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Abstract

Recently, we have proposed an iterative projection and contraction (PC) method
for a class of linear complementarity problems (LCP)[4]. The method was showed
to be globally convergent, but no statement could be made about the rate of con-
vergence. In this paper, we develop a modified globally linearly convergent PC
method for linear complementarity problems. Both the method and the conver-
gence proofs are very simple. The method can also be used to solve some linear
variational inequalities. Several computational experiments are presented to indi-
cate that the method is surprising good for solving some known difficult problems.

1. Introduction

Let L = {1, . . . , l}, I ⊂ L, M be an l × l positive semi-definite matrix (but not
necessarily symmetric) and q ∈ Rl. For generalized linear complementarity problems

(GLCP)
{

ui ≥ 0, (Mu + q)i ≥ 0 ui(Mu + q)i = 0, for i ∈ I

(Mu + q)i = 0, for i ∈ L \ I,
(1)

we have presented a globally convergent projection and contraction method (PC method)[4].
This method is an iterative procedure which requires in each step only two matrix-
vector multiplications, and performs no transformation of the matrix elements. The
method therefore allows the optimal exploitation of the sparsity of the constraint matrix
and may thus be efficient for large sparse problems[4]. However, only for some special
GLCP’s (GLCP’s arising from linear programming with standard form[5,6] and from
some least distance problems[8]), the improved PC methods with linear convergence
are established.

In this paper, we modify the original PC algorithm in [4]. Using a new step-size
rule, without the estimation of the norm of M , we are able to obtain global linear
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convergence for problem (1) in general form. Moreover, the convergence proof in this
paper is much simpler than the one in [5] and [6].

Our paper is organized as follows. In Section 2, we quote some theoretical back-
ground from [4]. Section 3 describes the new algorithm and its relation to the original
one. Section 4 proves the convergence properties of our new algorithm. In Section 5,
we present some numerical results. Finally, in Section 6, we conclude the paper with
some remarks.

We use the following notations. The i-th component of a vector u in the real l-
dimensional Euclidean space Rl is denoted by ui. A superscript such as in uk refers to
specific vectors and k usually denotes an iteration index. PΩ(·) denotes the orthogonal
projection on the convex closed set Ω. ‖ · ‖ and ‖ · ‖∞ are the Euclidean and the
max-norm, respectively. For a positive definite matrix G, the norm ‖u‖G is given by
(uT Gu)

1
2 .

2. Theoretical Background

Let
Ω = {u | ui ≥ 0, for i ∈ I}, (2)

Ω∗ := {u | u is a solution of (GLCP)}. (3)

Throughout the paper we assume that Ω∗ 6= ∅. The projection v = PΩ(u) of u onto Ω
is simply given by

vi =
{

max{0, ui} if i ∈ I,
ui if i ∈ L \ I.

It is easy to see that GLCP’s can be rewritten in an equivalent way as

(PE) u = PΩ[u− (Mu + q)]. (4)

We call it a projection equation. Based on (4) we denote

e(u) := u− PΩ[u− (Mu + q)], (5)

and
ϕ(u) := e(u)T (Mu + q). (6)

We have the following basic lemma:
Lemma 1. Let u ∈ Ω, then

ϕ(u) ≥ ‖e(u)‖2. (7)

A simple proof of Lemma 1 can be found in [4]. From this result we obtain imme-
diately the following

Theorem 1. u ∈ Ω and ϕ(u) = 0 ⇐⇒ e(u) = 0 ⇐⇒ u ∈ Ω∗ .
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For u ∈ Ω, the function ‖e(u)‖ and ϕ(u) are continuous and can be viewed as
measures for the distance of u from the solution set Ω∗. In our algorithm below we
take the vector

g(u) := MT e(u) + (Mu + q) (8)

as search direction.
Theorem 2. Let u ∈ Ω, u∗ ∈ Ω∗ and g(u) be defined as above. Then we have

(u− u∗)T g(u) ≥ ϕ(u) + (u− u∗)T M(u− u∗) ≥ ϕ(u). (9)

The proof of Theorem 2 can also be found in [4]. For u ∈ Ω, the direction −g(u)
is a profitable direction, i.e., a descent direction of ‖u − u∗‖2. As a consequence of
Theorem 2, one can build a first PC algorithm[1,4], which is already globally convergent
whenever Ω∗ 6= ∅.

3. The New Algorithm and its Relation to the Original One

First, we state our new algorithm.
PC Algorithm (new)
Step 0. Assume ∆1 and ∆2 are fixed constants satisfying 0 < ∆1 ≤ ∆2 < 2. Let

ε > 0 and u0 ∈ Ω. Set k := 0.

Step 1. Calculate e(uk). If
‖e(uk)‖∞
‖q‖∞ ≤ ε, stop.

Step 2. Calculate g(uk), set

ρk =
‖e(uk)‖2

‖(I + MT )e(uk)‖2
, (10)

and choose any
γk ∈ [∆1,∆2]. (11)

Step 3. Set

ūk = uk − γkρkg(uk), (12)

uk+1 = PΩ[ūk]. (13)

Set k := k + 1 and go to Step 1.
The main difference of our new algorithm with the original PC algorithm in [4] is

that they take different step-size rules (choice of ρ). For convenience, we fix γk ≡ 1. In
the original algorithm [3], for u ∈ Ω, one puts

N(u) := {i ∈ I | ui = 0 and gi ≥ 0},
B(u) := {1, . . . , l} \N(u),
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and denotes correspondingly,

u =
(

uB

uN

)
g(u) =

(
gu

B

gu
N

)
, gB (u) =

(
gu

B

0

)
, gN (u) =

(
0

gu
N

)
.

It is easy to see that for u ∈ Ω and u∗ ∈ Ω∗

(u− u∗)T gB (u) ≥ (u− u∗)T g(u) ≥ ϕ(u). (14)

The choice of the step-size in the original algorithm [4] is

ρprime(u
k) =

ϕ(uk)
‖gB (uk)‖2

. (15)

This choice guarantees that the generated sequence {uk} satisfies

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − ρprime(u
k)‖e(uk)‖2 (16)

and converges globally to the solution set Ω∗ (see [4] for a simple proof). However,
ρprime may be very small and an iteration may get a petty profit.

The step-size ρnew(uk) in our new algorithm is chosen by (10) and therefore

ρnew ≥ 1
‖I + MT ‖2

:= const > 0 (17)

is bounded below. In the next section we will prove that the sequence {uk} generated
by this new algorithm (in the case γk ≡ 1) satisfies

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − ρnew(uk)‖e(uk)‖2. (18)

Therefore theoretically the new choice of the step length guarantees to get an “enough”
great profit in each iteration. In practical computation, we suggest to choose

ρ = max{ρprime, ρnew} (19)

and call the method a modified PC method. So that ρnew serves as a safeguard against
a “too short” step-length in the original method and the sequence {uk} generated by
the modified algorithm still satisfies (18). We note that the projection on the general
orthant Ω is trivial and for both PC algorithms the main work in each iteration is the
computation of Mu and MT e(u).

Remark. In [6], for linear complementarity problems arising from standard linear
programming, the step size ρnew is defined as

ρnew =
‖e(u)‖2

‖e(u)‖2 + ‖MT e(u)‖2
.

Because in this case the matrix M is skew symmetric, the ρnew in [6] can be rewritten
as

ρnew =
‖e(u)‖2

‖e(u) + MT e(u)‖2
.
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Therefore, for linear programming, the method in this paper is the same as in [6].

4. Convergence Results

We begin this section by stating the main result.
Theorem 3. Let u∗ ∈ Ω∗. Then the sequence {uk} generated by the new PC

Algorithm for linear complementarity problems of the form (1) satisfies

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − γk(2− γk)ρk‖e(uk)‖2. (20)

Proof. We let

Θk = ‖uk − u∗‖2 − ‖uk+1 − u∗‖2 − γk(2− γk)ρk‖e(uk)‖2 (21)

and show the equivalent assertion Θk ≥ 0. Since uk+1 = PΩ(ūk) and u∗ ∈ Ω, using the
well-known property of a projection on a convex set

(ūk − uk+1)T (u∗ − uk+1) ≤ 0,

it follows that
‖uk+1 − u∗‖2 ≤ ‖ūk − u∗‖2 − ‖ūk − uk+1‖2. (22)

Then from (21) and (22)

Θk ≥ ‖uk − u∗‖2 − ‖ūk − u∗‖2 + ‖ūk − uk+1‖2 − γk(2− γk)ρk‖e(uk)‖2

= ‖uk − u∗‖2 − ‖uk − u∗ − γkρkg(uk)‖2 + ‖uk − uk+1 − γkρkg(uk)‖2

− γk(2− γk)ρk‖e(uk)‖2 (use (13)) (23)

= ‖uk − uk+1‖2 + 2γkρk(uk − u∗)T g(uk) + 2γkρk(uk+1 − uk)T g(uk)

− γk(2− γk)ρk‖e(uk)‖2.

Note that from (9) and (6)

(uk − u∗)T g(uk) + (uk+1 − uk)T g(uk)

≥ e(uk)T (Muk + q) + (uk+1 − uk)T [MT e(uk) + (Muk + q)] (24)

= {uk+1 − PΩ[uk − (Muk + q)]}T (Muk + q) + (uk+1 − uk)T MT e(uk).

Again since uk+1 ∈ Ω, using the well-known projection property

{[uk − (Muk + q)]− PΩ[uk − (Muk + q)]}T {uk+1 − PΩ[uk − (Muk + q)]} ≤ 0,

it follows that

{uk+1 − PΩ[uk − (Muk + q)]}T (Muk + q)

≥ {uk − PΩ[uk − (Muk + q)]}T {uk+1 − PΩ[uk − (Muk + q)]} (25)

= ‖e(uk)‖2 + (uk+1 − uk)T e(uk).
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We use (24) and (25) in the basic inequality (23)

Θk ≥ ‖uk − uk+1‖2 + 2γkρk{‖e(uk)‖2 + (uk+1 − uk)T [(I + MT )e(uk)]}
− γk(2− γk)ρk‖e(uk)‖2

≥ ‖uk − uk+1‖2 + 2γkρk(uk+1 − uk)T [(I + MT )e(uk)] + γ2
kρk‖e(uk)‖2

≥ ‖uk − uk+1‖2 − {‖uk+1 − uk‖2 + γ2
kρ2

k‖(I + MT )e(uk)‖2}+ γ2
kρk‖e(uk)‖2

= γ2
kρk{‖e(uk)‖2 − ρk‖(I + MT )e(uk)‖2}

= 0. (use (10))

The convergence theorem is the same as in [6]. However, here we have proved that
the result is true for general positive semidefinite matrix M and general closed convex
set Ω. The above proof is different and simpler in contrast with the one in [6].

In fact, because Theorem 3 is true for any u∗ ∈ Ω∗ and ρk ≥ 1
‖I + MT ‖2

, we have

proved

dist2(uk+1,Ω∗) ≤ dist2(uk,Ω∗)− ∆1(2−∆2)
‖I + MT ‖2

‖e(uk)‖2. (26)

where
dist(u, Ω∗) = inf{‖u− u∗‖ | u∗ ∈ Ω∗}.

Especially, if ∆1 = ∆2 = 1, we have

dist2(uk+1,Ω∗) ≤ dist2(uk,Ω∗)− 1
‖I + MT ‖2

‖e(uk)‖2. (27)

The function ‖e(u)‖ measures how much u fails to be in Ω∗. (27) states that, we get
a ‘big’ profit from an iteration, if ‖e(uk)‖ is not too small; conversely, if we get a very
small profit from an iteration, then ‖e(uk)‖ is already very small and uk is a ‘sufficiently
good’ approximation of a u∗ ∈ Ω∗. As in [7], one can prove the global linear convergence
from (27).

5. Numerical Experiments

First, the modified PC method was applied to two linear complementarity problems
for which Lemke’s algorithm is known to run in exponential time (see Chap. 6 in [9]).
The first problem consist of an n-vector q which has each component equal −1 and the
following matrix M :

M =




1 2 2 · · · 2
0 1 2 · · · 2
0 0 1 · · · 2
...

...
...

. . .
...

0 0 0 · · · 1
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Because 1
2(M + MT ) = eeT , M is positive semidefinite. Another ‘exponential time’

problem is defined by the same q and a matrix M given by:

M =




1 2 2 · · · 2
2 5 6 · · · 6
2 6 9 · · · 10
...

...
...

. . .
...

2 6 10 · · · 4(n− 1) + 1




It is possible to prove that the above matrix is positive definite. Harker and Pang[3]

solved the both problems with the damped-Newton algorithm up to n = 128. Table 1
reports their results.

Table 1. Number of Iteration with Damped–Newton Method
n= 8 16 32 64 128
Example 1 9 20 72 208 >300
Example 2 8 16 32 65 63

Both problems were solved by the modified PC iterative scheme

uk+1 = PΩ[uk − γρkg(uk)]

with γ = 1.8. All the codes were written in FORTRAN. The calculations have been
performed in single precision on a 486 Personal Computer. The stopping test was
‖e(u)‖∞ ≤ 10−6. Tables 2–4 report the iteration number for different start points.

Table 2. Number of Iteration with PC Method

n = 8 16 32 64 128 256 512 1024 2048

Example 1 10 11 10 12 11 12 14 12 13

Example 2 25 28 44 56 54 93 65 134 69

The start vector u0 has each component equal to 0.

Table 3. Number of Iteration with PC Method

n = 8 16 32 64 128 256 512 1024 2048

Example 1 9 12 12 12 12 13 13 16 16

Example 2 14 15 18 25 21 24 25 41 41

The start vector u0 has each component equal to 1.
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Table 4. Number of Iteration with PC Method

n = 8 16 32 64 128 256 512 1024 2048

Example 1 11 10 13 13 14 13 13 18 15

Example 2 22 32 34 30 40 82 117 48 42

The start vector u0 was randomly generated with uniformly
distributed entries in the interval (0,1)

Our test results show, that the modified PC-method for the first special problem
up to n = 2048 requires only no more than 20 iterations and for the second no more
than 140. For large problems the iteration number by PC method is fewer than by the
damped-Newton method. Moreover, the damped-Newton method has to solve a New-
ton equation at each iteration and therefore needs O(n3) operations, while our method
needs only O(n2) operations. In other words, when n = 2048, even if the damped-

Newton method for example 1 requires only 300 iterations, in view of
300 ·O(20483)
16 ·O(20482)

,

we believe that our method converges at least 2000 times faster than the damped-
Newton method. For the same reason, in example 2, our method is at least 200 times
faster than the damped-Newton method.

The second set of test examples consists of GLCP’s resulting from linear program-
ming. We compare the efficiency of the new method with the original one. As test
problem we consider the transportation problem:

min
m∑

i=1

n∑

j=1

cijxij

s.t
n∑

j=1

xij = si, i = 1, · · · ,m,

m∑

i=1

xij = dj , j = 1, · · · , n,

xij ≥ 0, i = 1, · · · ,m, j = 1, · · · , n.

where
m= number of sources,
n= number of destinations,
si= supply at source i,
dj= demand at destination j.

It is convenient to form such large problem randomly and its constraint-matrix is very
sparse. For feasibility, it is necessary that we have

m∑

i=1

si =
n∑

j=1

dj .
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We generate random test problems as follows: we take

si = 80× ran(∗) + 20 for i = 1, · · · ,m,

d̃j = 80× ran(∗) + 20 for j = 1, · · · , n,

and set
dj = td̃j , j = 1, · · · , n.

where ran(∗) denotes a random variable in (0, 1) and

t :=
m∑

i=1

si/
n∑

j=1

d̃j .

Then the system is balanced in the sense that the total supply equals the total demand.
Further we choose the components cij of the vector c, randomly in (0, 100).

It is well known that a linear programming problem is equivalent to a generalized
linear complementarity problem of the form (1) with

u =
(

x

y

)
, M =

(
0 −AT

A 0

)
, q =

(
c

−b

)

and Ω = {u = (x, y) | x ≥ 0}. Because in this case

e(u) =
(

x− [x + (AT y − c)]+
Ax− b

)
,

the iteration stopped as soon as

max
{‖xk − [xk + (AT yk − c)]+‖∞

‖c‖∞ ,
‖Axk − b‖∞

‖b‖∞
}
≤ ε

for some prescribed ε > 0. The iteration number for ε = 10−3 are given in Table 5.

Table 5. Linear Programming, Transportation Problem

# orig. # dest. # var. # it. original PC # it. new PC

m n mn γ = 1 γ=1.5 γ=1.5 γ=1.95

40 50 2000 685 777 376 335
50 100 5000 719 906 542 495
80 125 10000 817 1031 601 564

The start vector u0 has each component equal to 0.

The numerical results show that for the original PC method γ = 1 is better than
γ > 1. For the new PC method, the best choice of γ should be close to 2 (because
in the proof of Theorem 3 many inequalities were used). The new PC method require
30-40 percent fewer iterations than the original one.
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6. Conclusion

In this paper, we have modified the PC method in [4] and demonstrated its effective-
ness for some examples. The method can be implemented to the linear complementarity
problem which might otherwise be excluded by some other algorithms (such as when
M is skew symmetric). Moreover, since a linear variational inequality

(LVI) u ∈ Ω, (v − u)T (Mu + q) ≥ 0, ∀v ∈ Ω

is equivalent to the following projection equation [2]

u = PΩ[u− (Mu + q)],

the new method (with ρ = ρnew) can be used to solve linear variational inequality, when
Ω is convex and the projection on Ω is simple to carry out.

In general, as an iterative method, the PC-method is considerably simpler and
advantageous for large sparse problems. However, we want to point out, although the
PC-method performs here well, as most iterative methods, it is easy to construct a small
example for which the PC methods run very poorly. To overcome this disadvantage is
a topic of our present research.
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