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Abstract

A class of asynchronous matrix multi-splitting multi-parameter relaxation meth-
ods, including the asynchronous matrix multisplitting SAOR, SSOR and SGS
methods as well as the known asynchronous matrix multisplitting AOR, SOR and
GS methods, etc., is proposed for solving the large sparse systems of linear equa-
tions by making use of the principle of sufficiently using the delayed information.
These new methods can greatly execute the parallel computational efficiency of
the MIMD-systems, and are shown to be convergent when the coefficient matrices
are H-matrices. Moreover, necessary and sufficient conditions ensuring the con-
vergence of these methods are concluded for the case that the coefficient matrices
are L-matrices.

Key words: System of linear equations, asynchronous iteration, matrix multisplit-
ting, relaxation, convergence.

1. Introduction

Multisplitting methods for getting the solution of large sparse system of linear
equations

Ax = b, A = (amj) ∈ L(Rn) nonsingular, x = (xm), b = (bm) ∈ Rn (1.1)

are efficient parallel iterative methods which are based on several splittings of the
coefficient matrix A ∈ L(Rn). Following [1] there has been bounteous literature (see
[2-11], [14-29] and references therein) on both synchronous and asynchronous parallel
iterative methods in the sense of matrix multisplitting.

In this paper, based on the more recent works of [8-9] and by simultaneously tak-
ing into account of both the advantages of the matrix multisplitting and the con-
crete characterizations of the high-speed MIMD-systems, we further propose a class
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of asynchronous matrix multisplitting unsymmetric AOR(UAOR) methods, the multi-
parameter extensions of the methods given in [8] and [9], for solving the system of linear
equations (1.1). These methods, besides being able to execute greatly the parallel com-
putational efficiency of the MIMD-systems, can cover a series of practical asynchronous
matrix multisplitting relaxed methods such as the novel asynchronous matrix multi-
splitting symmetric AOR(SAOR), unsymmetric SOR(USOR), symmetric SOR(SSOR)
and symmetric Gauss-Seidel(SGS) methods as well as the known asynchronous matrix
multisplitting AOR method in [8] and [9], etc., and therefore, they have certain gener-
alities. Moreover, speedy convergence rates can be attained with suitably adjusting the
relaxation parameters included in the new methods. Through some numerical results,
we practically confirm that these new methods are really of distinct superiority. The
convergence theories about the new methods are demonstrated in detail under more
practical conditions, that is, the coefficient matrix A ∈ L(Rn) is an H-matrix, or an
L-matrix.

2. Asynchronous matrix multisplitting UAOR methods

We first split the number set {1, 2, · · · , n} into α(α ≤ n, an integer) nonempty
subsets Ji (i = 1, 2, · · · , α), i.e., Ji ⊆ {1, 2, · · · , n} (i = 1, 2, · · · , α) and

⋃α
i=1 Ji =

{1, 2, · · · , n}, where there may be overlappings among these Ji (i = 1, 2, · · · , α).
For a nonsingular matrix A = (amj) ∈ L(Rn), define matrices





D = diag(A), det(D) 6= 0

Li = (L(i)
mj), L(i)

mj =

{
l
(i)
mj , if j < m and m, j ∈ Ji

0, otherwise,

Ui = (U (i)
mj), U (i)

mj =

{
u

(i)
mj , if j > m and m, j ∈ Ji

0, otherwise

Wi = (W(i)
mj), W(i)

mj =

{
0, if m = j

w
(i)
mj , otherwise

m, j = 1, 2, · · · , n; i = 1, 2, · · · , α
such that

A = D − Li − Ui −Wi, i = 1, 2, · · · , α. (2.1)

Obviously, for i = 1, 2, · · · , α, Li, Ui ∈ L(Rn) are strictly lower triangular and strictly
upper triangular, respectively, while Wi ∈ L(Rn) are zero-diagonal.

Additionally, introduce nonnegative diagonal matrices Ei ∈ L(Rn) (i = 1, 2, · · · , α),

Ei = diag(e(i)
1 , e

(i)
2 , · · · , e(i)

n ), e(i)
m =

{
e
(i)
m ≥ 0, if m ∈ Ji

0, otherwise,
(2.2)

such that
α∑

i=1

Ei = I(I ∈ L(Rn) is the identity matrix). This type of matrices Ei(i =

1, 2, · · · , α) are called weighting matrices.
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The splittings (2.1) of the matrix A ∈ L(Rn) with the weighting matrices (2.2) is
called a multisplitting of the matrix A ∈ L(Rn), and is simply denoted as (D−Li, D−
Ui,Wi, Ei) (i = 1, 2, · · · , α).

Assume that the MIMD-system referred by us is constructed by α CPU’s, for the
requirements of establishing the new asynchronous matrix multisplitting UAOR meth-
ods for the system of linear equations (1.1), we now introduce the following important
notations:

(i) for ∀i ∈ {1, 2, · · · , α},∀p ∈ N0 := {0, 1, 2, · · ·}, J (i) = {Ji(p)}p∈N0 is used to
denote a subset (may be empty set ∅) sequence of the set Ji;

(ii) for ∀m ∈ {1, 2, · · · , n},∀p ∈ N0, Nm(p) := {i | m ∈ Ji(p), i = 1, 2, · · · , α} is a
subset of the set {1, 2, · · · , α};

(iii) for ∀i ∈ {1, 2, · · · , α}, S(i) = {s(i)
1 (p), s(i)

2 (p), · · · , s(i)
n (p)}p∈N0 is n infinite se-

quences of nonnegative integers.

J (i) and S(i)(i = 1, 2, · · · , α) have the following properties:

(a) for ∀i ∈ {1, 2, · · · , α},∀m ∈ {1, 2, · · · , n}, the set {p ∈ N0 | m ∈ Ji(p)} is infinite;

(b) for ∀p ∈ N0, there holds
α⋃

i=1
Ji(p) 6= ∅;

(c) for ∀i ∈ {1, 2, · · · , α},∀m ∈ {1, 2, · · · , n},∀p ∈ N0, there holds s
(i)
m (p) ≤ p;

(d) for ∀i ∈ {1, 2, · · · , α},∀m ∈ {1, 2, · · · , n}, there holds

lim
p→∞ s(i)

m (p) = ∞.

For ∀p ∈ N0, once we define s(p) = min
1≤m≤n
1≤i≤α

s(i)
m (p), there hold s(p) ≤ p and lim

p→∞ s(p) =

∞.
With the above preparations, we can now set up the asynchronous matrix multi-

splitting UAOR method for solving the large sparse system of linear equations (1.1) as
follows:

Method I: Given initial guess x0 ∈ Rn and suppose that we have got the approx-
imations x0, x1, · · · , xp of the solution x∗ = (x∗1, x∗2, · · · , x∗n)T of the system of linear
equations (1.1). Then the (p + 1)st approximation xp+1 = (xp+1

1 , xp+1
2 , · · · , xp+1

n )T of
x∗ can be calculated through the following processes:

xp+1/2,i
m =

1
amm

{
r1

∑
j<m

j∈Ji(p)

l
(i)
mjx

p+1/2,i
j + (ω1 − r1)

∑
j<m

j∈Ji(p)

l
(i)
mjx

s
(i)
j (p)

j

+ ω1

( ∑
j>m
j∈Ji

u
(i)
mjx

s
(i)
j (p)

j +
∑

j 6=m

w
(i)
mjx

s
(i)
j (p)

j +
∑
j<m

j∈Ji\Ji(p)

l
(i)
mjx

s
(i)
j (p)

j + bm

)}

+ (1− ω1)xs
(i)
m (p)

m , m ∈ Ji(p)
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xp+1,i
m =

1
amm

{
r2

∑
j>m

j∈Ji(p)

u
(i)
mjx

p+1,i
j + (ω2 − r2)

∑
j>m

j∈Ji(p)

u
(i)
mjx

p+1/2,i
j

+ ω2

( ∑
j<m

j∈Ji(p)

l
(i)
mjx

p+1/2,i
j +

∑

j 6=m

w
(i)
mjx

s
(i)
j (p)

j

)
(2.3)

+ ω2

( ∑
j<m

j∈Ji\Ji(p)

l
(i)
mjx

s
(i)
j (p)

j +
∑
j>m

j∈Ji\Ji(p)

u
(i)
mjx

s
(i)
j (p)

j + bm

)}

+ (1− ω2)xp+1/2,i
m , m ∈ Ji(p)

xp+1
m =

∑

i∈Nm(p)

e(i)
m xp+1,i

m +
∑

i/∈Nm(p)

e(i)
m xp

m.

Evidently, with different choices of the relaxation parameters r1, r2, ω1, ω2 in Method
I, many special but very practical asynchronous matrix multisplitting relaxed meth-
ods can be obtained. For example, corresponding (r1, r2, ω1, ω2) to be (r, r, ω, ω),
(ω, ω̄, ω, ω̄), (ω, ω, ω, ω), (0, 0, 1, 1) and (r, 0, ω, 0), Method I automatically reduces to
the asynchronous matrix multisplitting SAOR, USOR, SSOR, SGS and AOR[8,9] meth-
ods, respectively. In this manner, Method I really forms an extensive sequence of asyn-
chronous matrix multisplitting relaxed methods, which therefore makes it much more
flexible and convenient in the concrete applications.

In addition, note that for each m ∈ Ji(p), i ∈ {1, 2, · · · , α}, the terms

∑

j 6=m

w
(i)
mjx

s
(i)
j (p)

j ,
∑
j<m

j∈Ji\Ji(p)

l
(i)
mjx

s
(i)
j (p)

j ,
∑
j>m

j∈Ji\Ji(p)

u
(i)
mjx

s
(i)
j (p)

j

need only be computed once in (2.3). However, no additional savings will, in general,
be possible when performing Method I. This is in contrast to the usual UAOR method,
which can be implemented in such a manner that apart from the first half step it
requires almost the same computational work as the AOR method.

On the other hand, when

Ji(p) = Ji, s
(i)
m (p) = p, ∀m ∈ {1, 2, · · · , n}, ∀i ∈ {1, 2, · · · , α}, ∀p ∈ N0,

Method I naturally reduces to an efficient and practical variant of the known syn-
chronous parallel matrix multisplitting UAOR method introduced in [4] for the system
of linear equations (1.1), while





Ji = {1, 2, · · · , n}
(Ji(p) = Ji)

∨
(Ji(p) = ∅) = True, s

(i)
m (p) = si(p) ∈ N0

∀m ∈ {1, 2, · · · , n}, ∀i ∈ {1, 2, · · · , α}, ∀p ∈ N0,

Method I automatically turns to an efficient and practical variant of the existed asyn-
chronous parallel matrix multisplitting unsymmetric AOR method studied in [7].
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If we supplement

xp+1,i
m = xp+1/2,i

m ≡ xs
(i)
m (p)

m , m ∈ Ji \ Ji(p), i = 1, 2, · · · , α,

from (2.3) we have




ammx
p+1/2,i
m − r1

∑
j<m
j∈Ji

l
(i)
mjx

p+1/2,i
j = (1− ω1)ammxs

(i)
m (p)

m + (ω1 − r1)
∑
j<m
j∈Ji

l
(i)
mjx

s
(i)
j (p)

j

+ω1

( ∑
j>m
j∈Ji

u
(i)
mjx

s
(i)
j (p)

j +
∑

j 6=m

w
(i)
mjx

s
(i)
j (p)

j

)
+ ω1bm, m ∈ Ji(p)

ammxp+1,i
m − r2

∑
j>m
j∈Ji

u
(i)
mjx

p+1,i
j = (1− ω2)ammxp+1/2,i

m + (ω2 − r2)
∑
j>m
j∈Ji

u
(i)
mjx

p+1/2,i
j

+ω2

( ∑
j<m
j∈Ji

l
(i)
mjx

p+1/2,i
j +

∑

j 6=m

w
(i)
mjx

s
(i)
j (p)

j

)
+ ω2bm, m ∈ Ji(p),

or equivalently,




x
p+1/2,i
m = eT

m(D − r1Li)−1{[(1− ω1)D + (ω1 − r1)Li + ω1(Ui + Wi)]xs(i)(p) + ω1b}

xp+1,i
m = eT

m(D − r2Ui)−1{[(1− ω2)D + (ω2 − r2)Ui + ω2Li]x
p+

1
2 ,i

m + ω2Wix
s(i)(p) + ω2b}

m ∈ Ji(p), m = 1, 2, · · · , n; i = 1, 2, · · · , α,

where

xs(i)(p) = (xs
(i)
1 (p)

1 , x
s
(i)
2 (p)

2 , · · · , xs
(i)
n (p)

n )T , i = 1, 2, · · · , α, ∀p ∈ N0,

x
p+1/2,i
m (m /∈ Ji) can be evaluated arbitrarily, and em denotes the m-th unit vector in

Rn.
Now, through combining the above two relations and by considering the structures

of the matrices Li, Ui(i = 1, 2, · · · , α), Method I can be immediately expressed as the
following succint form:





xp+1
m =

∑

i∈Nm(p)

e(i)
m eT

mL(i)(r1, r2, ω1, ω2)xs(i)(p) +
∑

i/∈Nm(p)

e(i)
m xp

m

+
∑

i∈Nm(p)

e(i)
m eT

mb(i)(r1, r2, ω1, ω2)

m = 1, 2, · · · , n,

(2.4)

where for i = 1, 2, · · · , α,




L(i)(r1, r2, ω1, ω2) = (D − r2Ui)−1

·{[(1− ω2)D + (ω2 − r2)Ui + ω2Li]L(i)(r1, ω1) + ω2Wi}
b(i)(r1, r2, ω1, ω2) = (D − r2Ui)−1

·{[(1− ω2)D + (ω2 − r2)Ui + ω2Li](D − r1Li)−1ω1b + ω2b}
L(i)(r1, ω1) = (D − r1Li)−1[(1− ω1)D + (ω1 − r1)Li + ω1(Ui + Wi)].

(2.5)
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Furthermore, if we extrapolate Method I by another parameter β > 0, it can be
improved as the following relaxed asynchronous matrix multisplitting UAOR method.

Method II: Given initial guess x0 ∈ Rn and suppose that we have got the approx-
imations x0, x1, · · · , xp of the solution x∗ = (x∗1, x∗2, · · · , x∗n)T of the system of linear
equations (1.1), then the (p + 1)st approximation xp+1 = (xp+1

1 , xp+1
2 , · · · , xp+1

n )T of x∗

can be calculated through the following processes:

xp+1/2,i
m =

1
amm

{
r1

∑
j<m

j∈Ji(p)

l
(i)
mjx

p+1/2,i
j + (ω1 − r1)

∑
j<m

j∈Ji(p)

l
(i)
mjx

s
(i)
j (p)

j

+ ω1

( ∑
j>m
j∈Ji

u
(i)
mjx

s
(i)
j (p)

j +
∑

j 6=m

w
(i)
mjx

s
(i)
j (p)

j +
∑
j<m

j∈Ji\Ji(p)

l
(i)
mjx

s
(i)
j (p)

j + bm

)}

+ (1− ω1)xs
(i)
m (p)

m , m ∈ Ji(p)

xp+1,i
m =

1
amm

{
r2

∑
j>m

j∈Ji(p)

u
(i)
mjx

p+1,i
j + (ω2 − r2)

∑
j>m

j∈Ji(p)

u
(i)
mjx

p+1/2,i
j

+ ω2

( ∑
j<m

j∈Ji(p)

l
(i)
mjx

p+1/2,i
j +

∑

j 6=m

w
(i)
mjx

s
(i)
j (p)

j

)

+ ω2

( ∑
j<m

j∈Ji\Ji(p)

l
(i)
mjx

s
(i)
j (p)

j +
∑
j>m

j∈Ji\Ji(p)

u
(i)
mjx

s
(i)
j (p)

j + bm

)}

+ (1− ω2)xp+1/2,i
m , m ∈ Ji(p)

xp+1
m =β

[ ∑

i∈Nm(p)

e(i)
m xp+1,i

m +
∑

i/∈Nm(p)

e(i)
m xp

m

]
+ (1− β)xp

m.

Factually, Method II carries on all the properties of Method I stated previously.
However, since it includes one more arbitrary parameter than Method I, corresponding
to a series of special choices of these relaxation parameters r1, r2, ω1, ω2 and β involved
in it, another practical and efficient sequence of asynchronous matrix multisplitting
relaxed methods can be similarly yielded, too. For the length of this paper, we will not
write them here one by one.

Additionally, analogous to Method I, Method II can also be simply written as

xp+1
m =

∑

i∈Nm(p)

e(i)
m eT

mL(i)(r1, r2, ω1, ω2, β)xs(i)(p) +
∑

i/∈Nm(p)

e(i)
m xp

m

+
∑

i∈Nm(p)

e(i)
m eT

mb(i)(r1, r2, ω1, ω2, β), m = 1, 2, · · · , n, (2.6)

where
{ L(i)(r1, r2, ω1, ω2, β) = βL(i)(r1, r2, ω1, ω2) + (1− β)I,

b(i)(r1, r2, ω1, ω2, β) = βb(i)(r1, r2, ω1, ω2),
i = 1, 2, · · · , α (2.7)

with L(i)(r1, r2, ω1, ω2) and b(i)(r1, r2, ω1, ω2)(i = 1, 2, · · · , α) being defined by (2.5).
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3. Convergence theories

The partial orderings ≤, < in Rn and L(Rn) are introduced according to the el-
ements. ρ(•) and < • > are used to denote the spectral radius and the comparison
matrix of the corresponding matrices, respectively, and | • | the absolute value of ei-
ther a vector or a matrix. Also, we will carry on the concepts as well as the essential
conclusions used in [2−−4, 6−−9].

In the following, we assert a general criterion about the convergence of the asyn-
chronous matrix multisplitting iterative methods, which is elementary for the subse-
quent discussion and will be proved in section 5.

Lemma 3.1. Let Hi ∈ L(Rn) (i = 1, 2, · · · , α) be nonnegative matrices, Ei(i =
1, 2, · · · , α) be weighting matrices, and the sequence {εp}p∈N0 be defined by





εp = (εp
1, ε

p
2, · · · , εp

n)T

εp+1
m =

∑

i∈Nm(p)

e(i)
m eT

mHiε
s(i)(p) +

∑

i/∈Nm(p)

e(i)
m εp

m

m = 1, 2, · · · , n, ∀p ∈ N0

with
εs(i)(p) = (εs

(i)
1 (p)

1 , ε
s
(i)
2 (p)

2 , · · · , εs
(i)
n (p)

n )T , i = 1, 2, · · · , α, ∀p ∈ N0.

Then, (i) lim
p→∞ εp = 0 for any ε0 ∈ Rn provided there exist a nonnegative number

σ ∈ [0, 1) and a positive vector v ∈ Rn such that Hiv ≤ σv(i = 1, 2, · · · , α);

(ii) lim
p→∞

εp 6= 0 for some ε0 ∈ Rn provided there exist a positive number θ ∈ [1,∞)

and a nonnegative nonzero vector u ∈ Rn such that Hiu ≥ θu(i = 1, 2, · · · , α).
Lemma 3.1 directly implies the following conclusion.
Lemma 3.2. Let Hi ∈ L(Rn) (i = 1, 2, · · · , α) be nonnegative matrices, Ei(i =

1, 2, · · · , α) be weighting matrices, and the sequence {εp}p∈N0 be defined by

εp+1 =
∑

i∈J(p)

EiHiε
si(p) +

∑

i/∈J(p)

Eiε
p, p = 0, 1, 2, · · ·

with {J(p)}p∈N0 be a subset sequence of the set {1, 2, · · · , α} and si(p) ∈ N0(i =
1, 2, · · · , α; p ∈ N0). If there hold

(1) the set {p ∈ N0 | i ∈ J(p)} is infinite;

(2) for ∀p ∈ N0, for ∀i ∈ {1, 2, · · · , α}, si(p) ≤ p; and

(3) for ∀i ∈ {1, 2, · · · , α}, lim
p→∞ si(p) = ∞,

then, (i) lim
p→∞ εp = 0 for any ε0 ∈ Rn provided there exist a nonnegative number σ ∈

[0, 1) and a positive vector v ∈ Rn such that Hiv ≤ σv(i = 1, 2, · · · , α);

(ii) lim
p→∞

εp 6= 0 for some ε0 ∈ Rn provided there exist a positive number θ ∈ [1,∞)

and a nonnegative nonzero vector u ∈ Rn such that Hiu ≥ θu(i = 1, 2, · · · , α).

Proof. For ∀i ∈ {1, 2, · · · , α} and ∀p ∈ N0, if we take Nm(p) ≡ J(p), s
(i)
m (p) ≡ si(p),

m = 1, 2, · · · , n, in Lemma 3.1, we can immediately know that the conclusions what we
are proving are true.
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It is deserved to mention that Lemma 3.1 also implies sufficient conditions ensuring
the convergence as well as the divergence of all the known synchronous and asyn-
chronous parallel multisplitting iteration methods[1−9,15,18,21−29] for solving the large
sparse system of linear equations (1.1). For the length of the paper, we will not give
the concrete descriptions here.

Let x∗ = (x∗1, x∗2, · · · , x∗n)T ∈ Rn be the unique solution of the system of linear
equations (1.1) and define





ε
s
(i)
m (p)

m = x
s
(i)
m (p)

m − x∗m, εs(i)(p) = (εs
(i)
1 (p)

1 , ε
s
(i)
2 (p)

2 , · · · , εs
(i)
n (p)

n )T

ε
p+1/2,i
m = x

p+1/2,i
m − x∗m, εp+1,i

m = xp+1,i
m − x∗m, m ∈ Ji

εp+1
m = xp+1

m − x∗m
m = 1, 2, · · · , n; i = 1, 2, · · · , α; ∀p ∈ N0.

Then for all m = 1, 2, · · · , n, it is easy to obtain from (2.4) that for Method I there hold

εp+1
m =

∑

i∈Nm(p)

e(i)
m eT

mL(i)(r1, r2, ω1, ω2)εs(i)(p) +
∑

i/∈Nm(p)

e(i)
m εp

m, (3.1)

while for Method II, from (2.6) there hold

εp+1
m =

∑

i∈Nm(p)

e(i)
m eT

mL(i)(r1, r2, ω1, ω2, β)εs(i)(p) +
∑

i/∈Nm(p)

e(i)
m εp

m. (3.2)

Now, we are ready to set up the convergence theories for Method I and Method II.
Theorem 3.1. Let A ∈ L(Rn) be an H-matrix, (D − Li, D − Ui,Wi, Ei) (i =

1, 2, · · · , α) be a multisplitting of it with 〈A〉 = |D| − |Li| − |Ui| − |Wi| ≡ |D| − |B|
(i = 1, 2, · · · , α). Then,

(i) the sequence {xp}p∈N0 generated by Method I converges to the unique solution
x∗ ∈ Rn of the system of linear equations (1.1) for any starting vector x0 ∈ Rn provided
the relaxation parameters r1, r2 and ω1, ω2 are within the region given by

0 ≤ rm ≤ ωm, 0 ≤ ωm < 2/(1 + ρ(|D|−1|B|)) (ω1 + ω2 > 0), m = 1, 2; (3.3)

(ii) the sequence {xp}p∈N0 generated by Method II converges to the unique solution
x∗ ∈ Rn of the system of linear equations (1.1) for any starting vector x0 ∈ Rn provided
the relaxation parameters r1, r2, ω1, ω2 and β are within the region given by

{
0 ≤ rm ≤ ωm, 0 ≤ ωm < 2/(1 + ρ(|D|−1|B|)) (ω1 + ω2 > 0), m = 1, 2

0 < β < 2/(1 + ρ(H(ω1, ω2))),
(3.4)

where

H(ω1, ω2) =

{ |1− ω1|I + ω1|D|−1|B|, if ω2 = 0

|1− ω2|I + ω2|D|−1|B|, if ω2 6= 0.
(3.5)

Proof. We first prove (i). Because A ∈ L(Rn) is an H-matrix, we known that
ρ(|D|−1|B|) < 1. For any ε > 0, write Jε = |D|−1|B|+ εeeT , where e = (1, 1, · · · , 1)T ∈
Rn. According to the continuity of the spectral radius and (3.3) there hold

ρε := ρ(Jε) < 1, σ :=
{ |1− ω1|+ ω1ρε, if ω2 = 0
|1− ω2|+ ω2ρε, if ω2 6= 0

}
< 1 (3.6)



A Class of Asynchronous Matrix Multi-splitting Multi-parameter Relaxation Iterations 229

provided ε is much small. Now, in accordance with the Perron-Frobenius theorem[12]

in the nonnegative matrix theory, there exists a positive vector v = v(ε) ∈ Rn such that

Jεv = ρεv. (3.7)

Since (D − r1Li) and (D − r2Ui), i = 1, 2, · · · , α, are all H-matrices, we can obtain

|(D − r1Li)−1| ≤ (|D| − r1|Li|)−1,

|(D − r2Ui)−1| ≤ (|D| − r2|Ui|)−1,
i = 1, 2, · · · , α.

From (2.5) and by direct estimations, there immediately hold




|L(i)(r1, ω1)| ≤ I + (|D| − r1|Li|)−1|D|[(|1− ω1| − 1)I + ω1Jε]

|L(i)(r1, r2, ω1, ω2)| ≤ (|D| − r2|Ui|)−1{[|1− ω2||D|+ (ω2 − r2)|Ui|
+ω2|Li|]|L(i)(r1, ω1)|+ ω2|Wi|}.

(3.8)

Applying (3.6)-(3.7) to the first inequality of (3.8) we easily see that there have

|L(i)(r1, ω1)|v ≤ (|1− ω1|+ ω1ρε)v < v,

and thereby,

|L(i)(r1, r2, ω1, ω2)|v ≤ |L(i)(r1, ω1)|v ≤ (|1− ω1|+ ω1ρε)v = σv

if ω2 = 0 and

|L(i)(r1, r2, ω1, ω2)|v ≤ (|D| − r2|Ui|)−1[|1− ω2||D|+ (ω2 − r2)|Ui|+ ω2(|Li|+ |Wi|)]v
≤ I + (|D| − r2|Ui|)−1|D|[(|1− ω2| − 1)I + ω2Jε]v

≤ (|1− ω2|+ ω2ρε)v = σv

if ω2 6= 0.
For the error vector sequence {εp}p∈N0 given by (3.1), take ε0 = |ε0| and define

{εp}p∈N0 according to Lemma 3.1 with Hi = |L(i)(r1, r2, ω1, ω2)| (i = 1, 2, · · · , α). Since
we have verified these Hi(i = 1, 2, · · · , α) are nonnegative matrices and Hiv ≤ σv

(i = 1, 2, · · · , α), in light of Lemma 3.1(i) we see that εp → 0(p →∞).
Moreover, by induction we can get |εp| ≤ εp (∀p ∈ N0), i.e., {εp}p∈N0 is a majorizing

sequence of {εp}p∈N0 . Therefore, we have |εp| → 0(p → ∞), or in other words, the
conclusion (i) is valid.

We now turn to (ii). Considering the continuity of the spectral radius and (3.4)-
(3.5), we have

σ̄ := |1− β|+ βσ < 1 (3.9)

provided ε is taken to be sufficiently small.
Through (2.7), (3.9) and conclusion (i), we can obtain |L(i)(r1, r2, ω1, ω2, β)|v ≤ σ̄v

(i = 1, 2, · · · , α) at once.
Presently, similar to (i), we can immediately fulfil the proof of conclusion (ii) by

making use of these inequalities and Lemma 3.1(ii), as well as (3.2).
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Theorem 3.2. Let A ∈ L(Rn) be an L-matrix, (D − Li, D − Ui,Wi, Ei) (i =
1, 2, · · · , α) be a multisplitting of it with Li ≥ 0, Ui ≥ 0, Wi ≥ 0, i = 1, 2, · · · , α. Then
either of the following conditions is sufficient and necessary for ρ(D−1B) < 1 with
B = D −A:

(a) for the starting vector x0 ∈ Rn, the sequence generated by Method I converges
to the unique solution of the system of linear equations (1.1) provided the relaxation
parameters r1, r2 and ω1, ω2 satisfy 0 ≤ rm ≤ ωm ≤ 1(m = 1, 2) and ω1 + ω2 > 0;

(b) for the starting vector x0 ∈ Rn, the sequence generated by Method II converges
to the unique solution of the system of linear equations (1.1) provided the relaxation
parameters r1, r2, ω1, ω2 and β satisfy 0 ≤ rm ≤ ωm ≤ 1(m = 1, 2), ω1 + ω2 > 0 and
0 < β ≤ 1.

Proof. The necessities of (a) and (b) are obvious in light of Theorem 3.1. We now
deal with their sufficiency separately.

Let B = D − A, J = D−1B and suppose ρ(J) ≥ 1. Simply denote ρ = ρ(J). Then
by the Perron-Frobenius theorem in the nonnegative matrix theory again, there exists
a nonnegative vector u ∈ Rn(6≡ 0) such that Ju = ρu. Now, we can assert

L(i)(r1, r2, ω1, ω2)u ≥ u, L(i)(r1, r2, ω1, ω2, β)u ≥ u, i = 1, 2, · · · , α, (3.10)

where for i = 1, 2, · · · , α, L(i)(r1, r2, ω1, ω2) and L(i)(r1, r2, ω1, ω2, β) are defined by (2.5)
and (2.7), respectively.

In fact, because of

L(i)(r1, ω1)u =u + ω1(D − r1Li)−1D(J − I)u

=u + ω1(D − r1Li)−1D(ρ− 1)u ≥ u,

we have

L(i)(r1, r2, ω1, ω2)u ≥ (D − r2Ui)−1[(1− ω2)D + (ω2 − r2)Ui + ω2(Li + Wi)]u

= u + ω2(D − r2Ui)−1D(J − I)u

= u + ω2(D − r2Ui)−1D(ρ− 1)u ≥ u,

and hence,

L(i)(r1, r2, ω1, ω2, β)u = [βL(i)(r1, r2, ω1, ω2) + (1− β)I]u ≥ [β + (1− β)]u = u.

Let {εp}p∈N0 be given by either (3.1) or (3.2) and take ε0 = ε0. Define {εp}p∈N0

according to Lemma 3.1 again with

Hi =

{ L(i)(r1, r2, ω1, ω2), for Method I,

L(i)(r1, r2, ω1, ω2, β), for Method II,
i = 1, 2, · · · , α,

correspondingly. Clearly, εp = εp(p = 0, 1, 2, · · ·) hold for both Method I and Method
II. Since Hi(i = 1, 2, · · · , α) are nonnegative matrices and we have demonstrated that
Hiu ≥ u(i = 1, 2, · · · , α) hold according to both of these two methods, by Lemma 3.1(ii)
we know that lim

p→∞
εp = lim

p→∞
εp 6= 0 for some ε0 = ε0 ∈ Rn, or in other words, for some

x0 ∈ Rn, which results in a contradiction. Therefore, ρ(D−1B) < 1.
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4. Numerical results

In this section, we are going to imitate the implementations of the previously
established asynchronous matrix multi-splitting multi-parameter relaxation methods
such as the asynchronous matrix multisplitting SGS method, the asynchronous ma-
trix multisplitting SSOR method and the asynchronous matrix multisplitting SAOR
method, which are simply denoted as AMMSGS, AMMSSOR (ω) and AMMSAOR
(r, ω), and compare them with their corresponding asynchronous matrix multisplit-
ting relaxation methods[8,9], i.e., the asynchronous matrix multisplitting GS method
(AMMGS), the asynchronous matrix multisplitting SOR method (AMMSOR (ω)) and
the asynchronous matrix multisplitting AOR method (AMMAOR (r, ω)), by using the
following example of the system of linear equations (1.1).

Example 4.1. A = block-tridiag(−I, B,−I) ∈ L(Rn), b = (4, 4, · · · , 4)T ∈ Rn,
where n = N2, B = tridiag(−1, 4 + ch2,−1) ∈ L(RN ), c = 10.0 and h = 1

n+1 .

For this example, we take α = 2, J1 = {1, 2, · · · ,m1}, J2 = {m2,m2+1, · · · , n}, with
m1,m2 being positive integers satisfying 1 ≤ m2 ≤ m1 ≤ n, and two particular kinds
of multisplittings (D−Li, D−Ui,Wi, Ei)(i = 1, 2) of the coefficient matrix A ∈ L(Rn):





D = diag (A) = diag (4 + ch2) ∈ L(Rn)

Li = (L(i)
mj) ∈ L(Rn), L(i)

mj =

{ −amj , if j < m, m, j ∈ Ji

0, otherwise

Ui = (U (i)
mj) ∈ L(Rn), U (i)

mj =

{ −amj , if j > m, m, j ∈ Ji

0, otherwise

Wi = (W(i)
mj) ∈ L(Rn), W(i)

mj =

{
0, if j = m

−(amj + L(i)
mj + U (i)

mj), otherwise

Ei = diag(e(i)
1 , e

(i)
2 , · · · , e(i)

n ) ∈ L(Rn)

e
(1)
j =





1, if 1 ≤ j < m2

0.75, if m2 ≤ j ≤ m1

0, if m1 < j ≤ n

, e
(2)
j =





0, if 1 ≤ j < m2

0.25, if m2 ≤ j ≤ m1

1, if m1 < j ≤ n

m, j = 1, 2, · · · , n; i = 1, 2.

The starting vector and the positive integers m1 and m2 are chosen to be x0 =
(0.5, · · · , 0.5)T ∈ Rn and m1 = [4n/5], m2 = [n/5], respectively, where [a] is used to de-
note the integer part of a positive number “a”, while the stopping criterion is adopted to

be
‖Axp − b‖∞√

n max{‖xp‖∞, 1} ≤ 10−6 and
‖xp − xp−1‖∞√
n max{‖xp‖∞, 1} ≤ 10−8. Corresponding to dif-

ferent n, or a fixed n(n = 10000) but different pairs (r, ω) of the relaxation parameters,
we have the following iteration number tables.

Table (I) AMMGS and AMMSGS methods

n 100 400 900 1600 2500 3600 4900 6400 8100 10000

AMMGS 124 265 444 658 903 1160 1419 1678 1929 2174

AMMSGS 48 128 230 348 476 610 747 883 1017 1147
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Table (II) AMMSOR(ω) and AMMSSOR(ω) methods (n = 10000)

ω 0.8 0.9 1.1 1.2 1.3 1.4 1.5 1.6

AMMSOR 3234 2645 1785 1461 1185 947 743 586

AMMSSOR 1615 1356 975 829 702 591 493 403

Table (III) AMMAOR(r, ω) and AMMSAOR(r, ω) methods (n = 10000)

r 1.5 1.6 1.6 1.62 1.65 1.7 1.7 1.7

ω 0.9 0.8 1.5 1.58 1.55 1.6 1.5 0.9

AMMAOR 1271 1174 613 566 535 460 481 802

AMMSAOR 724 671 418 391 372 328 339 490

Clearly, besides all the asynchronous matrix multisplitting relaxation methods show-
ing better convergence behaviours corresponding to suitably choosing the relaxation
parameter(s), the AMMSGS, AMMSSOR and AMMSAOR methods converge faster
than the AMMGS, AMMSOR and AMMAOR methods, respectively.

Moreover, Table (I) implies that as a function of n, the iteration number of the
AMMSGS method increases very much slower than that of the AMMGS method with
n becoming larger. The corresponding facts are also true for the AMMSSOR and
AMMSOR methods as well as the AMMSAOR and AMMAOR methods. This shows
that the asynchronous matrix multisplitting symmetric relaxation methods in this pa-
per are much less sensible about the relaxation parameters than their corresponding
asynchronous matrix multisplitting relaxation methods[8,9]. These good behaviours of
the asynchronous matrix multisplitting symmetric relaxation methods deserve further
revealing in both theories and experiments.

5. Proof of Lemma 3.1

To prove Lemma 3.1, we first cite the following important facts from [8] and [9].

Lemma 5.1. Given {ε̄t}p
t=0 ⊂ Rn(∀p ∈ N0). Assume that for all t ∈ {0, 1, · · · , p},

there exist positive number δ and positive vector v ∈ Rn such that |ε̄t| ≤ δv. Then there
identically hold |ε̄s(i)(p)| ≤ δv(i = 1, 2, · · · , α) provided s

(i)
m (p) ≤ p(m = 1, 2, · · · , n; i =

1, 2, · · · , α), where

ε̄s(i)(p) = (ε̄s
(i)
1 (p)

1 , ε̄
s
(i)
2 (p)

2 , · · · , ε̄s
(i)
n (p)

n )T , i = 1, 2, · · · , α, ∀p ∈ N0.

Lemma 5.2. Let ξm > 0(m = 1, 2, · · · , n). Assume that the sequence {εp
m}p∈N0(m =

1, 2, · · · , n) are defined to satisfy |εp+1
m | ≤ ipmξm + jp

m|εp
m|, p = 0, 1, 2, · · ·. Then for any

nonnegative integer q ≤ p− 1 there hold



|εp+1

m | ≤
(
1−

p∏

k=p−q−1

jk
m

)
ξm +

p∏

k=p−q−1

jk
m|εp−q−1

m |

m = 1, 2, · · · , n; p = 0, 1, 2, · · ·
where

ipm =
∑

i∈Nm(p)

e(i)
m , jp

m =
∑

i/∈Nm(p)

e(i)
m , m = 1, 2, · · · , n, p = 0, 1, 2, · · · ,
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and e
(i)
m is the m-th element of the weighting matrix Ei.

Lemma 5.3. Let the sequences {ipm}p∈N0, {jp
m}p∈N0(m = 1, 2, · · · , n) be defined as

in Lemma 5.2 and the sequences {j(l)
m }l∈N0(m = 1, 2, · · · , n) be defined as





j
(0)
m =

m0−1∏

p=0

jp
m, j(l+1)

m =
ml+1−1∏
p=ml

jp
m

m = 1, 2, · · · , n; l = 0, 1, 2, · · · .

Then, there hold {j(l)
m }l∈N0 ⊂ [0, 1) (m = 1, 2, · · · , n). Furthermore, if we define the

sequence {γ(l)}l∈N0 to be γ(l) = max1≤m≤n j
(l)
m (l = 0, 1, 2, · · ·), there obviously has

{γ(l)}l∈N0 ⊂ [0, 1). Here, the infinite number sequence {ml}l∈N0 are defined according
to the following rule: m0 is the least positive integer such that

⋃
0≤s(p)≤p<m0

Ji(p) = Ji(i =

1, 2, · · · , α), in general, ml+1 is the least positive integer such that
⋃

ml≤s(p)≤p<ml+1

Ji(p) =

Ji (i = 1, 2, · · · , α, l = 0, 1, 2, · · ·).
Lemma 5.4. Let the conditions of Lemma 5.3 be satisfied. Then there exist non-

negative numbers jm ∈ [0, 1) (m = 1, 2, · · · , n) such that {j(l)
m }l∈N0 ⊆ [0, jm] (m =

1, 2, · · · , n). Moreover, if we define γ = max
1≤m≤n

{jm}, then γ ∈ [0, 1) and there holds

{γ(l)}l∈N0 ⊆ [0, γ].
Proof. Evidently, we only need to prove that there exist jm ∈ [0, 1) (m = 1, 2, · · · , n)

such that for ∀m ∈ {1, 2, · · · , n} there hold 0 ≤ j
(l)
m ≤ jm(l = 0, 1, 2, · · ·).

Define the number sets

Nm = {i | e(i)
m > 0, m ∈ Ji, i = 1, 2, · · · , α}, m = 1, 2, · · · , n.

Then we easily know that Nm(p) ⊆ Nm and
∑

i∈Nm

e(i)
m = 1 for m = 1, 2, · · · , n and

∀p ∈ N0. On the other hand, because if Nm′(p′) = ∅ or Nm′(p′) 6= ∅ but e
(i)
m′ = 0

(∀i ∈ Nm′(p′)) holds for some m′ ∈ {1, 2, · · · , n} and p′ ∈ {ml′ ,ml′ + 1, · · · ,ml′+1 − 1}
(l′ ∈ N0 ∪ {−1},m−1 = 0), then there have ip

′
m′ = 0, jp′

m′ = 1, and

j
(l′+1)
m′ =

ml′+1−1∏
p=ml′

jp
m′ =

p′−1∏
p=ml′

jp
m′

ml′+1−1∏

p=p′+1

jp
m′ .

So, without loss of generality, in the remainder of this proof we will assume that
Nm(p) 6= ∅ (m = 1, 2, · · · , n, ∀p ∈ N0), and for ∀m ∈ {1, 2, · · · , n}, ∀p ∈ {0, 1, 2, · · ·}
there has at least one i ∈ Nm(p) such that e

(i)
m > 0.

Now, let em = min
i∈Nm

e(i)
m and jm = 1 − em, m = 1, 2, · · · , n. Then, 0 < em ≤ 1 and

0 ≤ jm < 1, m = 1, 2, · · · , n. Moreover, we can easily see that

em ≤ min{e(i)
m | e(i)

m > 0, i ∈ Nm(p), i = 1, 2, · · · , α}, m = 1, 2, · · · , n, ∀p ∈ N0,
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and therefore,




ipm =
∑

i∈Nm(p)

e(i)
m =

∑

e
(i)
m >0

i∈Nm(p)

e(i)
m ≥ em,

jp
m =

∑

i/∈Nm(p)

e(i)
m = 1− ipm ≤ 1− em,

m = 1, 2, · · · , n, p = 0, 1, 2, · · · .

Noticing from Lemma 5.2 and Lemma 5.3 that there hold 0 ≤ jp
m ≤ 1 and 0 ≤

j
(l)
m < 1, m = 1, 2, · · · , n, ∀p ∈ N0, by making use of the inequality

l∏

k=1

ck ≤ 1
l

l∑

k=1

ck l = 1, 2, · · · ,

where 0 ≤ ck ≤ 1 (k = 1, 2, · · · , l), we can obtain for ∀m ∈ {1, 2, · · · , n}, ∀l ∈
{0, 1, 2, · · ·} that

j(l)
m =

ml−1∏
p=ml−1

jp
m ≤ 1

ml −ml−1

ml−1∑
p=ml−1

jp
m

≤ 1
ml −ml−1

ml−1∑
p=ml−1

(1− em) = (1− em) = jm.

These are just the inequalities what we are proving.
According to Lemma 3.1, the meaning of the sequence {ml}l∈N0 defined by Lemma

5.3 is that following the working processes of the CPU’s, there always exists one mo-
ment which guarantees each CPU renewing all the elements with respect to Ji(i =
1, 2, · · · , α) at least once, in other words, the iterative method corresponding to each
Hi(i = 1, 2, · · · , α) must fulfil its iteration for all the elements corresponding to Ji(i =
1, 2, · · · , α) at least once.

We are now in the position of proving Lemma 3.1.
Proof of Lemma 3.1. We first prove (i). It is reasonable for us to assume that

there exists a δ > 0 such that |ε0| ≤ δv.
Now, making use of Lemma 5.1 and through induction, we can directly conclude

|εp| ≤ δv(∀p ∈ N0). Moreover, we can also assert

|εp| ≤ ∆lv, ∀p ≥ ml, ∀l ∈ N0, (5.1)

where

∆0 = (σ + (1− σ)γ(0))δ, ∆l+1 = (σ + (1− σ)γ(l+1))∆l, l = 0, 1, 2, · · · .

As a matter of fact, for l = 0, by making use of Lemma 5.2 and Lemma 5.3 we have
for m = 1, 2, · · · , n that

|εp+1
m | ≤

(
1−

p∏

k=0

jk
m

)
σδvm +

p∏

k=0

jk
m|ε0m| ≤

(
1−

p∏

k=0

jk
m

)
σδvm +

p∏

k=0

jk
mδvm
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=
(
σ + (1− σ)

p∏

k=0

jk
m

)
δvm ≤ (σ + (1− σ)j(0)

m )δvm

≤ (σ + (1− σ)γ(0))δvm = ∆0vm.

This is just (5.1) for l = 0.
Suppose that for p ≥ ml, (5.1) is correct. Then, as p ≥ ml+1, again by Lemma 5.1,

for any m ∈ {1, 2, · · · , n}, we have

|εp+1
m | ≤

∑

i∈Nm(p)

e(i)
m eT

mHi∆lv +
∑

i/∈Nm(p)

e(i)
m |εp

m| ≤ ∆lσipmvm + jp
m|εp

m|.

Making use of Lemma 5.2, the induction assumption, and Lemma 5.3, for m = 1, 2, · · · , n
we can obtain that

|εp+1
m | ≤

(
1−

p∏

k=ml

jk
m

)
σ∆lvm +

p∏

k=ml

jk
m|εml

m |

≤
(
1−

p∏

k=ml

jk
m

)
σ∆lvm +

p∏

k=ml

jk
m∆lvm

≤ (σ + (1− σ)j(l+1)
m )∆lvm

≤ (σ + (1− σ)γ(l+1))∆lvm = ∆l+1vm,

which implies the rightness of (5.1) for p ≥ ml+1, too. Hence, the induction again
guarantees the correctness of (5.1).

Presently, let β̃ = σ + (1 − σ)γ and β(l) = σ + (1 − σ)γ(l)(l = 0, 1, 2, · · ·). From
Lemma 5.4 there evidently hold β̃ ∈ [0, 1) and {β(l)}l∈N0 ⊂ [0, β̃](l = 0, 1, 2, · · ·). By
the definition of the sequence {∆l}l∈N0 and by successively regressing, we have

∆l+1 = β(l+1)∆l = · · · =
l+1∏

k=0

β(k)δ ≤ β̃l+1δ −→ 0 (l −→∞).

Taking limit in either side of (5.1), we immediately obtain lim
p→∞ |ε

p| = 0, and therefore,

the validity of Lemma 3.1(i) is verified.
We now turn to prove (ii). Take ε0 ≥ u. Through induction we can immediately

get εp ≥ u(p = 0, 1, 2, · · ·). Therefore, conclusion (ii) holds.

6. Conclusions and remarks

In accordance with the concrete characteristics of the high speed multiprocessor
systems and on the basis of the principle of sufficiently using the delayed information,
we set up in this paper a class of asynchronous matrix multi-splitting multi-parameter
relaxation methods for parallely solving the large sparse system of linear equations.
This class of methods includes the asynchronous variants of both the symmetric and
unsymmetric classical iterative methods in the sense of matrix multisplitting, and thus,
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it is of great generality and considerable parallelism. Numerical results show that these
new methods are much less sensible about their individual relaxation parameters than
the ones discussed in [8] and [9]. Based on the existing works[1−11,13−29], we establish
general criterions for determining the convergence as well as the divergence of the
parallel multisplitting relaxation methods for the L-matrix and the H-matrix classes.
These criterions are simple in forms and convenient for applications. With these general
criterions, we conveniently give conditions for guaranteeing the convergence as well as
the divergence of the new asynchronous matrix multisplitting unsymmetric relaxation
methods. All these make the methods as well as their corresponding theories about
large sparse systems of linear equations in the sense of multisplitting become more
extensive, more deep, and more systematic.

At last, we use the following remarks to end this paper.
Remark I. It may be possible to speed the convergence of Methods I and II by

replacing the quantities

∑

j 6=m

w
(i)
mjx

s
(i)
j (p)

j (m ∈ Ji(p), i = 1, 2, · · · , α)

in the formulas xp+1,i
m (m ∈ Ji(p), i = 1, 2, · · · , α) by

∑
j 6=m

j∈Ji(p)

w
(i)
mjx

p+1/2,i
j +

∑

j /∈Ji(p)

w
(i)
mjx

s
(i)
j (p)

j , m ∈ Ji(p), i = 1, 2, · · · , α,

respectively, since the newest information is utilized. However, as costs, additional
computational works and savings must be required in these two variants. For their
convergence, we can similarly prove that the conclusions corresponding to Theorems
3.1 and 3.2 are still valid for them only with the varying interval of the relaxation
parameter β in Theorem 3.1(ii) being replaced by

0 < β < 2/(1 + ρ(H(ω1))ρ(H(ω2))), H(ω) = |1− ω|I + ω|D|−1|B|.

Remark II. Evidently, Method I and Method II and their variants just mentioned
in Remark I are two different classes of asynchronous matrix multisplitting UAOR
methods, each has its advantages and disadvantages. Since the parallel efficiency of a
program is determined by not only the method itself, but also the computer architec-
tures it runs on, so which of these two classes of methods is more efficient needs further
investigations in practical experiments on genuine multiprocessor systems.

Remark III. It is not difficult to extend all the above methods to parameter-group
relaxed forms and establish the corresponding convergence theories for these extensions.

Remark IV. Note that except that {γ(l)}l∈N0 ⊆ [0, γ] holds for some γ ∈ [0, 1),
the relation {γ(l)}l∈N0 ⊆ [0, 1) may be not sufficient for ensuring ∆l → 0(l →∞), since
at this moment there may have

lim
l→∞

∆l = lim
l→∞

l∏

k=0

β(k) > 0.
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Therefore, the establishment of Lemma 5.4 is essential for proving the convergence of
the asynchronous matrix multisplitting relaxation methods. Based upon this lemma, all
the convergence proofs of the existing asynchronous multisplitting relaxation methods
in the literature [6-9] and [21-29] can be further modified and exacted correspondingly.
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