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CONVERGENCE PROPERTIES OF A MODIFIED BFGSALGORITHM FOR MINIMIZATION WITHARMIJO-GOLDSTEIN STEPLENGTHS�1)Nai-yang Deng Zheng-feng Li(Department of Mathematis, Beijing Agriultural Engineering University, Beijing 100083,China)AbstratThe line searh strategy is ruial for an eÆient unonstrained optimizationalgorithm. One of the reason why the Wolfe line searhes is reommended lies inthat it ensures positive de�niteness of BFGS updates. When gradient informationhas to be obtained ostly, the Armijo-Goldstein line searhes may be preferred. Tomaintain positive di�niteness of BFGS updates based on the Armijo-Goldstein linesearhes, a slightly modi�ed form of BFGS update is proposed by I.D. Coope andC.J. Prie (Journal of Computational Mathematis, 13 (1995), 156{160), while itsonvergene properties is open up to now. This paper shows that the modi�edBFGS algorithm is globally and superlinearly onvergent based on the Armijo-Goldstein line searhes.Key words: BFGS methods, Convergene, Superlinear onvergene.1. IntrodutionAssume that we are �nding the minimizer of the following unonstrained optimiza-tion problem minx2Rn f(x); (1.1)and assume the urrent point is xk. To alulate xk+1 from xk by a line searh method,the following iteration xk+1 = xk + �kpk; k = 1; 2; � � � (1.2)is applied. In the BFGS algorithm the searh diretion pk is hosen so that Bkpk = gk,where gk = rf(xk), the matries Bk are de�ned by the update formula reurrentlyBk+1 = Bk � BksksTkBksTkBksk + ykyTksTk yk (1.3)� Reeived Deember 5, 1995.1)Work supported by the National Natural Siene Foundation of China and the Natural SieneFoundation of Beijing.



646 N.Y. DENG AND Z.F. LIsk = xk+1 � xk (1.4)yk = gk+1 � gk (1.5)It is well known that if B1 is positive de�nite andsTk yk > 0 (1.6)then all matries Bk, k = 1; 2; � � �, generated by (1.3) are positive de�nite. One of theline searh strategies is the Wolfe line searhes whih require the steplength �k > 0 tosatisfy the inequalities f(xk + �kpk) � f(xk) + ��kgTk pk (1.7)g(xk + �kpk)T pk � �gTk pk (1.8)where � and � are onstants that satisfy 0 < � < � < 1 and � < 1=2. It is easy toshow that ondition (1.8) implies thatsTk yk � (� � 1)sTk gk > 0 (1.9)so that the BFGS updating formula an be applied with positive de�niteness beingmaintained automatially. A disadvantage is that to test ondition (1.8) requires anextragradient evaluation at eah trial value for �k. When gradient information has tobe obtained ostly, the Armijo-Goldstein line searhes�2�kpTk gk � f(xk+1)� f(xk) � �1�kpTk gk (1.10)may be preferred, where 0 < �1 < 1=2 < �2 < 1. However, ondition (1.10) does notensure that sTk yk > 0. To maintain positive de�niteness of BFGS updates based on theArmijo-Goldstein line searhes, a slightly modi�ed form of BFGS update is proposed byI.D. Coope and C.J. Prie in [2℄. They require the quadrati model, qk(x), interpolatingthe data qk(xk) = f(xk), qk(xk+1) = f(xk+1), and rqk(xk) = gk. Letzk = yk + 2(f(xk+1)� f(xk)� sTk gk)� sTk yksTk sk sk (1.11)Applying the standard BFGS update (1.3), they derive their modi�ed BFGS updatewith zk replaing yk Bk+1 = Bk � BksksTkBksTkBksk + zkzTksTk zk (1.12)Notie the ondition (1.10), we havesTk zk =sTk yk + 2(f(xk+1)� f(xk))� sTk gk)� sTk yk = 2(f(xk+1)� f(xk))� sTk gk)



Convergene Properties of a Modi�ed BFGS Algorithm for Minimization ... 647�2(�2 � 1)sTk gk > 0 (1.13)So, positive de�niteness of the update (1.12) is now maintained. Moreover, the updatingformula (1.12) is equivalent to (1.3) when the objetive funtion is a stritly onvexquadrati funtion. Now we are in a position to state formally Coope and Prie'sAlgorithm (Algorithm (CP))Algorithm (CP)1Æ Selet x1 and a symmetri and positive de�nite matrix B1. Set k = 1;2Æ Compuye gk = g(xk) = rf(xk). If kgkk = 0, stop; otherwise, go to step 3Æ;3Æ Set pk = �B�1k gk;4Æ Compute �k suh that (1.10) are satis�ed, beginning by the trial steplength�k = 1;5Æ Set xk+1 = xk + �kpk;6Æ Compute gk+1 = g(xk+1). If kgk+1k = 0, stop; otherwise, go to step 7Æ;7Æ Set sk = xk+1 � xk, zk = yk + f[2(f(xk+1 � f(xk)� sTk gk)� sTk yk℄=sTk skgsk andBk+1 = Bk � BksksTkBksTkBksk + zkzTkzTk sk8Æ Inrease k by one, and go to step 3Æ.2. Main ResultsHereafter we will suppose that the following assumption on the objetive funtionf(x) holds.Assumption A(i) f(x) is twie ontinuously di�erentiable and x� is a minimizer of f(x);(ii) There exist positive onstants m and M suh thatmkzk2 � zTG(x)z �Mkzk2 (2.1)for all z 2 Rn and x 2 D, where the level set D = fx 2 Rnjf(x) � f(x1)g is onvex,G(x) is the Hessian of f(x) at x;(iii) The Hessian G(x) is Lipshitz ontinuous on D, i.e. there exists a onstant Lsuh that kG(x) �G(x0)k � Lkx� x0k; for all x; x0 2 D (2.2)An immediate onsequene of Assumption A is that, if we de�nesk = xk+1 � xk; yk = gk+1 � gk;then we have kykk �Mkskk; (2.3)



648 N.Y. DENG AND Z.F. LImkskk2 � sTk yk �Mkskk2; (2.4)and msTk yk � kykk2 �MsTk yk; (2.5)To prove the global and superlinear onvergene of Algorithm (CP), with the teh-niques due to Byrd and Noedal[1℄, we only need to show that the analogues of thetheorem 2.1 ([1℄, pp.729{730), the theorem 3.2 ([1℄, 734{735) and their respetive propo-sitions are true, the only di�erenes lie in the fat we are replaing the di�erene yk ofgradients with zk de�ned by (1.13). We shall �rst give some lemmas.Lemma 2.1. Let Assumption A hold. Consider the sequene fxkg beginning at x1and having the following property: for eah k = 1; 2; � � �, there exist pk 2 Rnnf0g suhthat(1) pTk gk < 0;(2) The steplength �k > 0 satis�esf(xk + �kpk) � f(xk) + ��kgTk pkwhere 0 < � < 1;(3) xk+1 = xk + �kpk = xk + skThen 1Xk=1 kskk2 < +1.Proof. See [4℄ pp.105{122.Lemma 2.2. Let fBkg1k=1 be generated byBk+1 = Bk � BksksTkBksTkBksk + zkzTkzTk skwhere B1 is symmetri and positive de�nite and where, for all k � 1, zk and sk satisfyzTk sksTk sk �  > 0; kzkk2zTk sk � 0where  and 0 are onstants. Then for any  2 (0; 1) there exist onstants 1; 2; 3 > 0suh that, for any k > 1, the relationsos �j � 12 � kBjsjkksjk � 31holds for at least [k℄ values of j 2 [1; k℄, where �j is the angle between sj and �gj.Proof. See [1℄ pp.729{731.Lemma 2.3. Let x1 be a starting point for whih f satis�es Assumption A, andsuppose that fxkg is generated by xk+1 = xk � �kB�1k gk, where �k is hosen so that



Convergene Properties of a Modi�ed BFGS Algorithm for Minimization ... 649(1:10) is satis�ed. Suppose in addition that the matries Bk are positive de�nite andthat there exist  2 (0; 1) and �3; �4 > 0, suh that for any k � 1, the inequalitiesos �j � �3;kBjsjkksjk � �4;hold for at least [k℄ values of j 2 [1; k℄, where sj = xj+1� xj and �j is de�ned as thatin Lemma 2:2. Then fxkg ! x�, moreover1Xk=1 kxk � x�k <1;and there is a onstant 0 � � < 1 suh thatf(xk+1)� f(x�) � �k[f(x1)� f(x�)℄holds for all k.Proof. See [1℄ pp. 732{733.By the above Lemmas, we an prove the following theorem.Theorem 2.1. Let x1 be a starting point for whih f satis�es Assumption A. Thenfor any positive de�nite matrix B1, the sequene fxkg generated by Algorithm (CP ),onverges to x�. Moreover 1Xk=1 kxk � x�k <1;and there is onstant � 2 [0; 1℄ suh thatf(xk+1)� f(x�) � �k[f(x1)� f(x�)℄holds for suÆiently large k.Proof. We just need to show that the hypotheses of Lemma 2.2 are satis�ed. lemma2.1 ensures that limk!1 kskk = 0, so there exists a onstant k1 suh that for k � k1kskk � 1: (2.6)By the mean value theorem, we havef(xk+1) = f(xk) + sTk gk + 12sTk Z 10 (1� t)r2f(xk + t(xk+1 � xk))dtsksTk yk = sTk Z 10 r2f(xk + t(xk+1 � xk))dtsk (2.7)whih, together with (2.1) and (2.2) yieldszTk sksTk sk = 2[f(xk+1)� f(xk)� sTk gk℄sTk sk = sTk R 10 (1� t)r2f(xk + t(xk+1 � xk))dtsksTk sk � m:(2.8)



650 N.Y. DENG AND Z.F. LILet �k = 2[(f(xk+1 � f(xk)� sTk gk℄� sTk yksTk sk (2.9)then we have by (2.7)j�kj =���sTk R 10 (1� t)r2f(xk + t(xk+1 � xk))dtsk � sTk R 10 r2f(xk + t(xk+1 � xk))dtsksTk sk ���=sTk R 10 (1� t)r2f + t(xk+1 � xk))dt� R 10 r2f(xk + t(xk+1 � xk))dtsksTk sk�Lkskk3sTk sk = Lkskk: (2.10)Therefore, notiing (2.3), (2.4) and (2.6), we getkzkk2z�ksk =kykk2 + 2�kyTk sk + �2kkskk2zTk sk � kykk2msTk sk + 2�k sTk ykmsTk sk + 1m�2k�M2m + 2MLm kskk+ L2m kskk2 � M2m + 2MLm + L2m (2.11)for all k � k1.Then by lemma 2.2 we know that the matries Bk satisfy the hypotheses of Lemma2.2 and the result follows.We now disuss the superlinear onvergene of Algorithm (CP). First, we give alemma.Lemma 2.4. Let fBkg1k=1 be generated byBk+1 = Bk � BksksTkBksTkBksk + zkzTkzTk skwhere zTk sk > 0 for all k. Furthermore assume that fskg and fzkg are suh thatkzk �G�skkkskk � "k (2.12)for some symmetri and positive de�nite matrix G�, and for some sequene f"kg withthe property 1Xk=1 "k <1. Then limk!1 k(Bk �G�)skkkskk = 0 (2.13)and the sequenes fkBkkg, fkB�1k kg are bounded.Proof. See [1℄ pp.734{735.The following theorem is ruial to prove the superlinear onvergene of Algorithm(CP).



Convergene Properties of a Modi�ed BFGS Algorithm for Minimization ... 651Theorem 2.2. Let x1 be a starting point for whih f satis�es Assumption A. Thenfor any positive de�nite matrix B1, the sequene fBkg generated by Algorithm (CP ),satis�es the ondition limk!1 k(Bk �G(x�))skkkskk = 0 (2.14)and the sequenes fkBkkg, fkB�1k kg are bounded.Proof. To prove that (2.14) is true, aording to Lemma 2.4, we only need to showthat there exists a sequene f"kg suh thatkzk �G�skkkskk � "k (2.15)and 1Xk=1 "k <1 (2.16)In fatkzk �G(x�)skkkskk = kyk �G(x�)sk + �kskkkskk � kyk �G(x�)skkkskk + k�kskkkskkwhere �k is de�ned by (2.9). By Assumption A, we havekyk �G(x�)skkkskk � Lmaxfkxk+1 � x�k; kxk � x�kgwhih, together with (1.11), yieldskzk �G(x�)skkkskk � L0maxfkxk+1 � x�k; kxk � x�kg (2.17)where L0 = 2L.Let "k = L0maxfkxk+1 � x�k, kxk � x�kg. The inequality (2.15) is obviously trueby (2.17). On the other hand, the validity of (2.16) is a onlusion of Theorem 2.1.Thus the theorem is ompleted.Notie that the �rst trial steplength is � = 1 in Algorithm (CP). We will showthat the steplength �k = 1 always satis�es the ondition (1.10) when k is suÆientlylarge. For simpliity of notation, we use the Landau symbol a = o(!), whih meansthat there exists a positive sequene fekg with limk�1 ek = 0 suh that jaj � ek! for anysmall ! > 0.Notiing that Bksk = ��kgk, we have from (2.14)limk!1 kgk �G(x�)B�1k gkkkB�1k gkk = limk!1 k(Bk �G(x�))skkkskk = 0 (2.18)



652 N.Y. DENG AND Z.F. LIThusgTk B�1k gk � (B�1k gk)TG(x�)(B�1k gk) = (gk �G(x�)B�1k gk)T (B�1k gk) = o(kB�1k gkk2)and gTk B�1k gk = (B�1k gk)TG(x�)((B�1k gk)) + o(kB�1k gkk2) (2.19)Sine kB�1k k is bounded from above and gk ! 0, so the value o(kB�1k gkk) is valid.Therefore, by Assumption A, there exists a onstant � > 0 suh that for suÆientlylarge k gTk B�1k gk � �kB�1k gkk2 (2.20)By Taylor' formula and Assumption A,f(xk �B�1k gk)� f(xk) = �gTk B�1k gk+ 12(B�1k gk)T Z 10 (1� t)r2f(xk + tB�1gk)dt((B�1k gk))= �12gTk B�1k gk + o(kB�1k gkk2) (2.21)for some uk between xk+1 and xk. So for suÆiently large k, �k = 1 satis�es theondition (1.10).Sine we have shown that limk!1�k = 1, then applying Theorem 2.1, together withthe results of Dennis and More [3, Corollary 2.3℄, we get the superlinear onvergeneof Algorithm (CP), stated as the following.Theorem 2.3. Let x1 be a starting point for whih f satis�es Assumption A. Thenfor any positive de�nite matrix B1, the sequene sequene fxkg generated by Algorithm(CP) onverges to the minimizer of f(x) superlinearly.Referenes[1℄ R.H. Byrd, J. Noedal, A tool for the analysis of quasi-Newton methods with appli-ation to unonstrained minimization, SIAM J. Numer. Anal., 26 (1989), 727{749.[2℄ I.D. Coope, C.J. Prie, A modi�ed BFGS formula maintaining positive de�nite-ness with Armijo-Goldstein steplengths, Journal of Computational Mathematis,13 (1995), 156{160.[3℄ J.E. Dennis, Jr, J.J. Mor�e, A haraterization of superlinear onvergene and itsappliation to quasi-Newton methods, Mathematis of Computation, 28:9 (1974),549{560.[4℄ N.Y. Deng, Z.F. Li, Some global onvergene properties of a oni-variable metrialgorithm for minimization with inexat line searhes, Optimization methods andSoftwares, 5 (1995), 105{122.


