Journal of Computational Mathematics, Vol.17, No.5, 1999, 545-552.

CALCULATION OF PENALTIES IN ALGORITHM OF MIXED
INTEGER PROGRAMMING SOLVING WITH REVISED DUAL
SIMPLEX METHOD FOR BOUNDED VARIABLES*!

Yi-ming Wei

(Institute of Policy and Management, CAS, Beijing 100080, P.R. China)
Qing-huai Hu

(Wuhan Institute of Chemical Technology, Wuhan 430073, P.R. China)

Abstract

The branch-and-bound method with the revised dual simplex for bounded vari-
ables is very effective in solving relatively large-size integer linear programming
problems. This paper, based on the general forms of the penalties by Beale and
Small and the stronger penalties by Tomlin, describes the modifications of these
penalties used for the method of bounded variables. The same examples from Pe-
tersen are taken and the satisfactory results are shown in comparison with those
obtained by Tomlin.

Key words: Penalties, Stronger penalties, The revised dual simplex method for
bounded variables.

1. Introduction

The studies on the branch-and-bound algorithm of integer programming have been
carried out since 60’s. The efforts in improving the algorithm are mainly concentrated
on speeding up the related LP solution for each node and making better selection of node
and branch for examing in order to approach the optimal solution as quick as possible.
As a better strategy to estimate the problem bound and to select branch, Beals and
Small proposed the penalties in 19652/, and then Tomlin made modifications or exten-
sions in 1969 by criterion for abandoning unprofitable branches. This stronger criterion
is obtained by making use of Gomory cutting-plane constraints. These modifications
have been incorporated into the famous UMPIRT system and are used successfully
to solve many large practical mixed integer programming problems®7. Moreover in
aspect of speeding up solution of the LP problem for each node selected, the author
would recommend the revised dual simplex method for bounded variables in which a
branch is treated by introducing an additive bounded restriction as that with a lower
or upper bound change. Thus a procedure of sensitivity analysis to this change is car-
ried out in a continuous way based on the present basis inverse. The method works

* Received October 8, 1997.
DThis work was supported by the Chinese Postdoctoral Science Fundation.

546 Y.M. WEI AND Q.H. HU

very fast and becomes one of the main reasons of satisfactory solution speed. Since
the penalties deduced by Beale and Small and th estronger penalties by Tomlin are
all general formulas used for the dual simplex or revised dual simplex method without
consideration of bounded variables. As further modifications or extensions, this pa-
per describes calculation of penalties and stronger penalties for the branch-and-bound
algorithm of mixed integer linear programming solving with the revised dual simplex
method for bounded variables. In manifesting the effectiveness of the algorithm for
bounded variable not only. But also the penalties and stronger penalties deduced by
the author, the same examples from Petersenl! are taken and the results are compared
with those obtained by Tomolin.

2. Branch-and-Bound Algorithm with Revised Dual Simplex Method
for Boundd Variables

The general mixed integer linear programming model with bounded variables can
be put in matrix and vector forms as follows:

Minimize Z = CX
Subject to

AX =b
L<X<U (1)
Xy, integer K € [

Where [is the notation set of integer variables which are placed first and followed by
the other continuous variables as vector elements in X.

Deducing the lower boundes as zeros by transforming X’ = X — L and using the
same notations in (1), the problem becomes as follows:

Minimize Z = CX
Subject to

AX =b
0<X<U (2)
Xy, integer K € [

For the problem at some selected node, let A be decomposed into [B, Ny, No|, where B
is basis, and N and Ny consist of nonbasic columns corresponding to nonbasic variables
at their lower bounds X7 = 0 and upper bounds X9 = U respectively. Accordingly
let R; being the notation set of nonbasic variables at their lower bounds, and Ry, the
notation set of nobasic variables at their upper bounds. Thus the basic variables Xpg
and the related objective function value Z can be expressed as follows:

Calculation of Penalties in Algorithm of Mixed Integer Programming Solving with ... 547

Xg=B'v— B 'NiyXn1 — B"'NyXno
7z = CBBilb + (CNI — CBBlel)XNl + (CNQ — CBBilNQ)XNQ

To use the branch-and-bound method, now some basic integer variable with a fractional
value at the moment is selected to be branched by introducing one of following additive
restrictions:

Xi < [X¢] (4)

Xi > [Xp] +1 (5)

Where [X;] is the nearest integer value of X}, that is
Xp=[Xgl+fe 0< fr< (6)

Actually the restriction (4) means an upper bound change for the selected basic variable
X}, but restriction (5), a lower bound change for X} in the problem at the node. Thus
a treatment of sensitivity analysis can be processed by use of the revised dual simplex
method for bounded variables in a continuous way based on the basis inverse at hand.
It works very fast and becomes one of the main reasons of satisfactory solution speed.

3. Calculation of Penalties for Revised Dual Simplex Method for
Bounded Variables

Starting from expressions in (3), the vector of basic variables and the related ob-
jective function value can be rewritten as follows:

Xp=b= Y Y;X;= Y YiX;

JER1 JER>
Z=z+ Y (C;—Zj)X;+ Y (Cj—Z;)X; (7)
JER1 JER>

Taking into account the first restriction (4) which means a upper bounded change for
the basic variable X}, thus from the right hand side of (7) that the basic variable X}
goes beyond its new upper bound, and this row is then selected as the pivoting row.
Some other nonbasic variable X may enter in the basis, substituting X; and making
it at its upper bound level. hence it results in a change (i.e. the penalty py) of the
objective function value after the tableau pivoting. Thus P; can be calculated by

pg="te f (8)
where

t = Minimum {#;,¢5} 9)

548 Y.M. WEI AND Q.H. HU

i —

t; = Mini Ly >0 10

1 ;leréllum{ L } (10)
C; — 24

ty = Minimum{ 22— : 4. < 0 11

2 = Minimum { ===+ ;< 0] (1)

To determine penalty P, corresponding to restriction (5) which means a lower bound
change for the basic variable Xy, the basic variable Xj at that time is less than its new
lower bound and this row is then selected as the povoting row. Again, using the revised
dual simplex calculations, it follows that:

Py=te(1— fg) (12)

t is the same as that in (9), but

i — 2

t; = Minimum { -2 Lo <0 13

1 = Minim {_ykj ykj < 0} (13)
C; — Z4

ty = Minimum { 22— : 4, > 0 14

» = Minim {_ykj ykj > 0} (14)

Once the penalties are computed, and estimated problem bound at the node can be
calculated by
Z = Zy + Minimum { Py, P, } (15)

Note that some signs in the expressions above are different from those proposed by

Beale and Tomlin etc.[H27]

. Because the LP problem here is minimized. There should
be a minus before Minimum {P;, P, } in (15) and a negative sign should be added for

t1,te expressions above while considering a maximizing problem.

4. Claculation of Stronger Penalties for Revised Dual Simplex
Method for Bounded Variables

The stronger penalties can be deduced from the fact that some nonbasic variables
(at their lower bounds or upper bounds) must be integers. Consider the equation
associated with an integer X}, in the optimum tableau of the current node. When the
restriction (4) is imposed, some nonbasic variable X, having yx, > 0 and locating at its
lower bound must be increased (above zero); and another nonbasic variable X, having
Yip < 0 and locating at its upper bound must be decreased (below its upper bound) in
order to decrease the right hand side value for this equation to remain satisfied. But if
such a nonbasic variable is also integer, then its value must be increased or decreased
at least one. This means that the associated penalty must be at least equal ¢, (or ¢,),
and the revised stronger penalty is then given as:

! . min(t1, ¢2) - fi; jeI)
Pa = TN 1hax max |c; — z:. ty - max [—c; + z; to - N 16
{j€R1,ykj>0[j T 2t fk]’jeRQ,ykj<U[it 2zt fills jel}

Where ¢, and t9 are these as (10) and (11) respectively.

Calculation of Penalties in Algorithm of Mixed Integer Programming Solving with ... 549

As for the stronger penalty P, corresponding to restriction (5), it yields

min(ty,) - (1~ f); je1

p/, = min max{jeé?’%@[cj —zjstr - (1= fu)l,
max *C"I‘Z',t (1 — : =
jeRz,yk]->o[i+ 2t (1= fi)ll jel}

Where ¢, and 9 are those as (13) and (14) respectively.

Moreover like Tomlin did, and even stronger condition can be also derived from
the Gomory cutting-plane constraint in this case. Considering the restriction (4) and
equation (6) as well as the equation for basic integer Xy in (7)m, a equation can be
formulated, while some nonbasic variables have some changes Az, as follows:

Xk~ [X5l =fe — D wejAzy; — > yrjAz; <0 (18)
JER JER2
Hence
= > ykiAzy - > yriAz; <~ fy (19)
JER JER2

and furthermore that

— Y yAzy - Y ykiAzy < fy (20)
JER1,Yk; >0 JER2,Yk; <0

However on the other hand for restriction (5), it follows that
— Y ylAmi - Y yriAzy < fy 1 (21)
JER1,YE; <0 JER2,yk; >0

or

-y () Y (L)< (22)

) 1-) 1-
JER1,YE; <0 T JER2,Yk; >0 T

Combining both conditions of (20) and (22) and considering that the Az; is of the same
cost coefficient as x; has in the objective function, thus the cutting-plane constraint
(m-cut)® can be constructed as follows:

Z (ifk—y’;i)xj + Z (lfk—‘yl;i)xj - Z (ykj)xj

JER1,Y;; <0 JER2,y;; >0 JER1,Y; <0
- > (k) < —fr (23)
JER2,yx; >0
and the stronger onel*") is
s=—fr+ Z)\kj:L“j (24)

JjENB

550 Y.M. WEI AND Q.H. HU

where s is an auxiliary nonnegative variable, and

an if j ¢ I and j € Ry,yg; >0
JkYkj o ;

—=2=_ ifj¢Tand j € Ry,yp; <0

(i~ D) J

Ukj if j ¢ I and j € Ro,yp; <0
. | 25
kj M ifj €1 and je€ Ro,yp; >0)

(fe = 1)

Ukj if j € I and fi; < fi

Je@ = f) o

JEAT JET O f I and f;

\ (fk_l) 11y € 1 an fk]>fk

where fi; is defined such that

frg = gl + frjs 0 < fiy <1 (26)

Thus a minimum penalty p* is

* . Cj — fk
= - 27
p jrél]l\fr]; { Akj } ()

where

Ci — 2; ifjeR
@:{J o (28)

—cj+z ifjeR
The P* is a stronger criterion which is used to test the node firstly to see whether the
node must be discarded or branched.

5. Implementation

A package of mixed integer linear programming using the revised dual simplex algo-
rithm for bounded variables and the stronger penalties duduced for bounded variables
was coded by the author, which is used for solving relatively large size problems in the
field with success. In order to manifest the effectiveness of the algorithm for bounded
variable not only, but also the related penalties, the same examples from Petersen are
taken and the results are listed in Table 1 in comparison with those obtained by Tomlin.

Note that the results in the Table are these using the stronger penalties only, and the
data given refer to the effort required to reach the actual optimum solution and the total
effort required to complete the tree search to verify this optimum. It is known from the
Table that, in comparison with those by Tomlin, the total numbers of iterations for most
of examples (except problems 3 and 4) when using the package proposed by the author
by use of the revised dual simplex method for bounded variables, are lower than those
by Tomlin, and are obviously lower for larger problems in particular, eventhough the
numbers of branches are not the case. The reason for fewer total iterations is basically
due to the algorithm for bounded variables. But the reason for more branches than
that by Tomlin is possibly the weaker criterion for selection of basic integer variable
for branching in the package made by the authors. The method used in package by

Calculation of Penalties in Algorithm of Mixed Integer Programming Solving with ...

the authors is just this according to the greatest cost value in the objective function
for simplicity, rather than that by considering the penalties for all candidates of basic

integer variable to be selected for branching!®.

Table 1 Test Calculation on Petersen’s Problems

and result comparisons (optimum solution)

Pro | m n

Results by Tomlin
(Modified algorithm)

Results by Author
(Stronger penalties)

Branches | simplex Time* Branches | simplex Time™”
made iterations | (seconds) made iterations (seconds)
1 10 6 4 12 1 5 7 3
2 10 | 10 8 29 2 10 27 4
3 10 | 15 15 81 5 25 112 13
4 10 | 20 17 72 6 26 116 14
5 10 | 28 22 136 9 23 41 9
6 39 45 431 19 28 115 12
7 50 84 855 42 110 579 52

(Complete search)

Results by Author
(Stronger penalties)

Results by Tomlin
(Modified algorithm)

Pro | m n

Branches simplex Time” Branches simplex Time™™
made iterations | (seconds) made iterations (seconds)
1 10 6 4 12 1 5 15 4
2 10 | 10 11 49 3 11 43 6
3 10 | 15 20 127 8 45 160 17
4 |10 20 19 87 7 26 126 15
5 10 | 28 22 169 10 37 135 15
6 5 | 39 49 525 22 38 298 25
7 5 | 50 86 926 44 110 605 55

AST 386 SX/16 personal computer
package made by the author

Univac 1108 under Exec II, early
experimental version of UMPIRE

Computer and

package used

* Include all CP time used in I/O operations (problem input, printout of all integer

solutions found, and a trace of the tree search)

xx Include all CP time used in I/O operations (reading data from diskfile, printout all integer
solutions found on disk, and a trace of the tree search)

It is, on the other hand, obvious that the package runs fast. It takes few or several
seconds to solve any of the problems even though the computer used for the testing
is just an usual personal computer AST 386 SX/16. As an example of relatively large
problems, it can be referred to the mailing list compilation problem in [8]. The problem
is of 736 variables (among them 94 are integers) and 316 constraints. It takes just 15
minutes to solve it in a Compaq 4/33 personal computer using the package.

6. Conclusions

As described above that the combination of the revised dual simplex method for
bounded variables with the penalties or, in particular, the stronger penalties derived

552 Y.M. WEI AND Q.H. HU

in the paper is very effective in solving the pure integer, mixed integer or zero-one
integer programming problems, especially the relatively large-size problems. Futher
improvements in both the algorithm and program technique are necessary in order to
obtain more satisfactory results.

Acknowledgement. The authors would like to thank two anonymous referees for
their helpful suggestions and corrections on an earlier draft of the paper according to
which we have improved the content and composition.

References

[1] E.M.L. Beale , Mathematical Programming in Practice, Pitmans, London, 1968.

[2] E.M.L. Beale, R.E. Small, Mixed integer programming by a branch and bound technique,
Proce. of the 3rd IFIP Congress 1965, 2 (1965), 450 451.

[3] J.J.H. Forrest, J.P.H. Hirst, J.A. Tomlin, Practical solution of large mixed integer program-
ming problems with UMPIRE, Management Science, 20:5 (1974), 736-773.

[4] R.E. Gomory, An algorithm for mixed integer problems, RM-2597, The Land Corporation,
Santa Monica, California, 1960.

[5] C.C. Petersen, Computational experience with varieties of the Balas algorithm applied to
the selection of R&D projects, Management Science, 13 (1967), 736-750.

[6] H.A. Taha, Integer Programming, Theory, Applications and Computations, Wiley & Sons,
New York, 1975.

[7] J.A. Tomlin, An improve branch-and-bound method for integer programming, Operations
Research, 19 (1971), 1070 1075.

[8] Qing-huai Hu and Yi-ming Wei, Solving relatively larger size mixed-integer linear pro-
gramming problems using personal computers (in Chinese), J. on Numerical Methods and
Computer Applications, 4 (1996), 254-262.

