
Journal of Computational Mathematics, Vol.14, No.3, 1996, 249–255.

A MODIFIED BISECTION SIMPLEX METHOD FOR LINEAR

PROGRAMMING∗

P.Q. Pan
(Department of Mathematics and Mechanics, Southeast University, Nanjing, China)

Abstract

In this paper, a modification of the bisection simplex method[7] is made for
more general purpose use. Organized in an alternative simpler form, the modified
version exploits information of the optimal value, as does the original bisection
method, but no bracket on the optimal value is needed as part of input; in stead,
it only requires provision of an estimate b0 of the optimal value and an estimate
of the error bound of b0 (it is not sensitive to these values though) . Moreover, a
new, ratio-test-free pivoting rule is proposed, significantly reducing computational
cost at each iteration. Our numerical experiments show that the method is very
promising, at least for solving linear programming problems of such sizes as those
tested.

1. Introduction

The bisection method, proposed in an earlier paper by the author[7], exploits infor-

mation of the optimal value to speed up the solution process. However, the method

requires a bracket on the optimal value as part of its input, and its promisingly good

performance depends on whether a suitable bracket is available; it may even fail to solve

a problem if the initial interval provided does not contain the optimal value actually.

In this paper, the method is modified for more general purpose use. Organized in an

alternative simpler form, the new version no longer needs any bracket on the optimal

value as part of input; in stead, it only requires an estimate b0 of the optimal value and

an estimate of the error bound of b0, to which it is not sensitive though.

Nevertheless, it might be the new pivoting rule proposed that makes a more impor-

tant improvement. The original rule (Rule 3.9 of [7]) of the bisection method may be

regarded as a variant of Dantzig’s classical rule, applied in an alternative administra-

tion; features of rules of this type are as follows:

(1) The incoming variable takes a feasible value.

(2) The outgoing variable takes the value of zero.

(3) All the feasible variables remain feasible after a basis change.

Although these classical conditions are widely accepted, and employed in different

contexts, some authors such as Wolfe[13,14], Greenberg[4], Maros[5] and Belling-Seib[1]

∗ Received April 18, 1994.
1) The Project Supported by National Natural Science Foundation of China.



250 P.Q. PAN

suggest relaxing condition (3); they reduce the amount of total infeasibility in stead.

Rules of this type usually do require less iterations than classical methods. Unfortu-

nately, they give a rise in computational cost per iteration. The new proposed rule,

which is a ratio-test-free one, not only relaxes condition (3) but also gets rid of mea-

suring infeasibility, consequently reducing computational effort at each iteration. Such

type of rules have been very successful in other contexts[8,9,10,11]. Since numerical re-

sults of our tests show that the number of iterations required by the modified version is

slightly less than that required by the original bisection method, total computational

cost is reduced.

In Section 2, we propose the pivoting rule first, and then establish a procedure using

the rule. In Section 3, we describe the modified algorithm in which the procedure is

employed as its subalgorithm. Finally, in Section 4, we report our numerical results

obtained, which are very encouraging although still preliminary.

2. The Ratio-Test-Free Rule

Consider linear programming problem in the standard form:

max z = cx (2.1a)

s.t. Ax = b (2.1b)

x ≥ 0, (2.1c)

where A ∈ Rm×n, b ∈ Rm, and c and x are row and column n-vectors, respectively.

In this section, an attempt is made for achieving feasibility under some fixed objec-

tive function value. For this purpose, the procedure, given in Section 3 of [7], is modified

in an alternative simpler form in which a ratio-test-free pivoting rule is employed.

View cx = z as a constraint, and take it as the 0-th constraint among others. Then,

setting

A :=

(

c

A

)

, b :=

(

z

b

)

, (2.2)

allows to denote the augmented constraint system by (2.1b) again. Thus now we have

A ∈ R(m+1)×n and b ∈ Rm+1 with a0j ≡ cj , j = 1, . . . , n and b0 ≡ z, which may

be referred to as objective value parameter. Assume that Ax = b is consistent with

rank(A) = k + 1 ≤ m + 1 < n.

Let B ∈ R(m+1)×(k+1) be the basis of A with the basic index set

JB = {j0, . . . , jk}. (2.3)

Introduce notation

J̄B = {1, . . . , n}\JB . (2.4)

The corresponding canonical form can then be represented by the tableau below:

B+A | B+b, (2.5)

where B+ is the Moore-Penrose inverse of B.



A Modified Bisection Simplex Method for Linear Programming 251

For a fixed b0, if the row index set

I = {i | (B+b)i < 0, i = 0, . . . , k} (2.6)

is empty, a feasible solution with objective value b0 is already present. When this is

not the case, we use the following pivoting rule to make the basis change:

Rule 2.1. If set I is nonempty, select the pivot row index r such that

r = arg min{(B+b)i | i ∈ I}. (2.7)

If set

J = {j | (B+aj)r < 0, j ∈ J̄B} (2.8)

is nonempty, select the pivot column index s such that

s = arg min{(B+aj)r | j ∈ J}. (2.9)

If I and J are both nonempty, and pivot row and column indices, r and s, are

determined under the preceding rule, the new tableau yielding from the basis change

will be

B̄+A | B̄+b, (2.10)

where B̄+ can be computed via the following formulae:

B̄+ = B+ +
(er − B+as)e

T
r B+

eT
r B+as

. (2.11)

The new right-hand side of the system can be written in terms of the old:

(B̄+b)r = (B+b)r/(B
+as)r > 0, (2.12a)

(B̄+b)i = (B+b)i − ((B+b)r/(B
+as)r)(B

+as)i, i 6= r (2.12b)

where inequality follows from (2.7) with (2.6) and (2.9) with (2.8). It is clear that such

a basis change turns the most negative component of the right-hand side into a positive

one though may not maintain current feasibilities. One iteration step is then complete.

Such step is repeated until I is empty, implying that the feasible solution with value

b0 is reached, or I is nonempty but J is empty, implying that there exists no feasible

solution with value of b0. After that, the current solution may be purified into a basic

solution via the same steps as those of Algorithm 3.11 of [7], and the latter is then

tested for optimality.

The following model algorithm summarizes the preceding procedure:

Subalgorithm 2.2. Let b0 be given and let B+ be the Moore-Penrose inverse of a

basis.

1. Compute B+b.

2. If I defined by (2.6) is empty then:

(i) stop if set I = {i | (B+e0)i < 0, i = 0, . . . , k} is empty;

(ii) Determine σ and i by σ = −(B+b)i/(B
+e0)i = min{−(B+b)i/(B

+e0)i



252 P.Q. PAN

| i ∈ I} ≥ 0, then set b0 = b0 + σ and B+b = B+b + σ(B+e0) if σ > 0;

(iii) stop if set J = {j | (B+aj)i < 0, j ∈ J̄B} is empty;

(iv) stop.

3. Determine row index r by (2.7).

4. If set J defined by (2.8) is empty then:

(i) stop if (B+e0)r = 0;

(ii) stop if (B+e0)r > 0;

(iii) compute σ = −(B+b)r/(B
+e0)r < 0, then set b0 = b0 + σ and

B+b = B+b + σ(B+e0);

(iv) stop if set I defined by (2.6) is empty;

(v) stop.

5. Determine column index s by (2.9).

6. Update B+ via (2.11), and B+b by (2.12).

7. Go to Step 2.

We state the following theorem to clarify meanings of different outlets and end

products of the preceding algorithm, proof of which is similar to that of Theorem 3.13

in [7]:

Theorem 2.3. Assume termination of Subalgorithm 2.2. The termination occurs

at either

(a) Step 2(iii) or 4(iv), with an optimal solution obtained; or

(b) Step 2(iv), with a basic feasible(not optimal) solution reached; or

(c) Step 4(ii) or 4(v), indicating absence of optimal value over interval (−∞, b0]

(at Step 4(ii)), or over [b0,∞) (at Step 4(v)); or

(d) Step 2(i), indicating up-unboundedness of the program; or

(e) Step 4(i), indicating infeasibility of the program.

The question remaining now is whether or not Subalgorithm 2.2 terminates. Since

the number of all possible bases is finite, it does not terminate if and only if cycling

occurs, i.e., some bases are repeated infinitely many times. It has not been possible

to rule out the possibility of cycling. However, cycling might rarely happen to occur

in practice, a standpoint of view that is supported by our computational experiments,

reported in the final section of this paper (See also [8, 9, 10, 11]).

3. The Main Procedure

In this section, we describe the main procedure for solving the linear program (2.1),

in which Subalgorithm 2.2 is employed.

Assume the existence of optimal solution. In order to speed up solution process,

the main procedure again exploits information about the optimal value; more flexibly,

however, it no longer needs a bracket (α, β) on the optimal value provided, rather it

only requires an estimate of it, as initial b0, and an estimate δ of the error bound of b0.

It produces a bracket (α, β) by itself in the following way. It first call Subalgorithm 2.2.

If termination occurs with the indication that the initial b0 is a lower (upper) bound

on the optimal value, it sets α = b0, b0 = α + δ (β = b0 and b0 = β − δ), and



A Modified Bisection Simplex Method for Linear Programming 253

then call Subalgorithm 2.2 with the new b0 again. In the process of repeating such

steps, once current b0 is found to be an upper (lower) bound, setting β = b0 (α = b0)

gives a bracket (α, β) on the optimal value, which allows the algorithm to go on its

bisection steps thereafter. In the whole process, if some b0 happens to fall into the

“ideal interval” desirably, Subalgorithm 2.2 will terminate with an optimal solution

achieved, and therefore no further steps are required.

The preceding can be put in the basic algorithm below:

Algorithm 3.1. Let b0 be an estimate of the optimal value and δ be an estimate

of the error bound of b0. Let B+ be the Moore-Penrose inverse of an initial basis of A.

This algorithm solves linear program (2.1).

(1) Set α = −∞ and β = +∞.

(2) Execute Subalgorithm 2.2.

(3) Stop if termination occurs at either Step 2(iii) or 4(iv).

(4) Stop if termination occurs at Step 2(i).

(5) Stop if occurs at Step 4(i).

(6) If occurs at Step 2(iv) or 4(ii), then:

(i) set α = b0;

(ii) if β = +∞, set b0 = α + δ, and go to Step (2).

(7) If occurs at Step 4(v), then

(i) set β = b0;

(ii) if α = −∞, set b0 = β − δ, and go to Step (2).

(8) set b0 = (α + β)/2, and then go to Step (2).

We state the following companion theorem, which can be simply proved by making

the use of Theorem 2.3:

Theorem 3.2. Assume termination of Algorithm 3.1. Then it occurs at either

(a) Step (3), with an optimal solution reached; or

(b) Step (4), indicating upper unboundedness of the problem; or

(c) Step (5) indicating infeasibility of it.

Notes: If Subalgorithm 2.2 is finite, Algorithm 3.1 must terminates at Step (3) if

any linear programming problem encountered has an optimal solution, or at Step (4)

if the feasible value set is nonempty, and upper unbounded; however, the termination

of Algorithm 3.1 is not guaranteed whenever the problem has no feasible solution.

4. Computational Experience

In this final section, we report numerical results of our preliminary tests. Algorithm

3.1, coded in a FORTRAN program, is implemented, and compared with Algorithm

4.2 of [7] as well as the revised two-phase simplex algorithm using Dantzig’s original

rule. The model algorithm below, a revised version of Algorithm 6.5 of [7], was used

for producing the Moore-Penrose inverse B+ of an initial basis B as input for both

Algorithm 3.1 and Algorithm 4.2 of [7]:

Subalgorithm 4.1.. Given A ∈ R(m+1)×n, pivoting indices αj , j = 1, . . . , n, and

a small positive number ǫ.



254 P.Q. PAN

1. Set k = 0, r = 1 and J = 1, . . . , n.

2. Determine s1 = argmaxαj|j ∈ J̄ .

3. Set J̄ = J̄\{s1}.

4. Set A0 = as1, and compute A+
0 = (1/aT

s1
as1)a

T
s1

.

5. Set k = k + 1.

6. Set r = r + 1.

7. Determine sr = arg max{αj |j ∈ J̄}.

8. Set J̄ = J̄\{sr}.

9. Compute dk = A+
k−1asr

and ck = asr
− Ak−1dk.

10. If cT
k ck < ǫ and r < n, go to step 6.

11. If cT
k ck ≥ ǫ, set Ak = (Ak−1

...asr
) and compute A+

k =

(

A+
k−1

−dkc+
k

c+
k

)

.

12. If k < m and r < n, go to step 5.

13. Set B = Ak and B+ = A+
k , and stop.

The machine precision used was about 16 decimal places. 10−6 was taken to be as

the tolerance, and also taken as the value of the ǫ for Subalgorithm 4.1. Tested linear

programming problems fall into three sets. The first set contains 62 arbitrarily collected

problems with strict inequality constraints, involving up to 22 decision variables and

constraints. The second one includes 4 larger sparse problems in the standard form,

for each the price coefficients were simply taken to be pivoting indices, used as input

of Subalgorithm 4.1. The third are three Klee-Minty problems (see, for example, [12]).

For each of these problems, a relatively good estimate b0 of the optimal value and

an estimate δ of the error bound of b0 were supplied to Algorithm 3.1; accordingly,

α = b0 − δ and β = b0 + δ were supplied to Algorithm 4.2 of [7].

In terms of number of pivots required, numerical results obtained are summarized

in the table below, where problems of set 2 are designated by P1, P2, P3 and P4, and

the Klee-Minty problems by KM1, KM2 and KM3, respectively.

Table 1. Numerical Results

Problem Algorithm 3.1 Algorithm 4.2 of [7] The Classical

Total for Group 1 195 204 779

P1: m = 27 n = 51 8 9 27

P2: m = 28 n = 56 10 12 38

P3: m = 55 n = 137 50 64 170

P4: m = 56 n = 138 85 101 172

Total for Group 2 153 186 407

KM1: n = 8 6 7 255

KM2: n = 10 9 10 1023

KM2: n = 12 11 11 4095

The results clearly show that both the original bisection algorithm and the modified

version outperformed the classical method on these tested problems with quite large

margins. In fact, this is even valid for each of these problems. As for the two bisection



A Modified Bisection Simplex Method for Linear Programming 255

codes, pivots required by the modified one are slightly less than the original; noting that

the pivoting rule, used in the modified algorithm, is a ratio-test-free one, and reduces

computational effort per iteration significantly, we conclude that the performance of

the modified algorithm is better than the original. It should be indicated that cost with

Subalgorithm 4.1 alone is limited, which is no more than that spent by the classical

method of its m/2 pivot steps.

References

[1] K. Belling-Seib, An improved general Phase-I method in linear programming, European
Journal of Operations Research, 36(1988), 101–106.

[2] K.Z. Chen, G.X. Xiao, K.J. Wu and H.J. Cao, An improved simplex- like bisection method
for LP, Proceedings of Second National Symposium on Mathematical Programming, Xidian
University Press, 1994, Xian, China, 338–346.

[3] G.B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton,
New Jersey, 1963.

[4] H.J. Greenberg, Pivot selection tactics, in H.J. Greenberg (Ed.) Design and Implementation
of Optimization Software, Sijthoff and Noordhoff, 1978, 109–143.

[5] Istvan Maros, A general Phase-I method in linear programming, European Journal of Op-
erations Research, 34(1986) 64–77.

[6] P.Q. Pan, Practical finite pivoting rules for the simplex method, OR Spektrum 12(1990)
219–225.

[7] P.Q. Pan, A simplex-like method with bisection for linear programming, Optimization,
22(1991), 717–743.

[8] P.Q. Pan, Ratio-test-free pivoting rules for a dual Phase-1 method, in: S.T Xiao and F. Wu
(Ed.), Proceedings of the Third Conference of Chinese SIAM, Tsinghua University Press,
Beijing, 1994, 245–249.

[9] P.Q. Pan, Achieving primal feasibility under the dual pivoting rule, Journal of Information
and Optimization Sciences , 15(1994b), 405–413.

[10] P.Q. Pan, Composite Phase-1 Methods without measuring infeasibility, in: M.Y. Yue (Ed.),
Theory of Optimization and its Applications, Xidian University Press, Xian, 1994, 359–364.

[11] P.Q. Pan, Ratio-test-free pivoting rules for the bisection simplex method, Theory and Appli-
cation of Decision Making Science, (Proceedings of Chinese Symposium on Decision Making
Science), 1994, 24–29.

[12l A. Schrijver, The Theory of Linear and Integer Programming, John Wiley & Sons, Chich-
ester, 1986.

[13] P. Wolfe, An extended composite algorithm for linear programming, the RAND Corpora-
tion, P-2373, 1961.

[14] P. Wolfe, The composite simplex algorithm, SIAM Review , 7(1965), 42-54.


