. But also the penalties and stronger penalties dedued bythe author, the same examples from Petersen[5℄ are taken and the results are omparedwith those obtained by Tomolin.2. Branh-and-Bound Algorithm with Revised Dual Simplex Methodfor Boundd VariablesThe general mixed integer linear programming model with bounded variables anbe put in matrix and vetor forms as follows:Minimize Z = CXSubjet to AX = bL � X � U (1)Xk integer K 2 IWhere I is the notation set of integer variables whih are plaed �rst and followed bythe other ontinuous variables as vetor elements in X.Deduing the lower boundes as zeros by transforming X 0 = X � L and using thesame notations in (1), the problem beomes as follows:Minimize Z = CXSubjet to AX = b0 � X � U (2)Xk integer K 2 IFor the problem at some seleted node, let A be deomposed into [B;N1; N2℄, where Bis basis, and N1 and N2 onsist of nonbasi olumns orresponding to nonbasi variablesat their lower bounds XN1 = 0 and upper bounds XN2 = U respetively. Aordinglylet R1 being the notation set of nonbasi variables at their lower bounds, and R2, thenotation set of nobasi variables at their upper bounds. Thus the basi variables XBand the related objetive funtion value Z an be expressed as follows:



Calulation of Penalties in Algorithm of Mixed Integer Programming Solving with ... 547XB = B�1b�B�1N1XN1 �B�1N2XN2Z = CBB�1b+ (CN1 � CBB�1N1)XN1 + (CN2 � CBB�1N2)XN2To use the branh-and-bound method, now some basi integer variable with a frationalvalue at the moment is seleted to be branhed by introduing one of following additiverestritions: Xk � [X�k ℄ (4)or Xk � [X�k ℄ + 1 (5)Where [X�k ℄ is the nearest integer value of Xk, that isXk = [X�k ℄ + fk 0 � fk � 1 (6)Atually the restrition (4) means an upper bound hange for the seleted basi variableXk, but restrition (5), a lower bound hange for Xk in the problem at the node. Thusa treatment of sensitivity analysis an be proessed by use of the revised dual simplexmethod for bounded variables in a ontinuous way based on the basis inverse at hand.It works very fast and beomes one of the main reasons of satisfatory solution speed.3. Calulation of Penalties for Revised Dual Simplex Method forBounded VariablesStarting from expressions in (3), the vetor of basi variables and the related ob-jetive funtion value an be rewritten as follows:XB = �b� Xj2R1 YjXj � Xj2R2 YjXjZ = �z + Xj2R1(Cj � Zj)Xj + Xj2R2(Cj � Zj)Xj (7)Taking into aount the �rst restrition (4) whih means a upper bounded hange forthe basi variable Xk, thus from the right hand side of (7) that the basi variable Xkgoes beyond its new upper bound, and this row is then seleted as the pivoting row.Some other nonbasi variable Xk may enter in the basis, substituting Xk and makingit at its upper bound level. hene it results in a hange (i.e. the penalty pd) of theobjetive funtion value after the tableau pivoting. Thus Pd an be alulated bypd = t � fk (8)where t = Minimum ft1; t2g (9)



548 Y.M. WEI AND Q.H. HUt1 = Minimumj2R1 nj � zjykj : ykj > 0o (10)t2 = Minimumj2R2 nj � zjykj : ykj < 0o (11)To determine penalty Pu orresponding to restrition (5) whih means a lower boundhange for the basi variable Xk, the basi variable Xk at that time is less than its newlower bound and this row is then seleted as the povoting row. Again, using the reviseddual simplex alulations, it follows that:Pu = t � (1� fk) (12)t is the same as that in (9), butt1 = Minimumj2R1 nj � zj�ykj : ykj < 0o (13)t2 = Minimumj2R2 nj � zj�ykj : ykj > 0o (14)One the penalties are omputed, and estimated problem bound at the node an bealulated by Z = Z0 +Minimum fPd; Pug (15)Note that some signs in the expressions above are di�erent from those proposed byBeale and Tomlin et.[1;2;7℄. Beause the LP problem here is minimized. There shouldbe a minus before Minimum fPd; Pug in (15) and a negative sign should be added fort1; t2 expressions above while onsidering a maximizing problem.4. Claulation of Stronger Penalties for Revised Dual SimplexMethod for Bounded VariablesThe stronger penalties an be dedued from the fat that some nonbasi variables(at their lower bounds or upper bounds) must be integers. Consider the equationassoiated with an integer Xk in the optimum tableau of the urrent node. When therestrition (4) is imposed, some nonbasi variable Xq having ykq > 0 and loating at itslower bound must be inreased (above zero); and another nonbasi variable Xp havingYkp < 0 and loating at its upper bound must be dereased (below its upper bound) inorder to derease the right hand side value for this equation to remain satis�ed. But ifsuh a nonbasi variable is also integer, then its value must be inreased or dereasedat least one. This means that the assoiated penalty must be at least equal �q (or �p),and the revised stronger penalty is then given as:p0d = min8<: min(t1; t2) � fk; j 62 Imaxf maxj2R1;ykj>0[j � zj; t1 � fk℄; maxj2R2;ykj<0[�j + zj ; t2 � fk℄g; j 2 Ig (16)Where t1 and t2 are these as (10) and (11) respetively.



Calulation of Penalties in Algorithm of Mixed Integer Programming Solving with ... 549As for the stronger penalty Pu orresponding to restrition (5), it yieldsp0u = min8>>><>>>: min(t1; t2) � (1� fk); j 62 Imaxf maxj2R1;ykj<0[j � zj ; t1 � (1� fk)℄;maxj2R2;ykj>0[�j + zj ; t2 � (1� fk)℄g; j 2 IgWhere t1 and t2 are those as (13) and (14) respetively.Moreover like Tomlin did, and even stronger ondition an be also derived fromthe Gomory utting-plane onstraint in this ase. Considering the restrition (4) andequation (6) as well as the equation for basi integer Xk in (7)m, a equation an beformulated, while some nonbasi variables have some hanges �xj, as follows:Xk � [X�k ℄ = fk � Xj2R1 ykj�xj � Xj2R2 ykj�xj � 0 (18)Hene � Xj2R1 ykj�xj � Xj2R2 ykj�xj � �fk (19)and furthermore that� Xj2R1;ykj>0 ykj�xj � Xj2R2;ykj<0 ykj�xj � �fk (20)However on the other hand for restrition (5), it follows that� Xj2R1;ykj<0 ykj�xj � Xj2R2;ykj>0 ykj�xj � fk � 1 (21)or � Xj2R1;ykj<0� fkykj1� fk ��xj � Xj2R2;ykj>0� fkykj1� fk��xj � �fk (22)Combining both onditions of (20) and (22) and onsidering that the �xj is of the sameost oeÆient as xj has in the objetive funtion, thus the utting-plane onstraint(m-ut)[6℄ an be onstruted as follows:Xj2R1;ykj<0 � fkykj1� fk�xj + Xj2R2;ykj>0 � fkykj1� fk�xj � Xj2R1;ykj<0(ykj)xj� Xj2R2;ykj>0(ykj)xj � �fk (23)and the stronger one[4;7℄ is s = �fk + Xj2NB �kjxj (24)



550 Y.M. WEI AND Q.H. HUwhere s is an auxiliary nonnegative variable, and
�kj =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
ykj if j 62 I and j 2 R1; ykj > 0fkykj(fk � 1) if j 62 I and j 2 R1; ykj < 0ykj if j 62 I and j 2 R2; ykj < 0fkykj(fk � 1) if j 62 I and j 2 R2; ykj > 0ykj if j 2 I and fkj � fkfk(1� fk)(fk � 1) if j 2 I and fkj > fk (25)

where fkj is de�ned suh thatfkj = [y�kj℄ + fkj; 0 � fkj � 1 (26)Thus a minimum penalty p� is p� = minj2NB nj � fk�kj o (27)where j = ( j � zj if j 2 R1�j + zj if j 2 R2 (28)The P � is a stronger riterion whih is used to test the node �rstly to see whether thenode must be disarded or branhed.5. ImplementationA pakage of mixed integer linear programming using the revised dual simplex algo-rithm for bounded variables and the stronger penalties dudued for bounded variableswas oded by the author, whih is used for solving relatively large size problems in the�eld with suess. In order to manifest the e�etiveness of the algorithm for boundedvariable not only, but also the related penalties, the same examples from Petersen aretaken and the results are listed in Table 1 in omparison with those obtained by Tomlin.Note that the results in the Table are these using the stronger penalties only, and thedata given refer to the e�ort required to reah the atual optimum solution and the totale�ort required to omplete the tree searh to verify this optimum. It is known from theTable that, in omparison with those by Tomlin, the total numbers of iterations for mostof examples (exept problems 3 and 4) when using the pakage proposed by the authorby use of the revised dual simplex method for bounded variables, are lower than thoseby Tomlin, and are obviously lower for larger problems in partiular, eventhough thenumbers of branhes are not the ase. The reason for fewer total iterations is basiallydue to the algorithm for bounded variables. But the reason for more branhes thanthat by Tomlin is possibly the weaker riterion for seletion of basi integer variablefor branhing in the pakage made by the authors. The method used in pakage by



Calulation of Penalties in Algorithm of Mixed Integer Programming Solving with ... 551the authors is just this aording to the greatest ost value in the objetive funtionfor simpliity, rather than that by onsidering the penalties for all andidates of basiinteger variable to be seleted for branhing[6℄.Table 1 Test Calulation on Petersen's Problemsand result omparisons (optimum solution)Pro m n Results by Tomlin Results by Author(Modi�ed algorithm) (Stronger penalties)Branhes simplex Time� Branhes simplex Time��made iterations (seonds) made iterations (seonds)1 10 6 4 12 1 5 7 32 10 10 8 29 2 10 27 43 10 15 15 81 5 25 112 134 10 20 17 72 6 26 116 145 10 28 22 136 9 23 41 96 5 39 45 431 19 28 115 127 5 50 84 855 42 110 579 52(Complete searh)Pro m n Results by Tomlin Results by Author(Modi�ed algorithm) (Stronger penalties)Branhes simplex Time� Branhes simplex Time��made iterations (seonds) made iterations (seonds)1 10 6 4 12 1 5 15 42 10 10 11 49 3 11 43 63 10 15 20 127 8 45 160 174 10 20 19 87 7 26 126 155 10 28 22 169 10 37 135 156 5 39 49 525 22 38 298 257 5 50 86 926 44 110 605 55Computer and Univa 1108 under Exe II, early AST 386 SX/16 personal omputerpakage used experimental version of UMPIRE pakage made by the author� Inlude all CP time used in I/O operations (problem input, printout of all integersolutions found, and a trae of the tree searh)�� Inlude all CP time used in I/O operations (reading data from disk�le, printout all integersolutions found on disk, and a trae of the tree searh)It is, on the other hand, obvious that the pakage runs fast. It takes few or severalseonds to solve any of the problems even though the omputer used for the testingis just an usual personal omputer AST 386 SX/16. As an example of relatively largeproblems, it an be referred to the mailing list ompilation problem in [8℄. The problemis of 736 variables (among them 94 are integers) and 316 onstraints. It takes just 15minutes to solve it in a Compaq 4/33 personal omputer using the pakage.6. ConlusionsAs desribed above that the ombination of the revised dual simplex method forbounded variables with the penalties or, in partiular, the stronger penalties derived



552 Y.M. WEI AND Q.H. HUin the paper is very e�etive in solving the pure integer, mixed integer or zero-oneinteger programming problems, espeially the relatively large-size problems. Futherimprovements in both the algorithm and program tehnique are neessary in order toobtain more satisfatory results.Aknowledgement. The authors would like to thank two anonymous referees fortheir helpful suggestions and orretions on an earlier draft of the paper aording towhih we have improved the ontent and omposition.Referenes[1℄ E.M.L. Beale , Mathematial Programming in Pratie, Pitmans, London, 1968.[2℄ E.M.L. Beale, R.E. Small, Mixed integer programming by a branh and bound tehnique,Proe. of the 3rd IFIP Congress 1965, 2 (1965), 450{451.[3℄ J.J.H. Forrest, J.P.H. Hirst, J.A. Tomlin, Pratial solution of large mixed integer program-ming problems with UMPIRE, Management Siene, 20:5 (1974), 736{773.[4℄ R.E. Gomory, An algorithm for mixed integer problems, RM-2597, The Land Corporation,Santa Monia, California, 1960.[5℄ C.C. Petersen, Computational experiene with varieties of the Balas algorithm applied tothe seletion of R&D projets, Management Siene, 13 (1967), 736{750.[6℄ H.A. Taha, Integer Programming, Theory, Appliations and Computations, Wiley & Sons,New York, 1975.[7℄ J.A. Tomlin, An improve branh-and-bound method for integer programming, OperationsResearh, 19 (1971), 1070{1075.[8℄ Qing-huai Hu and Yi-ming Wei, Solving relatively larger size mixed-integer linear pro-gramming problems using personal omputers (in Chinese), J. on Numerial Methods andComputer Appliations, 4 (1996), 254{262.


