A MULTI-PARAMETER SPLITTING EXTRAPOLATION AND A PARALLEL ALGORITHM FOR ELLIPTIC EIGENVALUE PROBLEM*

Xiao-hai Liao Ai-hui Zhou
(Institute of Systems Science, Academia Sinica, Beijing 100080, China)

Abstract

The finite element solutions of elliptic eigenvalue equations are shown to have a multi-parameter asymptotic error expansion. Based on this expansion and a splitting extrapolation technique, a parallel algorithm for solving multi-dimensional equations with high order accuracy is developed.

Key words: Finite element, multi-parameter error expansion, parallel algorithm, splitting extrapolation.

1. Introduction

The extrapolation method has become an important technique to obtain more accurate numerical solutions since it was first established by Richardson in 1926. The applications of extrapolation method in the finit difference can be found in [14]. In 1983, Q.Lin, T.Lü and S.Shen ${ }^{[8]}$ introduced this technique into the finite element method, the development in this direction can be found in $[5,11,12,16]$. However, this technique has a limitation when dealing with high dimentional problems, since the increasing of the dimension will cause an enormous amount of grid points which requires great computer power in case of the successive refinement. Recently, Zhou et al. ${ }^{[19,20]}$ introduce a so called multi-parameter splitting extrapolation method. In this new method, the domain is divided into several subdomains based on the geometry of the domain, each of which is covered by different meshes so that the number of independent mesh parameters, say p, is as large as possible, and a higher order accuracy approximation is produced by $(p+1)$-processors in parallel. In general, p can be greater than the dimension of the problem. As a result, if the size of the original discrete problem is large, then the size of problems to be dealt with in each processor can be reduced significantly. In this paper, we adopt this method to the elliptic eigenvalue problem, a parallel algorithm for higher order approximations is also proposed.

2. Multi-Parameter Asymptotic Expansion for Eigenvalue

In this section, we only investigate simple eigenvalue problems for elliptic equations, so that we can concentrate on the main idea behind the construction without involving much effort in less important things, let us consider the Dirichlet problem

[^0]\[

$$
\begin{cases}-\triangle u=\lambda u, & \text { in } \Omega \tag{2.1}\\ u=0, & \text { on } \partial \Omega\end{cases}
$$
\]

where $\Omega=(0,1)^{n} \subset R^{n}(n \geq 2)$.
Its weak form reads as follow: find $(\lambda, u) \in R \times\left(H_{0}^{1}(\Omega) \backslash\{0\}\right)$ such that

$$
\begin{equation*}
a(u, v)=\lambda(u, v), \quad \forall v \in H_{0}^{1}(\Omega) \tag{2.2}
\end{equation*}
$$

where $a(u, v)=\int_{\Omega} \nabla u \nabla v$, and $(f, v)=\int_{\Omega} f v, \int_{\Omega} \cdot=\int_{\Omega} \cdot d x_{1} \cdots d x_{n}$.
Let Ω be divided into m rectangular subdomains $T=\left\{\Omega_{j}: j=1,2, \cdots, m\right\}$ so that the edges of each subdomain are parallel to the coordinate axe respectively and T is quasi-uniform. On the subdomain Ω_{j}, a rectangular mesh refinement with mesh parameters $\left\{h_{j, 1}, \cdots, h_{j, n}\right\}$ is imposed, where $2 h_{j, i}$ is the mesh size in the $i^{\text {th }}$ coordinate direction. Assume that the union of all meshes form a quasi-uniform n-rectangular partition T^{h} of Ω with size h, then T^{h} is determined by some mesh parameters, say h_{1}, \cdots, h_{p}, with $h=\max \left\{h_{i}: i=1, \cdots, p\right\}$ and $n \leq p \leq n+m-1$. To minimize the sizes of the discrete subproblems, p may be chosen such that $p>n$.

Let $S^{h}(\Omega)=\left\{v \in C(\Omega):\left.v\right|_{e}\right.$ is n-linear, $\left.\forall e \in T^{h}\right\}, S_{0}^{h}(\Omega)=S^{h}(\Omega) \cap H_{0}^{1}(\Omega)$, and $i_{h}: C(\Omega) \longrightarrow S^{h}(\Omega)$ be the usual n-linear interpolation operator.

The finite element approximation of eigenvalue problem is determined by finding $\left(\lambda_{h}, u_{h}\right) \in R \times\left(S_{0}^{h}(\Omega) \backslash\{0\}\right)$ satisfying

$$
\begin{equation*}
a\left(u_{h}, \varphi\right)=\lambda_{h}\left(u_{h}, \varphi\right), \quad \forall \varphi \in S_{0}^{h}(\Omega) \tag{2.3}
\end{equation*}
$$

For continuous eigenvalue λ, there holds an orthonormal eigenfunction u and discrete solutions $\left(\lambda_{h}, u_{h}\right) \in R \times S_{0}^{h}(\Omega)$ such that

$$
\begin{equation*}
\left|\lambda-\lambda_{h}\right|+\left\|u-u_{h}\right\|_{0,2} \leq c h^{2}\|u\|_{2,2} \tag{2.4}
\end{equation*}
$$

where $\|\cdot\|_{0,2}$ denotes the usual Soblev space, we also denote it by $\|\cdot\|$ in the following. For simplicity, assume that $\left.T^{h}\right|_{\Omega_{i}}$ is uniform and u is smooth enough. We denote $R_{h} u$ to be the Ritz projection of u which is determined by the equation

$$
\int_{\Omega} \nabla\left(u-R_{h} u\right) \nabla v=0, \quad \forall v \in S_{0}^{h}(\Omega)
$$

For $e \in T^{h}$, denote the center of e by $x_{e}=\left(x_{e, 1}, \cdots, x_{e, n}\right)$ and $e=\prod_{j=1}^{n}\left[x_{e, j}-h_{e, j}\right.$, $\left.x_{e, j}+h_{e, j}\right]$. For $1 \leq j \leq n$, define

$$
F_{e, j}\left(x_{j}\right)=\frac{1}{2}\left(\left(x_{j}-x_{e, j}\right)^{2}-h_{e, j}^{2}\right)
$$

From the definition of $F_{e, j}\left(x_{j}\right)$, we easily get the following useful identity

$$
\begin{equation*}
F_{e, j}=\frac{1}{6}\left(F_{e, j}^{2}\right)^{\prime \prime}-\frac{1}{3} h_{e, j}^{2} \tag{2.5}
\end{equation*}
$$

We recall that there holds the following multi-parameter expantion (cf.[19,20]).

Lemma 2.1. If u is smooth enough, then for any $e \in T^{h}$,

$$
\begin{equation*}
\int_{e} \partial_{j}\left(u-i_{h} u\right)=\sum_{i \neq j} \int_{e} F_{e, i} \partial_{i}^{2} \partial_{j} u-\sum_{\substack{\left\{n_{1}, \cdots, n_{l}\right\} \subset\{1, \cdots, n\} \backslash\{j\} \\ l \geq 2}} \int_{e}\left(\prod_{s=1}^{l} F_{e, n_{s}}^{\prime}\right) \partial_{n_{1}} \cdots \partial_{n_{l}} \partial_{j} u \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{e} \partial_{j}\left(u-i_{h} u\right) \prod_{i=1}^{s}\left(x_{l_{i}}-x_{e, l_{i}}\right)=O\left(h^{3+n+s}\right) \tag{2.7}
\end{equation*}
$$

where $s=1, \cdots, n-1, \partial_{j}=\partial_{x_{j}}, l_{i} \neq j$. The last term in (2.6) disappears if $n=2$.
Lemma 2.2. If $u \in H_{0}^{1}(\Omega) \cap H^{4}(\Omega)$, then, there exists $\left\{w_{1}, \cdots, w_{p}\right\} \subset H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
R_{h} u(x)=i_{h} u(x)+\sum_{i=1}^{p} w_{i} h_{i}^{2}+O\left(h^{4}\right) \tag{2.8}
\end{equation*}
$$

holds in $L^{2}(\Omega)$.
The following identity for the interpolation operator will play an important role in deriving multi-parameter asymptotic error expansion.

Proposition 2.3. For any $e \in T^{h}$, there holds

$$
\begin{equation*}
\int_{e}\left(u-i_{h} u\right)=\sum_{i=1}^{n} \int_{e} F_{e, i} \partial_{i}^{2} u-\sum_{\substack{\left.\left\{n_{1}, \cdots, n_{l}\right\}\right\}\{1, \cdots, n\} \\ l \geq 2}} \int_{e}\left(\prod_{s=1}^{l} F_{e, n_{s}}^{\prime}\right) \partial_{n_{1}} \cdots \partial_{n_{l}} u \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{e}\left(u-i_{h} u\right) \prod_{i=1}^{s}\left(x_{l_{i}}-x_{e, l_{i}}\right)=O\left(h^{3+n+s}\right) \tag{2.10}
\end{equation*}
$$

where $s=1, \cdots, n-1$.
Proof. We give the proof for $n=2$.
When $n=2$,

$$
\begin{align*}
\int_{e}\left(u-i_{h} u\right) & =\int_{e} F_{1}^{\prime \prime}\left(u-i_{h} u\right)=\left(\int_{l_{1}}-\int_{l_{3}}\right) F_{1}^{\prime}\left(u-i_{h} u\right) F_{2}^{\prime \prime}+\int_{e} F_{1} \partial_{1}^{2} u \\
& =\int_{e} F_{1} \partial_{1}^{2} u+\int_{e} F_{2} \partial_{2}^{2} u-\int_{e} F_{1}^{\prime} F_{2}^{\prime} \partial_{1} \partial_{2} u \tag{2.11}
\end{align*}
$$

where l_{1} and l_{3} are edges parallel to x-axis.
For the general case, we can use induction method. We now turn to the proof for the second relation. Notice that $x_{l}-x_{e, l}=\frac{1}{6}\left(F_{e, l}^{2}\right)^{(3)}$.

Thus

$$
\begin{align*}
I & \equiv \int_{e}\left(u-i_{h} u\right)\left(x_{l}-x_{e, l}\right)=\frac{1}{6} \int_{e}\left(u-i_{h} u\right)\left(F_{e, l}^{2}\right)^{(3)} \\
& =\frac{1}{6}\left(\int_{x_{l}=x_{e, l}+h_{e, l}}-\int_{x_{l}=x_{e, l}-h_{e, l}}\right)\left(F_{e, l}^{2}\right)^{(2)}\left(u-i_{h} u\right)+\frac{1}{6} \int_{e}\left(F_{e, l}^{2}\right)^{\prime} \partial_{l}^{2} u \\
& =\frac{h_{e, l}^{2}}{3} \int_{e} \partial_{l}\left(u-i_{h} u\right)-\frac{1}{6} \int_{e} F_{e, l}^{2} \partial_{l}^{3} u \tag{2.12}
\end{align*}
$$

which proves the result for $s=1$ combining with Lemma 2.1. We finally get the result by induction.

We are now able to derive multi-parameter error expansion for the eigenvalues. For simplicity, we only consider the case of a simple eigenvalue λ. From (2.3) and the normalization condition for the eigenfunctions, we get

$$
\left\|\nabla\left(u-u_{h}\right)\right\|^{2}=\lambda+\lambda_{h}-2 \lambda\left(u, u_{h}\right) .
$$

The insertion of the identity $\left\|u-u_{h}\right\|^{2}=2-2\left(u, u_{h}\right)$ leads to the following equation:

$$
\left\|\nabla\left(u-u_{h}\right)\right\|^{2}=\lambda_{h}-\lambda+\lambda\left\|u-u_{h}\right\|^{2} .
$$

Further, since the Ritz projection is the projection under the energy norm, we obtain

$$
\begin{align*}
\left\|\nabla\left(u-u_{h}\right)\right\|^{2} & =\left\|\nabla\left(u-R_{h} u\right)\right\|^{2}+\left\|\nabla\left(R_{h} u-u_{h}\right)\right\|^{2} \\
& =\left\|\nabla\left(u-R_{h} u\right)\right\|^{2}+\lambda\left(u-u_{h}, R_{h} u-u_{h}\right)+\left(\lambda-\lambda_{h}\right)\left(u_{h}, R_{h} u-u_{h}\right) . \tag{2.13}
\end{align*}
$$

Thus, from the above two identities together with the error estimates (2.4) we get

$$
\begin{equation*}
\lambda_{h}-\lambda=\left\|\nabla\left(u-R_{h} u\right)\right\|^{2}+O\left(h^{4}\right)\|u\|_{2,2}^{2} . \tag{2.14}
\end{equation*}
$$

Therefore, We only needs to expand the first term on the right hand side of (2.14), in order to get the multi-parameter expansions for the eigenvalue. Again, from the eigenequations (2.2) and (2.3), we have

$$
\begin{align*}
\left\|\nabla\left(u-R_{h} u\right)\right\|^{2} & =\lambda\left(u, u-R_{h} u\right) \\
& =\lambda\left(u, u-i_{h} u\right)+\lambda\left(u, i_{h} u-R_{h} u\right) . \tag{2.15}
\end{align*}
$$

For the first term on the right of (2.15), we apply proposition 2.1 and the identity (2.5) to see that

$$
\begin{align*}
\left(u, u-i_{h} u\right) & =\sum_{e \in T^{h}} \int_{e} \sum_{i=1}^{n} F_{e, i} \partial_{i}^{2}\left(u\left(u-i_{h} u\right)\right)+O\left(h^{4}\right) \\
& =-\frac{1}{3} \sum_{e \in T^{h}} \int_{e} \sum_{i=1}^{n} h_{e, i}^{2} \partial_{i}^{2}\left(\left(u-i_{h} u\right) u\right)+O\left(h^{4}\right) \\
& =-\frac{1}{3} \sum_{e \in T^{h}} \int_{e} \sum_{i=1}^{n} h_{e, i}^{2} u \partial_{i}^{2} u+O\left(h^{4}\right)=-\frac{1}{3} \sum_{i=1}^{p} h_{i}^{2} \int_{\Omega} N_{i} u \cdot u+O\left(h^{4}\right), \tag{2.16}
\end{align*}
$$

where N_{i} is some (piecewise) differential operator of $3 r d$ order. As for the second term on the right hand side of (2.15), we have, by applying lemma 2.2 ,

$$
\begin{equation*}
\left(u, i_{h} u-R_{h} u\right)=-\sum_{i=1}^{p} h_{i}^{2}\left(u, w_{i}\right)+O\left(h^{4}\right) . \tag{2.17}
\end{equation*}
$$

Combing (2.16) and (2.17), we finally obtain
Theorem 2.4. Let λ be a simple eigenvalue, then, λ_{h}, its finite element approxiation admits the following muiti-parameter expansion

$$
\begin{equation*}
\lambda_{h}-\lambda=\sum_{i=1}^{p} \xi_{i} h_{i}^{2}+O\left(h^{4}\right) \tag{2.18}
\end{equation*}
$$

for ξ_{i} independent of mesh parameter $h_{i}, i=1, \cdots, p$.

3. Multiparameter Expansions for Eigenfunction

In this section, we shall follow the line of Lin \& Xie ${ }^{[9]}$ and Blum ${ }^{[1]}$, our aim is to get the multi-parameter expansion of the error $u_{h}-i_{h} u$ in the case of a simple eigenvalue λ. As in Blum ${ }^{[1]}$, we denote Π and Π^{\perp} to be the orthogonal projections onto the eigenspace $E(\lambda)$ and its complement $E(\lambda)^{\perp}$ respectively, then

$$
\begin{align*}
u_{h}-i_{h} u & =\prod\left(u_{h}-i_{h} u\right)+\prod^{\perp}\left(u_{h}-i_{h} u\right) \\
& =\left(u_{h}-u, u\right) u+\left(u-i_{h} u, u\right) u+\prod^{\perp}\left(u_{h}-i_{h} u\right) \tag{3.1}
\end{align*}
$$

We shall now estimate the terms on the right hand side of (3.1) for $n=2$. For the first term, we have $\left(u_{h}-u, u\right)=-\frac{1}{2}\left\|u-u_{h}\right\|^{2}=O\left(h^{4}\right)$. For the second term, we apply (2.16) to get

$$
\left(u-i_{h} u, u\right)=-\frac{1}{3} \sum_{i=1}^{p} h_{i}^{2} u \int_{\Omega} N_{i} u \cdot u+O\left(h^{4}\right)
$$

We now come to the estimation of the last term. Following Lin and Xie ${ }^{[9]}$, we introduce the operators $K \equiv(-\Delta)^{-1}$ and $K_{h}=R_{h} K$, and obtain

$$
\begin{align*}
u-u_{h}= & \lambda K u-\lambda_{h} K_{h} u_{h}=\lambda K\left(u-u_{h}\right)+\frac{1}{\lambda}\left(\lambda-\lambda_{h}\right) u+\left(u-R_{h} u\right) \\
& +\left(\lambda-\lambda_{h}\right)\left(K_{h}-K\right) u+\left(\lambda-\lambda_{h}\right) K\left(u_{h}-u\right)+\lambda_{h}\left(K-K_{h}\right)\left(u_{h}-u\right) \tag{3.2}
\end{align*}
$$

Note that $\left\|K-K_{h}\right\|_{\infty}=O\left(h^{2}|\ln h|^{2}\right)$, we finally see that

$$
\begin{equation*}
u-u_{h}=\lambda K\left(u-u_{h}\right)+\frac{1}{\lambda}\left(\lambda-\lambda_{h}\right) u+\left(u-R_{h} u\right)+O\left(h^{4}|\ln h|^{2}\right) \tag{3.3}
\end{equation*}
$$

from which we obtain

$$
\begin{equation*}
i_{h} u-u_{h}=\lambda K\left(u-u_{h}\right)+\frac{1}{\lambda}\left(\lambda-\lambda_{h}\right) u+\left(i_{h} u-R_{h} u\right)+O\left(h^{4}|\ln h|^{2}\right) \tag{3.4}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
(I-\lambda K)\left(i_{h} u-u_{h}\right)=\lambda K\left(u-i_{h} u\right)+\frac{1}{\lambda}\left(\lambda-\lambda_{h}\right) u+\left(i_{h} u-R_{h} u\right)+O\left(h^{4}|\ln h|^{2}\right) \tag{3.5}
\end{equation*}
$$

since $v \equiv K\left(u-i_{h} u\right)$ satisfies the equation

$$
\begin{equation*}
(\nabla v, \nabla \varphi)=\left(u-i_{h} u, \varphi\right), \quad \forall \varphi \in H_{0}^{1}(\Omega) \tag{3.6}
\end{equation*}
$$

For the right term of the equation (3.6), by using proposition (2.3), we can define the coefficients $e_{\Omega}^{1}, \cdots, e_{\Omega}^{p}$ such that

$$
\begin{equation*}
h_{1}^{2}\left(\nabla e_{\Omega}^{1}, \nabla \varphi\right)+\cdots+h_{p}^{2}\left(\nabla e_{\Omega}^{p}, \nabla \varphi\right)=-\frac{\lambda}{3} \sum_{i=1}^{p} h_{i}^{2} \int_{\Omega} N_{i} u \cdot \varphi, \quad \forall \varphi \in H_{0}^{1}(\Omega) \tag{3.7}
\end{equation*}
$$

Substituting (3.7), (2.8) into (3.5), we get

$$
\begin{equation*}
(I-\lambda K)\left(i_{h} u-u_{h}\right)=\sum_{i=1}^{p} h_{i}^{2}\left(e_{\Omega}^{i}-w_{i}\right)-\lambda^{-1}\left(\lambda-\lambda_{h}\right) u+O\left(h^{4}|\ln h|^{2}\right) \tag{3.8}
\end{equation*}
$$

Since $(I-\lambda K)$ is an ismorphism on the space $E(\lambda)^{\perp}$ and $\Pi^{\perp} u=0$, thus

$$
\begin{equation*}
\prod^{\perp}\left(i_{h} u-u_{h}\right)=\sum_{i=1}^{p} h_{i}^{2}(I-\lambda K)^{-1} \prod^{\perp}\left(-e_{\Omega}^{i}+w_{i}\right)+O\left(h^{4}|\ln h|^{2}\right) \tag{3.9}
\end{equation*}
$$

In view of the above discussion, we finally arrive at the following result
Theorem 3.1. Let the assumption of Theorem 2.4 be satisfied. Then, the eigenfunction corresponding to a simple eigenvalue λ, admits the expansion

$$
\begin{equation*}
u_{h}-i_{h} u=\sum_{i}^{p} h_{i}^{2} \zeta_{i}+O\left(h^{4}|\ln h|^{2}\right) \tag{3.10}
\end{equation*}
$$

where $\zeta_{i}, i=1, \cdots, p$ are functions indenpent of mesh parameters h_{1}, \cdots, h_{p}.

4. Partition for General Domain

In this section, we shall discuss the case when Ω is an polygonal convex domain in R^{2} for sake of simplicity. We find that similar result is obtained.

First decompose Ω into several fixed convex quadrilaterals $T=\left\{\Omega_{1}, \cdots, \Omega_{m}\right\}$ such that T is quasi-uniform. Denote $\left(a_{i, j}, b_{i, j}\right)(j=1,2,3,4)$ to be the 4 vertices of the Ω_{i}.

Let Φ_{i} :

$$
\begin{aligned}
& x_{1}(\xi, \eta)=a_{i, 1}(1-\xi)(1-\eta)+a_{i, 2} \xi(1-\eta)+a_{i, 3} \xi \eta+a_{i, 4}(1-\xi) \eta \\
& x_{2}(\xi, \eta)=b_{i, 1}(1-\xi)(1-\eta)+b_{i, 2} \xi(1-\eta)+b_{i, 3} \xi \eta+b_{i, 4}(1-\xi) \eta
\end{aligned}
$$

be the bilinear coordinate transformations from the unit square $[0,1]^{2}$ to $\Omega_{i}(i=1, \cdots, m)$.
Under such mapping, a line parallel to $\xi-$ or η - axis in $[0,1]^{2}$ is transformed to the line linking the two equipartition points of a two opposite edges in Ω_{i}. For a function v defined on Ω_{i}, we define the function \hat{v} on $[0,1]$ by

$$
\begin{equation*}
\hat{v}=v \circ \Phi_{i} \tag{4.1}
\end{equation*}
$$

Conversely, a function \hat{v} defined on $[0,1]^{2}$ determines a function v on Ω_{i} satisfying (4.1). Define

$$
\begin{align*}
& S_{0}^{h}(\Omega)=\left\{v \in H_{0}^{1}(\Omega): v \circ \Phi_{i} \text { is piecewise bilinear on }[0,1]^{2}, i=1,2, \cdots\right\}, \tag{4.2}\\
& u=\hat{u} \circ \Phi_{i}^{-1}, \quad \text { on } \Omega_{i}, \\
& i_{h} u=\hat{i_{h}} \hat{u} \circ \Phi_{i}^{-1}, \quad \text { on } \Omega_{i},
\end{align*}
$$

where $\hat{i_{h}} \hat{u}$ is the piecewise bilinear interpolant of \hat{u} on $[0,1]^{2} . \quad i_{h} u(x)=u(x)$ holds for x being the nodal points in Ω and $S_{0}^{h}(\Omega)$ is determined by some parameters, say h_{1}, \cdots, h_{p}. By induction, it can be proved that for any polygonal domain with a proper choice of $\left\{\Omega_{1}, \cdots, \Omega_{m}\right\}, p$ satisfies $p \geq 2$.

Then there exist an interpolation operator I_{h} (cf. Lin (1990) and Lin Yan and Zhou (1991)) constants ξ_{i} and functions w_{i} such that

$$
\begin{align*}
& \lambda_{h}-\lambda=\sum_{i=1}^{p} \xi_{i} h_{i}^{2}+O\left(h^{4}\right) \tag{4.3}\\
& I_{h} u_{h}=u+\sum_{i=1}^{p} w_{i} h_{i}^{2}+O\left(h^{4}|\ln h|^{2}\right) \tag{4.4}
\end{align*}
$$

hold for any $x \in \Omega$ having positive distance from the vertices of T.
Remark 4.1. It should point out that other kinds of partitions can also be employed and the corresponding multi-parameter asymptotic error expansions are also exist (cf. Zhou, Liem and Shih (1994)).

5. A Parallel Algorithm

Consider an 2 -dimensional problem. Suppose that the domain Ω is divided into m nonoverlapping subdomains $\left\{\Omega_{j}: j=1,2, \cdots, m\right\}$, on which meshes are imposed and $h_{1}, h_{2} \cdots$ are the mesh parameters. Among them, p parameters are independent, we denoted it by h_{1}, \cdots, h_{p} without loss of generality. Let $h=\max \left\{h_{i}: i=1, \cdots, p\right\}$ and denote the numerical solution by $u\left(h_{1}, \cdots, h_{p}\right)$. In many cases, there exists a multi-parameter expansion

$$
\begin{align*}
& \lambda\left(h_{1}, \cdots, h_{p}\right)=\lambda+\sum_{i=1}^{p} \xi_{i} h_{i}^{2}+O\left(h^{4}\right), \tag{5.1}\\
& u\left(h_{1}, \cdots, h_{p}\right)=u+\sum_{i=1}^{p} \eta_{i} h_{i}^{2}+O\left(h^{4}|\ln h|^{2}\right), \tag{5.2}
\end{align*}
$$

where u is the exact solution and $\xi, \eta_{i}(i=1, \cdots, p)$ are independent of $\left(h_{1}, \cdots, h_{p}\right)$.
It is obvious that a careful choice of mesh parameters will save the computational work and computer storage and yields a higher accuracy approximation, i.e., there holds

$$
\begin{align*}
\lambda^{c} & \equiv\left(4 \sum_{i=1}^{p} \lambda_{i}-(4 p-3) \lambda_{0}\right) / 3=\lambda+O\left(h^{4}\right), \tag{5.3}\\
u^{c} & \equiv\left(4 \sum_{i=1}^{p} u_{i}-(4 p-3) u_{0}\right) / 3=u+O\left(h^{4}|\ln h|^{2}\right), \tag{5.4}
\end{align*}
$$

where $\lambda_{i}=\lambda\left(h_{1}, \cdots, h_{i-1}, h_{i} / 2, h_{i+1}, \cdots, h_{p}\right)$ and $u_{i}=u\left(h_{1}, \cdots, h_{i-1}, h_{i} / 2, h_{i+1}, \cdots, h_{p}\right)$. Thus, a parallel algorithm for higher accuracy approximations follows:

Algorithm.
Step 1. Compute $\lambda_{i}, u_{i}(0 \leq i \leq p)$ in parallel.
Step 2. Set $\lambda^{c}=\left(4 \sum_{i=1}^{p} \lambda_{i}-(4 p-3) \lambda_{0}\right) / 3$, and $u^{c}=\left(4 \sum_{i=1}^{p} u_{i}-(4 p-3) u_{0}\right) / 3$.
Acknowledgement. Th authors would like to thank Professor Q. Lin for his suggestions and discussions.

References

[1] Blum, Asymptotic Error Expansion and Defect Correction in the Finit Element Method, Heidelberg 1990.
[2] H. Blum, Q. Lin, R. Rannacher, Asymptotic error expansion and Richardson extrapolation for linear finite elements, Numer. Math., 49 (1986), 11-37.
[3] P. Ciarlet, \& P. Lions, Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part 1), North-Holland, 1991.
[4] J. Frehse J, R. Rannacher, Eine L ${ }^{1}$ Fehlerabschä tzuny für diskrete Grundlösungen in der Methode der finiten elemente, Bonn. Math. Schr., 89 (1976), 92-114.
[5] Q. Lin, An integral identity and interpolated postprocess in superconvergence, Research Report 90-07, Inst. of Sys. Sci., Academia Sinica, 1990.
[6] Y. Huang, Asymptotic expansions with higher order remainder for finit element eigenvalue problems, Natural Science J. of Xiangtan Univ., 10:1 (1988).
[7] Q. Lin, T. Lü, The splitting extrapolation method for multidimensional problems, J. Comp. Math., 1 (1983), 45-51.
[8] Q. Lin, T. Lü, S.M. Shen, Asymptotic expansions for finite element approximations, Research Report IMS-11, Inst. of Math. Sci., Chengdu Branch of Academia Sinica, (1983), 1-6.
[9] Q. Lin, R.F. Xie, Some advances in the study of error expansion for the finit elements, I. Eigenvalue error expansion, J. Comput. Math., 6 (1988), 68-79.
[10] Q. Lin, N. Yan, A. Zhou, A rectangle test for interpolated finite elements, ibid., (1991), 217-229.
[11] Q. Lin, Q.D. Zhu, Unidirectional extrapolation of finit difference and finit elements, J. Eng. Math., 2 (1984), 1-12.
[12] Q. Lin, Q.D. Zhu, The Preprocessing and Postprocessing for the finite element Method, Shanghai Scientic \& Technical Publisher, 1994.
[13] T. Lü, T.M. Shih, C.B. Liem An analysis of splitting extrapolation for multidimensional problems, J. Sys. Sci. \& Math. Scis., 3 (1990), 261-272.
[14] G. Marchuk, V. Shaidurov, Difference Methods and their Extrapolation, Springer, New York, 1983.
[15] P. Neittaanmaki, Q. Lin, Acceleration of the covergence in finite difference methods by predictor corrector and splitting extrapolation methods, J. Comp. Math., 5 (1987), 181190.
[16] R. Rannacher, Extrapolation techniques in the finite element method (A Survey), in: Proc. of the Summer School in Numer. Analysis at Helsinki, 1988.
[17] U. Rüde, Extrapolation and related techniques for solving elliptic equations, TUM-I-9135, Inst. fúr Informatik, Technische Univ. München, 1991.
[18] C. Zenger, Sparse grids, in: Parallel Algorithm for Partial Differential Equations, Proc. of $6^{\text {th }}$ GAMM-Seminar, Braunschweig, Vieweg-Verlag, 1991.
[19] A. Zhou, C.B. Liem, T.M. Shih, A parallel algorithm based on multi-parameter asymptotic error expansion, in: Proc. of Conference on Scientific Computation, Hong Kong, 1994.
[20] A. Zhou, C.B. Liem, T.M. Shih, T. Lü, A multiparameter splitting extrapolation and a parallel algorithm, Reserch Report IMS-61, 1994, see also Systems Sci. \& Math. Scis., 10, 3(1997), 253-260.

[^0]: Received November 9, 1995.

 * This research is supported by National Science Foundation of China

