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SERIES REPRESENTATION OF DAUBECHIES’ WAVELETS∗

X.G. Lu
(Department of Applied Mathematics, Tsinghua University, Beijing, China)

Abstract

This paper gives a kind of series representation of the scaling functions φ
N

and the associated wavelets ψ
N

constructed by Daubechies. Based on Poission
summation formula, the functions φ

N
(x+N−1), φ

N
(x+N), · · · , φ

N
(x+2N−2)(0 ≤

x ≤ 1) are linearly represented by φN (x), φN (x+1), · · · , φN (x+2N − 2) and some
polynomials of order less than N , and Φ0(x) := (φ

N
(x), φ

N
(x+1), · · · , φ

N
(x+N−

2))t is translated into a solution of a nonhomogeneous vector–valued functional
equation

f(x) = Adf(2x− d) + Pd(x), x ∈ [
d

2
,
d+ 1

2
], d = 0, 1,

where A0,A1 are (N − 1) × (N − 1)–dimensional matrices, the components of
P0(x),P1(x) are polynomials of order less than N . By iteration, Φ0(x) is eventualy
represented as an (N − 1)–dimensional vector series

∑

∞

k=0
uk(x) with vector norm

‖ uk(x) ‖≤ Cβk, where β = β
N
< 1 and β

N
ց 0 as N → ∞.

1. Introduction.

In this paper we study the representation of Daubechies’ wavelets. Daubechies[1]

constructed a family of compactly supported regular scaling functions φ
N

(x) and the
associated regular wavelets ψ

N
(x)(N ≥ 2) :

ψ
N

(x) :=
2N−2
∑

n=−1

(−1)nC
N

(n+ 1)φ
N

(2x+ n), x ∈ R, (1.1)

φ
N

(x) :=
1√
2π

∫

R

φ̂
N

(ξ)e−iξxdξ, x ∈ R, i =
√
−1,

where φ̂
N
∈ L1(R) defined by

φ̂
N

(ξ) :=
1√
2π

∞
∏

j=1

m
N

(2−jξ), φ̂
N

(0) =
1√
2π
,

m
N

(ξ) :=
1

2

2N−1
∑

n=0

C
N

(n)einξ =
[1

2
(1 + eiξ)

]N
N−1
∑

k=0

q
N

(k)eikξ, (1.2)
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the polynomial
N−1
∑

k=0
q

N
(k)zk satisfies

∣

∣

∣

∣

∣

N−1
∑

k=0

q
N

(k)eikξ

∣

∣

∣

∣

∣

2

=
N−1
∑

k=0

(k +N − 1

k

)

sin2k(
ξ

2
), ξ ∈ R, (1.3)

with
N−1
∑

k=0
q

N
(k) = 1, q

N
(k) ∈ R, k = 0, 1, · · · , N − 1. It is known that[1] for each N ≥ 2,

supp φ
N

= [0, 2N − 1], supp ψ
N

= [−(N − 1), N ] and the wavelet ψ
N

generates by

its dilations and translations an orthornormal basis {
√

2jψ
N

(2jx − k)}j,k∈Z of L2(R).

The functions φ
N

and ψ
N

have been proved to be very useful in numerical analysis[2,3].
On the aspect of representation, however, comparing to some nonorthogonal wavelets,
the wavelets ψN and (any) other orthogonal regular wavelets seem to be hardly written
in very explicit forms. This is not strange because for any wavelet ψ, its regularity,
orthogonality (i.e. orthogonality of {

√
2jψ(2jx − k)}j,k∈Z in L2(R)), symmetry, sup-

port compactness and representation (in the sense of computing) can not be satisfied
simultaneously. So far there are two methods for approximating or representing the
scaling functions φN , both of them are based on the two–scale difference equation[1,4,5]

φN (x) =
2N−1
∑

n=0

CN (n)φN (2x− n), x ∈ R, (1.4)

and homogeneous iterative approximation. One method is the iterative approximation
scheme fn = V fn−1, where V is a linear operator

V f(x) :=
2N−1
∑

k=0

C
N

(k)f(2x− k)

acting on a function space. The φN is therefore a fixed point of V , V φN = φN ,
computed by lim

n→∞
V nf0(x) = φ

N
(x) with a suitable initial function f0, e.g., interpo-

lating spline. The convergence is uniform or pointwise depending on the choice of

f
[1,4]
0 . Another method[5] is similar to that scheme but with vector (matrix) forms: Let

Φ(x) = (φ
N

(x), φ
N

(x + 1), · · · , φ
N

(x + 2N − 2))t,T0,T1 ∈ R(2N−1)×(2N−1) , (Td)ij =
C

N
(2i− j − 1 + d), d = 0, 1 (C

N
(n) = 0 forn < 0 orn > 2N − 1). Then (1.4) is written

Φ(x) = Td1(x)Φ(τ(x)), x ∈ [0, 1] since supp φN = [0, 2N − 1]. Iteratively,

Φ(x) = Td1(x)Td2(x) · · ·Tdn(x)Φ(τn(x)), x ∈ [0, 1],

where the index dj(x) is the jth digit in the binary expansion for x ∈ [0, 1], τ(x) is
the shift operator: τ(x) = 0.d2(x)d3(x) · · · , (see section 2). All the infinite products
Td1(x)Td2(x)Td3(x) · · · of the matrices T0,T1 are convergent in matrix norm and for a

suitable initial function v0(x) ∈ R2N−1,

Φ(x) = lim
n→∞

Td1(x)Td2(x) · · ·Tdn(x)v0(τ
n(x)), x ∈ [0, 1]. (1.5)

Both the schemes can achieve approximation degree as O(2−αn)(n→ ∞), α > 0. In this
paper we give a different method to represent (approximate) the scaling functions φ

N
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and therefore to the wavelets ψN via (1.1). Dividing φN (x), φN (x+1), · · · , φN (x+2N−2)
into two parts, for instance, φ

N
(x), φ

N
(x + 1), · · · , φ

N
(x + N − 2), and φ

N
(x + N −

1), φ
N

(x +N), · · · , φ
N

(x + 2N − 2)(0 ≤ x ≤ 1), we prove that the second part can be
linearly determined by the first part and some polynomials of order ≤ N − 1. Then
we expand, through a nonhomogeneous iterative sheme (see section 3 (3.2)), the first
part as a vector–valued series

∑∞
k=0 uk(x) in which each term uk(x) is an (N − 1)–

dimensional vector with vector norm ‖uk(x)‖ ≤ Cβk, where β = βN < 1 and βN ց 0
as N → ∞. As a result, we reduce the dimension 2N −1 in (1.5) to N −1 in the series.
The main tools we used are (1) decay estimates for derivatives of analytic functions,
such decay estimates have many applications in dealing with convergence problems; (2)
some results of [1], [4], [5]; (3) some further properties of the polynomial

∑N−1
k=0 qN

(k)zk.

2. Notation and Lemmas

(1). We make an appointment throughout this paper.
In the binary expansion of x ∈ [0, 1] ,

x = 0.d1d2d3 · · · =
∞
∑

j=1

2−jdj , dj ∈ {0, 1}, (∗)

we restrict that dj vanishes for some infinite j which depend on x ∈ [0, 1[ , but for
x = 1 we always write 1 = 0.111 · · ·.

This appointment insures the uniqueness of the expansion (*) and yields a family
of two–valued functions dj(x) well defined on [0,1] by dj(x) = dj according to (*). Let
τ : [0, 1] → [0, 1] be the shift operator

τ(x) :=
∞
∑

j=1

2−jdj+1(x) =







2x, 0 ≤ x < 1
2 ,

2x− 1, 1
2 ≤ x ≤ 1.

(2.1)

By the uniqueness of expansion (*), it is easy to check that the following relation
between dj(x) and τk(x) hold :

d1(x) = χ
[ 12 ,1]

(x), dk+1(x) = dk(τ(x)) = d1(τ
k(x)), x ∈ [0, 1], (2.2)

τ0(x) = x, τk(x) = 2k(x− 0.d1(x) · · · dk(x)) = 0.dk+1(x)dk+2(x) · · · . (2.3)

(2). For k 6∈ [0, N −1] and n 6∈ [0, 2N −1] we define q
N

(k) = C
N

(n) = 0. Let T0,T1

and B ∈ R(2N−1)×(2N−1) be (2N − 1) × (2N − 1)–dimensional matrices defined in [5]:

(Td)i,j = C
N

(2i− j − 1 + d), 1 ≤ i, j ≤ 2N − 1, d = 0, 1, (2.4)

(B)i,j =











(i− 1)!
(

j−1
i−1

)

, 1 ≤ i ≤ N,

(N − 1)!
(

j−i+N−1
N−1

)

, N + 1 ≤ i ≤ 2N − 1.
(2.5)

B is an up–triangular matrix, the inverse B−1 is given by

(B−1)i,j =











(−1)i+j
(

j−1
i−1

)

[(j − 1)!]−1, 1 ≤ j ≤ N,

(−1)i+j
(

N
i−j+N

)

[(N − 1)!]−1, N + 1 ≤ j ≤ 2N − 1.
(2.6)
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Here we use the standard convention that binomial coefficient ( n
m) vanishes if m < 0

or m > n. In the proofs of our main results we will use a result from [5] that

BTdB
−1 =

[

Dd 0

Cd Qd

]

∈
[

RN×N RN×(N−1)

R(N−1)×N R(N−1)×(N−1)

]

, d = 0, 1. (2.7)

Define U ∈ RN×(2N−1) and its submatrices U0,U1 by










(U)i,j = ji−1, 1 ≤ i ≤ N, 1 ≤ j ≤ 2N − 1,

[

U0,U1

]

= U, U0 ∈ RN×(N−1),U1 ∈ RN×N .
(2.8)

Instead of the (2N − 1) × (2N − 1)–dimensional matrices T0,T1, we consider in this
paper the (N − 1) × (N − 1)–dimensional matrices A0,A1 defined by

Ad = T11,d − T12,dU
−1
1 U0, d = 0, 1, (2.9)

where T11.d,T12,d are submatrices of Td given by

Td =

[

T11,d T12,d

T21,d T22,d

]

∈
[

R(N−1)×(N−1) R(N−1)×N

RN×(N−1) RN×N

]

, d = 0, 1. (2.10)

Define the submatrices B11,B12,B22 of B by

B =

[

B11 B12

0 B22

]

∈
[

RN×(N−1) RN×N

R(N−1)×(N−1) R(N−1)×N

]

. (2.11)

(3).

P(x) := U−1
1

(

1,
1
∑

j=0

bj(
1

j
)(1 − x)1−j , · · · ,

N−1
∑

j=0

bj
(N − 1

j

)

(1 − x)N−1−j
)t

(2.12)

P0(x) := T12,0P(2x), P1(x) := T12,1P(2x− 1), (2.13)

where bj =
√

2π(−i)j φ̂
(j)
N (0) are real numbers determined by the following recursion

(because of φ̂N (2ξ) = mN (ξ)φ̂N (ξ) ):







b0 = 1

bs = (2s − 1)−1∑s−1
j=0 bj(

s
j )(−i)s−jm(s−j)

N
(0), s = 1, 2, 3, · · · , i =

√
−1.

(2.14)

(4). Denote by A(k;x) the right product of the matrices Ad1(x),Ad2(x), · · · ,Adk
(x),

i.e.

A(k;x) := Ad1(x)Ad2(x) · · ·Adk(x), A(0;x) := I (identitymatrix). (2.15)

For any x = (x1, x2, · · · , xn)t ∈ Rn, A = (aij) ∈ Rn×n we use in this paper the following
vector norm ‖ x ‖ and the corresponding matrix norm ‖ A ‖:

‖ x ‖:=| x1 | + | x2 | + · · ·+ | xn |, ‖ A ‖:= sup
{

‖ Ax ‖ |x ∈ Rn, ‖ x ‖= 1
}

,
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and denote by | x |, | A | the nonnegative vector and nonnegative matrix respectively,
i.e.,

| x |:= (| x1 |, | x2 |, · · · , | xn |)t, | A |:= (| aij |).

(5). Given a vector–valued function f : [a, b] → Rn, f(x) = (f1(x), f2(x), · · · , fn(x))t,
we define, as usual,

f ′(x) =
df(x)

dx
:=
(

f ′1(x), f
′
2(x), · · · , f ′n(x)

)t
,

∫ b

a
f(t)dt :=

(

∫ b

a
f1(t)dt,

∫ b

a
f2(t)dt, · · · ,

∫ b

a
fn(t)dt

)t

,

provided every component fj is differentiable at x or Lebesgue integrable on [a, b]
respectively. Let 1 ≤ p ≤ ∞. Define f ∈ Lp([a, b],Rn) ⇐⇒ ∀j, fj ∈ Lp[a, b]; f is
absolutely continuous on [a, b] ⇐⇒ ∀j, fj is absolutely continuous on [a, b]. Obviously,
f is absolutely continuous on [a, b] ⇐⇒ ∃g ∈ L1([a, b],Rn) such that f(x) = f(a) +
∫ x
a g(t)dt, x ∈ [a, b] ⇐⇒ f is differentiable almost everywhere in [a, b], f ′ ∈ L1([a, b],Rn)

and f(x) = f(a) +
∫ x
a f ′(t)dt, x ∈ [a, b].

Lemma 1. The polynomial
N−1
∑

k=0
q

N
(k)zk (see (1.2)) satisfies

sign(q
N

(k)) = (−1)kσ, k = 0, 1, · · · , N − 1, (σ = 1 or − 1) (2.16)

N−1
∑

k=0

| qN (k) |= 2N−1
[

2 · (2N − 1)!!

(2N)!!

]1/2
. (2.17)

Proof. Let q(z) =
N−1
∑

k=0
qN (k)(−1)kzk. Since qN (k) are real numbers, we have by

(1.3) for all z ∈ {eiξ|ξ ∈ R}

q(z)q(z−1) =
N−1
∑

k=0

(k +N − 1

k

)

2−k(
1

2
z2 + z +

1

2
)kz−k,

and so for all z ∈ C

q(z)q(z−1)zN−1 = q(z)
N−1
∑

k=0

q
N

(k)(−1)kzN−1−k

=
N−1
∑

k=0

(k +N − 1

k

)

2−k(
1

2
z2 + z +

1

2
)kzN−1−k.

Letting z = 0 we obtain qN (0)qN (N − 1)(−1)N−1 = 2−2(N−1)
(

2N−2
N−1

)

6= 0. Let p(z) =

N−1
∑

k=0

(

k+N−1
k

)

2−kzk. We observe that the coefficients ak =
(

k+N−1
k

)

2−k satisfy ak ≥
ak−1 > 0, k = 1, 2, · · · , N − 1, which imply p(z) 6= 0 for all |z| > 1. In fact, if |z| > 1,
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then |(z − 1)p(z)| ≥ aN−1|z|N −
N−1
∑

k=1

(ak − ak−1)|z|N − a0 = a0(|z|N − 1) > 0. Take

any z ∈ C with Rez ≥ 0. If | z |= 1 or z = 0, then q(z) 6= 0 because of (1.3) and
q

N
(0) 6= 0. If | z |6= 1 and z 6= 0, then w := 1 + 1

2(z + z−1) satisfies | w |> 1 and so
q(z)q(z−1) = p(w) 6= 0. This means that all zeros of q(z) are in the open left-half plane
Re(z) < 0. Thus the polynomial q(z)/qN (N − 1)(−1)N−1 is a product of linear factors
z + a and quadratic factors z2 + bz + c, each with positive coefficients. Therefore all
coefficients of q(z)/qN (N − 1)(−1)N−1 are positive, i.e. (2.16) holds. (2.16) together
with (1.3) yield (2.17):

[

N−1
∑

k=0

| q
N

(k) |
]2

=

∣

∣

∣

∣

∣

N−1
∑

k=0

q
N

(k)eikπ

∣

∣

∣

∣

∣

2

=
N−1
∑

k=0

(k +N − 1

k

)

= 4N−1 · 2 · (2N − 1)!!

(2N)!!
.

Lemma 2. Let f : [0, 1] → RN−1, k ∈ N. Then

A(k;x)f(τk(x)) (2.18)

=
2k−1
∑

m=0

A(k; 2−km)χ
[2−km,2−k(m+1)[

(x)f(2kx−m), x ∈ [0, 1[,

2k−1
∑

m=0

A(k; 2−km) = (A0 + A1)
k. (2.19)

Proof. ∀x ∈ [0, 1[, choose s =
k
∑

j=1
2k−jdj(x). Then x ∈ [2−ks, 2−k(s + 1)[, and

by definitions and properties of dj(x) and τ(x) (see (2.1)—(2.3)) we have dj(x) =
dj(2

−ks), j = 1, 2, · · · , k; τk(x) = 2kx− s. Therefore by (2.15),

A(k;x)f(τk(x)) = A(k; 2−ks)f(2kx− s) = the right − hand side of (2.18).

Now let f ∈ L1([0, 1],RN−1) be arbitrary. Then (2.18), (2.15), (2.2) and (2.1) yield

2−k
2k−1
∑

m=0

A(k; 2−km)

∫ 1

0
f(t)dt =

∫ 1

0
A(k; t)f(τk(t))dt

=

∫ 1
2

0
A0A(k − 1; 2t)f(τk−1(2t))dt +

∫ 1

1
2

A1A(k − 1; 2t− 1)f(τk−1(2t− 1))dt

=
1

2
(A0 + A1)

∫ 1

0
A(k − 1; t)f(τk−1(t))dt = 2−k(A0 + A1)

k
∫ 1

0
f(t)dt.

This implies (2.19).
Note that if N = 2, i.e.,A0 = a,A1 = b are (real) numbers, then (2.19) becomes

(a+ b)k =
2k−1
∑

m=0

a
k−σk(m)

b
σk(m)

(see section 4 for N = 2).

Lemma 3.[5] (Qd)i,j = 2−N+1q
N

(2i − j − 1 + d), 1 ≤ i, j ≤ N − 1, d = 0, 1, where
Qd is defined in (2.7).
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Remark. This expression of Qd was mentioned in [5, p.1061] without proof. For
the sake of insurance of our main results, we give the lemma a proof in Appendix.

Lemma 4. Let N ≥ 2, β = β
N

:=
[

1
2

(2N−1)!!
(2N)!!

]1/2
+2−N , λ = λ

N
:=
[

2 · (2N−1)!!
(2N)!!

]1/2
.

We have

Ad = S−1QdS, d = 0, 1, whereS := B22B
−1
12 B11. (2.20)

‖ Qd ‖=‖| Qd |‖= β, N ≥ 3, d = 0, 1, (2.21)

≤ β, N = 2, d = 0, 1.

‖| Q0 | + | Q1 |‖= ρ(| Q0 | + | Q1 |) = λ. (2.22)

max
x∈[0,1]

‖ A(k;x) ‖≤ Cβk, k ∈ N. (2.23)

2k
∫ 1

0
‖ A(k; t)f(τk(t)) ‖ dt ≤ Cλk

∫ 1

0
‖ f(t) ‖ dt, k ∈ N, (2.24)

f ∈ L1([0, 1],RN−1), where C =‖ S−1 ‖ · ‖ S ‖, ρ(A) denotes the usual spectral radius.
Proof.
(a). In polynomials (x−1)(x−2) · · · (x− i+1) =

∑i
k=1 gik

xk−1, (2 ≤ i ≤ N) taking

x = j = 1, 2, · · · , 2N − 1 yield (i − 1)!( j−1
i−1 ) =

∑i
k=1 gik

jk−1, 1 ≤ i ≤ N(g11 =
1), or equivalently in matrix form with an invertible matrix G, [B11,B12] = GU =
[GU0,GU1] which gives B−1

12 B11 = U−1
1 U0 since det B12 = detG · detU1 6= 0. This

equality together with (2.7), (2.10), (2.11) and (2.9) deduce




B11 B12

0 B22









T11,d T12,d

T21,d T22,d









I

−U−1
1 U0



 =





Dd 0

Cd Qd









B11 B12

0 B22









I

−B−1
12 B11



 ,

and so
B11Ad + B12(T21,d − T22,dU

−1
1 U0) = 0,

B22(T21,d − T22,dU
−1
1 U0) = −QdB22B

−1
12 B11.

Thus SAd = QdS. Since B is inverseble, by (2.11) S is inverseble also.
(b). Let x = (x1, x2, · · · , xN−1

)t ∈ RN−1. By definition of ‖ x ‖, Lemma 3 and
(2.17) we have

‖ Qdx ‖= 2−N+1
N−1
∑

i=1

∣

∣

∣

∣

∣

∣

N−1
∑

j=1

q
N

(2i− j − 1 + d)xj

∣

∣

∣

∣

∣

∣

, (2.25)

‖| Qd | x ‖≤ 2−N+1 max
{

∑

k

| qN (2k) |,
∑

k

| qN (2k − 1) |
}

‖ x ‖, (2.26)

‖ (| Q0 | + | Q1 |)x ‖≤ 2−N+1(
N−1
∑

k=0

| q
N

(k) |) ‖ x ‖= λ ‖ x ‖ . (2.27)

Observe that (2.16), (2.17) and
N−1
∑

k=0
q

N
(k) = 1 imply

∑

k

| q
N

(2k) | +
∑

k

| q
N

(2k − 1) |= 2N−1λ,

∑

k

| q
N

(2k) | −
∑

k

| q
N

(2k − 1) |= ±1.
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Since ‖ x ‖=‖ | x | ‖ and ‖ Qdx ‖≤‖| Qd | | x |‖, we obtain by (2.26)

‖ Qd ‖≤‖ | Qd | ‖≤ 2−N+1(2N−1λ+ 1)/2 = β.

For N ≥ 3, d ∈ {0, 1}, choose y = (y1, y2, · · · , yN−1
)t such that ∀j, y2j−1 = 1, y2j = 0,

or ∀j, y2j−1 = 0, y2j = 1. Then (2.25), (2.16) yield ‖ Qdy ‖= β ‖ y ‖6= 0. Thus
‖ Qd ‖=‖ | Qd | ‖= β, and (2.21) holds. Choose an (N − 1)–dimensional row vector
v = (1, 1, · · · , 1). Then v(| Q0 | + | Q1 |) = λv, which together with (2.27) lead to
(2.22).

(c). (2.23) follows from (2.20), (2.21). Note that according to our choice for vector
norm ‖ · ‖,

∫ 1

0
‖ g(t) ‖ dt =‖

∫ 1

0
| g(t) | dt ‖, g ∈ L1([0, 1],RN−1).

By (2.20), (2.18), (2.19) and (2.22) we obtain (2.24):

2k
∫ 1

0
‖ A(k; t)f(τk(t)) ‖ dt

≤ 2k ‖ S−1 ‖‖
∫ 1

0
|Qd1(t)| · · · |Qdk(t)||Sf (τk(t))|dt ‖

=‖ S−1 ‖‖ (| Q0 | + | Q1 |)k
∫ 1

0
| Sf(t) | dt ‖≤‖ S−1 ‖‖ S ‖ λk

∫ 1

0
‖ f(t) ‖ dt.

Remark. The Wallis’ inequality (2N − 1)!!/(2N)!! < (πN)−1/2 gives explicit esti-
mates for βN and λN :

βN < (4πN)−1/4 + 2−N , λN < (
4

πN
)1/4.

The following Lemma 5 gives decay estimates for derivatives of analytic functions,
which have many applications in dealing with some kinds of convergence problems.

Lemma 5.(decay estimates for derivatives) Let f : R → C, f ∈ C∞(R) satisfy

| f(x) |≤ C(1+ | x |)−α, x ∈ R, and sup
x∈R

|f (n)(x)| ≤ Bn, n ∈ N

with some positive constants α, C and B. Then there exists a constant M > 0 which
depends only on α , C and B such that

| f (s)(x) |≤ M s(1+ | x |)−α, x ∈ R, s = 1, 2, · · · . (2.28)

Proof. Let s ∈ N be given. Define

m := max{n ∈ N
∣

∣

∣e
n−1

α − 1 ≤ 2n

e2B
}, ηs := max{e s

α − 1, e
m
α − 1}.

For any | x |> ηs, choose an integer n such that αlog(1 + |x|) < n ≤ 1 +αlog(1+ | x |).
Then n > max{s,m} and |x| > 2n/e2B. Now we consider the polynomial pn in variable
t ∈ R:

pn(t) :=
n−1
∑

k=0

f (k)(x)

k!
ρktk, (2.29)
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where ρ = n/e2B. By Taylor formula we have

pn(t) = f(x+ ρt) − ρntn

(n− 1)!

∫ 1

0
f (n)(x+ θρt)(1 − θ)n−1dθ,

which gives, by assumption and |x| > 2ρ, for all t ∈ [−1, 1]

| pn(t) |≤| f(x+ ρt) | +
ρnBn

n!
≤ C(1 + |x+ ρt|)−α +

nn

n!
e−2n

≤ C(1 +
1

2
|x|)−α + e−n ≤ C(1 +

1

2
|x|)−α + (1 + |x|)−α. (2.30)

On the other hand, for the elliptic curve

Γ = {z ∈ C|(Rez)
2

a2
+

(Imz)2

b2
= 1} with a =

1

2
(r + r−1), b =

1

2
(r − r−1),

where r = (n+s
n−s)

1
2 , using Bernstein inequality ([6])

max
z∈Γ

| pn(z) |≤ rn max
−1≤t≤1

| pn(t) |

and the inequality b−srn ≤ s−ses(n+ s)s < s−s(2en)s we obtain

| p(s)
n (0) | ≤ s!b−s max

|z|=b
| pn(z) |≤ s!b−s max

z∈Γ
| pn(z) |

≤ (2en)s max
−1≤t≤1

| pn(t) |,

where we have used principle of the maximum. Combining this with (2.29) and (2.30)
lead to

| f (s)(x) |= ρ−s | p(s)
n (0) |≤ (2e3B)s(2αC + 1)(1+ | x |)−α, (|x| > ηs)

which implies (2.28) with M = max{2e3B(2αC + 1), emB} since sup
x∈R

| f (s)(x) |≤ Bs

and (1 + ηs)
α ≤ ems.

As an application of Lemma 5 we can extend the decay estimate of φ̂N obtained in

[1] to its all derivatives φ̂
(s)
N .

Lemma 6. (i) There exists a positive constant M depending only on N(≥ 2) such
that

| φ̂(s)
N

(ξ) |≤ M s+1(1+ | ξ |)−1−δN , ξ ∈ R, s = 0, 1, 2, · · · , (2.31)

where δ > 0 is an absolute constant.
(ii)

2N−1
∑

n=1

nsφ
N

(x+ n− 1) =
s
∑

j=0

(
s

j
)rj(x)(1 − x)s−j, x ∈ [0, 1], s = 0, 1, 2, · · · , (2.32)

where

rj(x) =











bj = (−i)j
√

2πφ̂(j)
N

(0), 0 ≤ j ≤ N − 1,

(−i)j
√

2π
∑

n∈Z φ̂
(j)
N

(2nπ)e−i2nπx, j ≥ N.
i =

√
−1
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Proof. From [1] we know that there is a constant C > 0 depending only on N such
that

| φ̂
N

(ξ) |≤ C(1+ | ξ |)−1−δN , ξ ∈ R,

and by | m
N

(ξ) |≤ 1 and m
N

(0) = 1([1]), it is easy to prove that φ̂
N

∈ Lip1 on R.
Thus

φ̂N (ξ) =
1√
2π

∫ 2N−1

0
φN (x)eiξxdx, ξ ∈ R,

and so φ̂
N
∈ C∞(R),

sup
ξ∈R

| φ̂(n)
N

(ξ) |≤
( 1√

2π

∫ 2N−1

0
| φ

N
(x) | dx

)

(2N − 1)n, n ∈ N.

Therefore (2.31) follows from Lemma 5. Then we are allowed to use Poisson summation
formula to the compactly supported functions xsφ

N
(x) (see, e.g., [7, pp.250–253]) and

obtain

∑

n∈Z

(x+ n)sφ
N

(x+ n) = (−i)s
√

2π
∑

n∈Z

φ̂(s)
N

(2nπ)e−i2nπx, x ∈ R, s = 0, 1, 2, · · · . (2.33)

Moreover, by definition of m
N

(ξ) and the relation φ̂
N

(2ξ) = m
N

(ξ)φ̂
N

(ξ), one finds

that φ̂(j)
N

(2nπ) = 0 for all n ∈ Z \ {0} and all 0 ≤ j ≤ N − 1. Combining (2.33) with

the identities ns =
s
∑

j=0
( s

j )(n+x−1)j(1−x)s−j and suppφ
N

= [0, 2N −1] yield (2.32).

3. Main Result and Proof

First of all, we note that since the wavelet ψ
N

is defined by φN via (1.1), every
series representation of φ

N
yields a series representation of ψ

N
.

Theorem . Let N ≥ 2, Φ0(x) := (φ
N

(x), φ
N

(x+1), · · · , φ
N

(x+N −2))t, Φ1(x) :=
(φ

N
(x+N − 1), φ

N
(x+N), · · · , φ

N
(x+ 2N − 2))t. Then

(i)

Φ1(x) = −U−1
1 U0Φ0(x) + P(x), x ∈ [0, 1], (3.1)

Φ0(x) = Ad1(x)Φ0(τ(x)) + Pd1(x)(x), x ∈ [0, 1], (3.2)

Φ0(0) = (I −A0)
−1P0(0),Φ0(1) = (I − A1)

−1P1(1). (3.3)

(ii) Φ0 (and so Φ1) is absolutely continuous on [0, 1] and the following three types
of series representation of Φ0 hold with absolute convergence:

Φ0(x) =
∞
∑

k=0

A(k;x)Pdk+1(x)(τ
k(x)), x ∈ [0, 1], (3.4)

Φ0(x) =
∞
∑

k=0

2k−1
∑

m=0

A(k; 2−km)
[

χ
[2−km,2−k(m+1/2)[

(x)P0(2
kx−m) (3.5)

+ χ
[2−k(m+1/2),2−k(m+1)[

(x)P1(2
kx−m)

]

, x ∈ [0, 1],
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Φ0(x) = Φ0(0) +
∞
∑

k=0

2k
∫ x

0
A(k; t)Ddk+1(t)(τ

k(t))dt (3.6)

= Φ0(0) +
∞
∑

k=0

2k
2k−1
∑

m=0

A(k; 2−km)
[

∫ x

0
χ

[2−km,2−k(m+1/2)[
(t)D0(2

kt−m)dt

+

∫ x

0
χ

[2−k(m+1/2),2−k(m+1)[
(t)D1(2

kt−m)dt
]

, x ∈ [0, 1],

where D0(x) := P′
0(x), D1(x) := P′

1(x).
Proof. (i). By Lemma 6 (ii) we have

2N−1
∑

n=1

nsφN (x+ n− 1) =
s
∑

j=0

bj(
s

j
)(1 − x)s−j, x ∈ [0, 1], s = 0, 1, · · · , N − 1. (3.7)

Let Φ(x) = (φN (x), φN (x + 1), · · · , φN (x + 2N − 2))t. Then (3.7) is written in vector
form by (2.8):

U0Φ0(x) + U1Φ1(x) = UΦ(x)

=
(

1,
1
∑

j=0

bj(
1

j
)(1 − x)1−j , · · · ,

N−1
∑

j=0

bj(
N − 1

j
)(1 − x)N−1−j

)t
, x ∈ [0, 1].

This yields (3.1) via (2.12). On the other hand, (1.4) and suppφ
N

= [0, 2N − 1] imply
Φ(x) = Td1(x)Φ(τ(x)), x ∈ [0, 1]. Combining this with (2.10), (2.9), (3.1) and (2.13)
lead to (3.2). (3.3) is obvious because, by (2.20) and (2.21), the matrices I−A0, I−A1

are inverseble.
(ii). Let us now equip the linear space L1([0, 1],RN−1) and its linear subspace

L∞([0, 1],RN−1) with the norms ‖ · ‖1 and ‖ · ‖∞ respectively, given by

‖ f ‖1:=

∫ 1

0
‖ f(t) ‖ dt =‖

∫ 1

0
| f(t) | dt ‖, f ∈ L1([0, 1],RN−1),

‖ f ‖∞:= ess sup
x∈[0,1]

‖ f(x) ‖, f ∈ L∞([0, 1],RN−1).

Then both the spaces are real Banach space. Define a linear operator T : Lp([0, 1],RN−1)
→ Lp([0, 1],RN−1),

Tf(x) = Ad1(x)f(τ(x)), x ∈ [0, 1],

with the norm

‖ T ‖
Lp := sup

{

‖ Tf ‖p

∣

∣

∣ f ∈ Lp([0, 1],RN−1), ‖ f ‖p= 1
}

, p = 1 or ∞.

By (2.2), (2.15) and (2.23) we have

Tkf(x) = A(k;x)f(τk(x)), x ∈ [0, 1], (3.8)

‖ Tk ‖
L∞= max

x∈[0,1]
‖ A(k;x) ‖≤ Cβk, k ∈ N. (3.9)
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(3.9) insures the existance of the inverse operator (I − T)−1 =
∑∞

k=0 Tk which is
convergent in the norm ‖ · ‖

L∞ since β = βN < 1. Thus for any g ∈ L∞([0, 1],RN−1),
the equation f = Tf + g has a unique solution: f = (I − T)−1g =

∑∞
k=0 Tkg.

Specifically, for g(x) = Pd1(x)(x), the function Φ0(x) is the corresponding solution
because of (3.2). Therefore (3.4) follows from (3.8) and (2.2). (3.4), (2.18) and (2.2)
then imply(3.5). To prove absolute continuity of Φ0 and the representation (3.6), we
define

K(f)(x) := Tf(x) + Pd1(x)(x), f ∈ L1([0, 1],RN−1),

W :=
{

f ∈ L1([0, 1],RN−1) | f is absolutely continuous on [0, 1]and

f(0) = Φ0(0), f(1) = Φ0(1)
}

.

Clearly, W is nonempty; the function Φ0(0)+x[Φ0(1)−Φ0(0)] is a member of W . We
now prove that K(W ) ⊂W and

K(f)(x) = Φ0(0) +

∫ x

0
[D(t) + 2Tf ′(t)]dt, x ∈ [0, 1], f ∈W, (3.10)

where D(x) := Dd1(x)(x). The end conditions K(f)(0) = Φ0(0),K(f)(1) = Φ0(1) are

satisfied for f ∈ W because of (3.2) or (3.3). Let K̂(f)(x) denote the right–hand side
of (3.10). Then for f ∈W and 0 ≤ x < 1

2 ,

K̂(f)(x) = Φ0(0) +

∫ x

0
P′

0(t)dt+ 2A0

∫ x

0
f ′(2t)dt

= P0(x) + A0f(2x) + Φ0(0) − P0(0) − A0f(0) = K(f)(x).

Note that continuity of Φ0 and f ∈W imply

K̂(f)(
1

2
) = P0(

1

2
) + A0Φ0(1) = lim

xր 1
2

Φ0(x) = Φ0(
1

2
) = P1(

1

2
) + A1Φ0(0).

Then we have for 1
2 ≤ x ≤ 1 ,

K̂(f)(x) = K̂(f)(
1

2
) +

∫ x

1/2
P′

1(t)dt + 2A1

∫ x

1/2
f ′(2t− 1)dt

= P1(x) + A1f(2x− 1) = K(f)(x).

Hence K(f) ∈W and (3.10) holds. Iterating (3.10) leads to

Kn(f)(x) = Φ0(0) +
n−1
∑

k=0

2k
∫ x

0
TkD(t)dt + 2n

∫ x

0
Tnf ′(t)dt, n ∈ N. (3.11)

On the other hand, (3.8) and (2.24) yield 2k ‖ Tk ‖
L1≤ Cλk, k ∈ N, and so I − 2T

has a bounded inverse on L1([0, 1],RN−1); (I − 2T)−1 =
∑∞

k=0 2kTk converges in the
norm ‖ · ‖

L1 since λ = λN < 1 (see Lemma 4). Take h(x) = (I − 2T)−1D(x). Then

h ∈ L1([0, 1],RN−1) and

∫ x

0
h(t)dt =

∞
∑

k=0

2k
∫ x

0
TkD(t)dt =

∞
∑

k=0

2k
∫ x

0
A(k; t)D(τk(t))dt. (3.12)
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Since Φ0 = K(Φ0), by (3.9) we have for f ∈W ,

‖ Kn(f) − Φ0 ‖∞ =‖ Kn(f) −Kn(Φ0) ‖∞
=‖ Tn(f − Φ0) ‖∞≤ Cβn ‖ f − Φ0 ‖∞, n ∈ N.

This estimate together with (3.11), (3.12) yield

Φ0(x) = lim
n→∞

Kn(f)(x) = Φ0(0) +

∫ x

0
h(t)dt, x ∈ [0, 1]. (3.13)

Hence Φ0 is absolutely continuous on [0,1] and Φ′
0(x) = h(x) a.e. in [0,1]. (3.6) then

follows from (3.13), (3.12) ( with D(t) = Dd1(t)(t)), (2.18) and (2.2).

Remark. It is known that for N ≥ 3, φ
N

belongs to Ck(R) with k = k
N
≥ 1 ([1],

[5]). For N=2, Daubechies and Lagarias in [5] proved that φ2 is differentiable a.e. in
R. Our Theorem gives its further regularity, i.e., φ2 is even absolutely continuous on
R (see also below for N = 2).

4. Representation of φ2 and φ3

As special cases of the Theorem for N=2,3, we give here the representation of φ2

with explicit numerical series and φ3 with vector forms. The following numerical values
of q

N
(k), C

N
(n)(N = 2, 3) are taken from [1], [5]. (From [1], [5] we know that the values

of the coefficients q
N

(k) and therefore C
N

(n) for N ≥ 4 can not be written in explicit
forms.)

(1) N=2. A0 = 1
2q2(0) = 1+

√
3

4 , A1 = 1
2q2(1) = 1−

√
3

4 ,

C2(0) =
1 +

√
3

4
, C2(1) =

3 +
√

3

4
, C2(2) =

3 −
√

3

4
, C2(3) =

1 −
√

3

4
;





φ2(x+ 1)

φ2(x+ 2)



 =





−2

1



φ2(x) +





x+ 1+
√

3
2

−x+ 1−
√

3
2



 , x ∈ [0, 1],

φ2(x) =
1

4

[

1 + (1 − 2d1(x))
√

3
]

φ2(τ(x)) + d1(x)
1 +

√
3

2
(x+

√
3 − 1

4
)

=
1 +

√
3

2

∞
∑

k=0

(
1 −

√
3

4
)sk

(x)(
1 +

√
3

4
)k−sk(x)dk+1(x)[τ

k(x) +

√
3 − 1

4
],

x ∈ [0, 1];

φ2(x) =
1 +

√
3

2

∞
∑

k=0

2k−1
∑

m=0

(
1 −

√
3

4
)σk(m)

· (1 +
√

3

4
)k−σk(m)χ[2−k(m+1/2),2−k(m+1)[(x)(2

kx−m+

√
3 − 1

4
),

x ∈ [0, 1], where sk(x) = d1(x) + d2(x) + · · · + dk(x), s0(x) = 0, σk(m) = sk(2
−km).

Since φ2 is continuous on R and suppφ2 = [0, 3], by the Theorem we see that φ2 is also
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absolutely continuous on R and

φ2(x) =

∫ x

0
φ′2(t)dt

=
1 +

√
3

2

∞
∑

k=0

2k
2k−1
∑

m=0

(
1 −

√
3

4
)σk(m)(

1 +
√

3

4
)k−σk(m)

∫ x

0
χ

[2−k(m+1/2),2−k(m+1)[
(t)dt,

x ∈ [0, 1].

(2). N=3. q3(0) = 1
4(1 +

√
10 +

√

5 + 2
√

10), q3(1) = 1
2(1 −

√
10),

q2(2) = 1
4(1 +

√
10 −

√

5 + 2
√

10),

C3(0) =
1

16
(1 +

√
10 +

√

5 + 2
√

10),

C3(1) =
1

16
(5 +

√
10 + 3

√

5 + 2
√

10),

C3(2) =
1

16
(10 − 2

√
10 + 2

√

5 + 2
√

10),

C3(3) =
1

16
(10 − 2

√
10 − 2

√

5 + 2
√

10),

C3(4) =
1

16
(5 +

√
10 − 3

√

5 + 2
√

10)

C3(5) =
1

16
(1 +

√
10 −

√

5 + 2
√

10),

b1 =
1

2
(5 −

√

5 + 2
√

10), b2 =
1

2
(15 +

√
10 − 5

√

5 + 2
√

10),

A0 =









c0 0

c2 − 6c0 c1 − 3c0









, A1 =









c1 c0

c3 − 6c1 + 8c0 c2 − 3c1 + 3c0









where ck = C3(k).





φ3(x+ 2)
φ3(x+ 3)
φ3(x+ 4)



 =





−6 −3
8 3
−3 −1









φ3(x)

φ3(x+ 1)



+





p1(x)
p2(x)
p3(x)



 , x ∈ [0, 1],

p1(x) =
1

2
x2 + (

7

2
− b1)x− 7

2
b1 +

1

2
b2 + 6,

p2(x) = −x2 + (2b1 − 6)x+ 6b1 − b2 − 8,

p3(x) =
1

2
x2 + (

5

2
− b1)x− 5

2
b1 +

1

2
b2 + 3,





φ3(x)

φ3(x+ 1)



 = Ad1(x)





φ3(τ(x))

φ3(τ(x) + 1)



+ Pd1(x)(x), x ∈ [0, 1],



Series Representation of Daubechies’ Wavelets 95

P0(x) =





0

c0p1(2x)



 , P1(x) =





0

c1p1(2x− 1) + c0p2(2x− 1)



 .

Final Remark. As we have mentioned in §1, a common criticism on wavelet
orthonormal bases is that one could not give their explicit representations except
for Haar basis (see also [8]). Our representation for φ2 and therefore for wavelet

ψ2 ( = −1+
√

3
4 φ2(2x − 1) + 3+

√
3

4 φ2(2x) − 3−
√

3
4 φ2(2x + 1) + 1−

√
3

4 φ2(2x + 2) by (1.1)
) is then so far the first example among the non–Haar orthogonal wavelets which can
be represented at least in explicit numerical series forms. The main methods used in
this paper can be in fact also used to study more general scaling functions or refinable
functions.

5. Appendix : Proof of Lemma 3

The proof given here is based on the following combinational identities:

n
∑

k=0

(−1)k
( n

p− k

)(n

k

)

= (−1)⌊
1
2
p⌋χ(p)

( n

⌊1
2p⌋

)

, (5.1)

p
∑

k=0

(−1)k
(k +m

k

)( n

p− k

)

=
(n−m− 1

p

)

, n ≥ m+ 1, p ≥ 0, (5.2)

where n,m, p ∈ Z, n,m ≥ 0, and χ(p) = 1 for 0 ≤ 1
2p ∈ Z;χ(p) = 0, otherwise;

⌊x⌋ denotes the largest integer not exceeding x . (5.1), (5.2) can be easily derived by
comparing the coefficients of tp in both sides of the following power series in | t |<
1(using (1 + t)−m−1 =

∑∞
k=0(

k+m
k )(−1)ktk):

∞
∑

s=0

[

s
∑

k=0

(−1)k
( n

s− k

)(n

k

)

]

ts = (1 − t)n(1 + t)n =
n
∑

s=0

(n

s

)

(−1)st2s,

∞
∑

s=0

[

s
∑

k=0

(−1)k
(k +m

k

)( n

s− k

)

]

ts = (1 + t)n(1 + t)−m−1 =
n−m−1
∑

s=0

(n−m− 1

s

)

ts.

Here and below we use again that
(

n
m

)

= 0 if m < 0 or m > n, and qN (k) = 0 for all

k 6∈ [0, N − 1], C
N

(n) = 0 for all n 6∈ [0, 2N − 1]. From identity (1.2) we have

C
N

(n) = 2−N+1
∑

k∈Z

q
N

(k)
( N

n− k

)

, n ∈ Z. (5.3)

Now let 1 ≤ i, j ≤ N−1, d ∈ {0, 1} and write r = 2i−j−1+d. Then by (2.4)–(2.7),
(5.3), (5.1) and (5.2) we obtain

(Qd)i,j = (BTdB
−1)N+i,N+j
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=
2N−1
∑

k=N+i

N+j
∑

s=1

(k − (N + i) +N − 1

N − 1

)

C
N

(2k − s− 1 + d)(−1)N+j−s
( N

N + j − s

)

=
N−1−i
∑

k=0

N
∑

s=0

(k +N − 1

N − 1

)

CN (N + 2k + s+ r)(−1)s
(N

s

)

= 2−N+1
∑

m∈Z

q
N

(m)
N−1−i
∑

k=0

(k +N − 1

k

)

N
∑

s=0

( N

m− 2k − s− r

)

(−1)s
(N

s

)

= 2−N+1
∑

m∈Z

q
N

(m) ·
N−1−i
∑

k=0

(k +N − 1

k

)

(−1)⌊
m−r

2
⌋−k
( N

⌊m−r
2 ⌋ − k

)

χ(m− r − 2k)

= 2−N+1
∑

0≤m−r
2

∈Z

q
N

(m)
N−1−i
∑

k=0

(k +N − 1

k

)

(−1)
m−r

2
−k
( N

m−r
2 − k

)

= 2−N+1
∑

0≤m−r
2

∈Z

q
N

(m)(−1)
m−r

2

( 0
m−r

2

)

= 2−N+1q
N

(r).

This proves the lemma.
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