# NONOVERLAPPING DOMAIN DECOMPOSITION METHOD WITH MIXED ELEMENT FOR ELLIPTIC PROBLEMS*1) 

H.X. Rui<br>(Mathematics Department, Shandong University, Jinan)


#### Abstract

In this paper we consider the nonoverlapping domain decomposition method based on mixed element approximation for elliptic problems in two dimentional space. We give a kind of discrete domain decomposition iterative algorithm using mixed finite element, the subdomain problems of which can be implemented parallelly. We also give the existence, uniqueness and convergence of the approximate solution.


## 1. Introduction

Domain decomposition as a new method of computational mathematics, was developed since the development of parallel computers and multiprocessor supercomputers. Using domain decomposition we can decrease the scale of the problem and implement the sub-problems on parallel computer. From a technical point of view most of domain decomposition methods considered so far have been dealing with finite element methods. In [1, 2] Zhang and Huang have given a kind of nonoverlapping domain decomposition procedure with piecewise linear finite element approximation.

Since the advantage of mixed element method in dealing with some engineering problems when accurate approximates to the first derivatives of the solution of the elliptic problem is required, such as numerical simulation in oil recovery, as early as 1988, Glowinski and Wheeler ${ }^{[3]}$ have given a domain decomposition conjugate gradient algorithm with mixed element.

In this paper we give a kind of nonoverlapping domain decomposition algorithm with mixed finite element, which can be implemented in parallel computer. We also give the existence, uniqueness and convergence analysis. Finally we give the numerical examples.

[^0]
## 2. Domain Decomposition Algorithm

Without loss of generality we consider the following problem:

$$
\begin{cases}-\triangle u=f, & \text { in } \Omega  \tag{1}\\ \frac{\partial u}{\partial n}=0, & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset R^{2}$ is a bounded domain and can be decomposed into two polygonal domains, $n$ is the unit vector in outer normal direction, $f \in L^{2}(\Omega)$ satisfying

$$
\begin{equation*}
\int_{\Omega} f d x=0 \tag{2}
\end{equation*}
$$

We decomposition $\Omega$ into nonoverlapping subdomains $\Omega_{1}, \Omega_{2}$ such that $\bar{\Omega}=\bar{\Omega}_{1} \cup \bar{\Omega}_{2}$ and $\Omega_{1}, \Omega_{2}$ are two polygonal domains, $\partial \Omega_{1} \cap \partial \Omega_{2}$ is a striaight line. Let

$$
\Gamma=\partial \Omega_{1} \cap \partial \Omega_{2} \cap \Omega ; \Gamma_{i}=\partial \Omega \cap \partial \Omega_{i}(i=1,2) .
$$

then $\partial \Omega_{i}=\Gamma \cup \Gamma_{i}(i=1,2)$.
Let $(\cdot, \cdot)$ denote the innerproduct on $L^{2}(\Omega)$ or $\left(L^{2}(\Omega)\right)^{2},(\cdot, \cdot)_{i}$ denote the innerproduct on $L^{2}\left(\Omega_{i}\right)$ or $\left(L^{2}\left(\Omega_{i}\right)\right)^{2}, \sigma=-\nabla u$, then we can derive the mixed formulation of (1): Find $(\sigma, u) \in H^{0}(\operatorname{div} ; \Omega) \times L^{2}(\Omega)$ such that

$$
\begin{cases}(\sigma, q)-(\operatorname{div} q, u)=0, & \forall q \in H^{0}(\operatorname{div}, \Omega)  \tag{3}\\ (\operatorname{div} \sigma, w)=(f, w), & \forall w \in L^{2}(\Omega)\end{cases}
$$

where

$$
\begin{aligned}
H(\operatorname{div} ; \Omega) & =\left\{v: v \in\left(L^{2}(\Omega)\right)^{2}, \operatorname{div} v \in L^{2}(\Omega)\right\} \\
H^{0}(\operatorname{div} ; \Omega) & =\left\{v: v \in H^{0}(\operatorname{div}, \Omega),\left.v \cdot n\right|_{\partial \Omega}=0\right\}
\end{aligned}
$$

Under the condition of

$$
\begin{equation*}
\int_{\Omega_{1}} u d x=0 \tag{4}
\end{equation*}
$$

the problem (3), or (1), has a unique solution.
Let $\Omega_{h}=\{k\}$ denote the quasi-uniform trianglation of $\Omega$ based on the discretization of $\Omega_{1}, \Omega_{2}$, with elements of size $h$. We choose $Q_{h} \times M_{h} \subset H^{0}(\operatorname{div}, \Omega) \times L^{2}(\Omega)$ as the lowest order Raviart-Thomas mixed element space. Then the mixed element solution of problem (3), $\left(\sigma_{h}, u_{h}\right) \in Q_{h} \times M_{h}$, satisfying

$$
\begin{cases}\left(\sigma_{h}, q\right)-\left(\operatorname{div} q, u_{h}\right)=0, & \forall q \in Q_{h}, \\ \left(\operatorname{div} \sigma_{h}, v\right)=(f, v), & \forall v \in M_{h} .  \tag{6}\\ \int_{\Omega_{h}} u_{1} d x=0 .\end{cases}
$$

The solution of (5)-(6) is unique and we have ${ }^{[5]}$

$$
\begin{equation*}
\left\|\sigma_{h}-\sigma\right\|+\left\|u_{h}-u\right\| \leq C h, \tag{7}
\end{equation*}
$$

where $C$ denotes a generic constant independent of $h$.
Let $M_{i} \subset L^{2}\left(\Omega_{i}\right), Q_{i} \subset H($ div $; \Omega)$ be the following spaces:

$$
\begin{array}{r}
M_{i}=\left\{\left.v\right|_{\Omega_{i}}: v \in M_{h}\right\}, i=1,2, \\
Q_{i}=\left\{\left.q\right|_{\Omega_{i}}: q \in Q_{h}\right\}, Q_{i}^{0}=\left\{q \in Q_{i}:\left.q \cdot n\right|_{\partial \Omega_{i}}=0\right\}, i=1,2, \\
P_{0 h}=\left\{q \in Q_{h}:\left.q \cdot n\right|_{\partial k_{i}}=0, \text { if } k_{i} \cap \Gamma=\emptyset, i=1,2,3, k \in \Omega_{h}\right\}, \tag{10}
\end{array}
$$

where $\partial k_{i}, i=1,2,3$, denotes the three sides of $k$. It is clear that for any $q \in Q_{i}$, we have $\left.q \cdot n\right|_{\partial \Omega_{i} \cap \partial \Omega}=0$ and

$$
\begin{equation*}
Q_{h}=Q_{1}^{0} \oplus Q_{2}^{0} \oplus P_{0 h} \tag{11}
\end{equation*}
$$

Let $T_{1}=\{\tau\}$ denote the partition of $\Gamma$ which is the restriction of $\Omega_{h}$ on $\Gamma, S(\Gamma)=$ $\left\{v \in L^{2}(\Gamma):\left.v\right|_{\tau}=\right.$ constant, $\left.\forall \tau \in T_{1}\right\}, n_{1}, n_{2}$ denotes the outer normal directions of $\Omega_{1}, \Omega_{2}$ on $\Gamma a n d \pi \in P_{0 h}$ be a function such that $\int_{\Gamma} \pi \cdot n_{1} d \Gamma \neq 0, d_{0} \in S(\Gamma)$ such that $\int_{\Gamma} d_{0} d \Gamma-\int_{\Omega_{1}} f d x=0$, we give the following domain decomposition mixed element procedure:

For $\mathrm{n}=0,1,2, \ldots$

1) Define $\sigma_{i}^{2 n} \in Q_{i}, u_{i}^{2 n} \in M_{i}(i=1,2)$ such that

$$
\begin{array}{r}
\left(\sigma_{i}^{2 n}, q\right)_{i}-\left(\operatorname{div} q, u_{i}^{2 n}\right)_{i}=0, \forall q \in Q_{i}^{0}, i=1,2, \\
\left(\operatorname{div} \sigma_{i}^{2 n}, v\right)_{i}=(f, v)_{i}, \forall v \in M_{i}, i=1,2, \\
\left.\sigma_{i}^{2 n} \cdot n_{1}\right|_{\Gamma}=d^{n}, i=1,2, \\
\int_{\Omega_{1}} u_{1}^{2 n} d x=0, \\
\sum_{i=1}^{2}\left(\left(\sigma_{i}^{2 n}, \pi\right)_{i}-\left(\operatorname{div} \pi, u_{i}^{2 n}\right)_{i}\right)=0 . \tag{16}
\end{array}
$$

2) For $q \in P_{0 h}$ define

$$
\begin{equation*}
g^{n}(q)=\theta_{1}\left[\left(\sigma_{1}^{2 n}, q\right)_{1}-\left(\operatorname{div} q, u_{1}^{2 n}\right)_{1}\right]-\left(1-\theta_{1}\right)\left[\left(\sigma_{2}^{2 n}, q\right)_{2}-\left(\operatorname{div} q, u_{2}^{2 n}\right)_{2}\right] . \tag{17}
\end{equation*}
$$

3) Define $\sigma_{i}^{2 n+1} \in Q_{i}, u_{i}^{2 n+1} \in M_{i}(i=1,2)$ such that

$$
\begin{gather*}
\left(\sigma_{i}^{2 n+1}, q\right)_{i}-\left(\operatorname{div} q, u_{i}^{2 n+1}\right)_{i}=0, \forall q \in Q_{i}^{0}, i=1,2  \tag{18}\\
\left(\operatorname{div} \sigma_{i}^{2 n+1}, v\right)_{i}=(f, v)_{i}, \forall v \in M_{i}, i=1,2  \tag{19}\\
\left(\sigma_{1}^{2 n+1}, q\right)_{1}-\left(\operatorname{div} q, u_{1}^{2 n+1}\right)_{1}=g^{n}(q), \forall q \in P_{0 h}  \tag{20}\\
\left(\sigma_{2}^{2 n+1}, q\right)_{2}-\left(\operatorname{div} q, u_{2}^{2 n+1}\right)_{2}=-g^{n}(q), \forall q \in P_{0 h} \tag{21}
\end{gather*}
$$

4) Define

$$
\begin{equation*}
d^{n+1}=\left.\left(\theta_{2} \sigma_{1}^{2 n+1} \cdot n_{1}+\left(1-\theta_{2}\right) \sigma_{2}^{2 n+1} \cdot n_{1}\right)\right|_{\Gamma} \tag{22}
\end{equation*}
$$

where $\theta_{1}, \theta_{2} \in(0,1)$ are two parameters.

## 3. Existence and Uniqueness of Approximation Solution

Lemma 3.1. If $\left(\sigma_{i}, u_{i}\right) \in Q_{i} \times M_{i}$ satisfies

$$
\begin{cases}\left(\sigma_{i}, q\right)_{i}-\left(\operatorname{div} q, u_{i}\right)_{i}=0, & \forall q \in Q_{i}  \tag{23}\\ \left(\operatorname{div} \sigma_{i}, v\right)_{i}=0, & \forall v \in M_{i}\end{cases}
$$

then $\sigma_{i}=0, u_{i}=0, i=1,2$.
Proof. It is clear that $\sigma_{i}=0, u_{i}=0$ is the solution of (23). Suppose $\left(\sigma_{i}, u_{i}\right) \in$ $Q_{i} \times M_{i}$ is anyone of the solution of (23). Let $q=\sigma_{i}, v=u_{i}$, then we have $\left(\sigma_{i}, \sigma_{i}\right)=0$, that is $\sigma_{i}=0$, from (23) we have that

$$
\begin{equation*}
\left(\operatorname{div} q, u_{i}\right)_{i}=0, \forall q \in Q_{i} \tag{24}
\end{equation*}
$$

Let $q \in Q_{i}^{0}$ we derive that

$$
\begin{equation*}
\left(\operatorname{div} q, u_{i}\right)=0, \forall q \in Q_{i}^{0} \tag{25}
\end{equation*}
$$

Using the theory of mixed element we have that

$$
\begin{equation*}
\left\|u_{i}\right\|_{L^{2}\left(\Omega_{i}\right) / R} \leq \sup _{q \in Q_{i}^{0}} \frac{\left(\operatorname{div} q, u_{i}\right)_{i}}{\|q\|_{H\left(\operatorname{div} ; \Omega_{i}\right)}}=0 \tag{26}
\end{equation*}
$$

that is $u_{i}=$ constant on $\Omega_{i}$. From (24) we have that

$$
\begin{equation*}
\left(\operatorname{div} q, u_{i}\right)_{i}=u_{i} \int_{\Omega_{i}} \operatorname{div} q d x=u_{i} \int_{\Gamma} q \cdot n_{i} d \Gamma=0, \forall q \in Q_{i} . \tag{27}
\end{equation*}
$$

Selecting $q \in Q_{i}$ such that $\int_{\Gamma} q \cdot n_{i} d \Gamma \neq 0$, from (27) we have $u_{i}=0$.
Theorem 1. If $d^{0} \in S(\Gamma), \int_{\Gamma} d^{0} d \Gamma-\int_{\Omega_{1}} f d x=0$, then the system (12)-(22) has a unique solution $\left(\sigma_{i}^{n}, u_{i}^{n}\right)$ for $i=1,2$ and $n=0,1,2, \cdots$.

Proof. We use the induction method to prove the theorem. We prove that

$$
\begin{equation*}
\int_{\Gamma} d^{n} d \Gamma-\int_{\Omega_{1}} f d x=0, n=0,1,2, \cdots \tag{28}
\end{equation*}
$$

It is clear that (28) holds for $\mathrm{n}=0$. Suppose (28) holds for $n$, from (12)-(14) we know that $\left(\sigma_{1}^{2 n}, u_{1}^{2 n}\right)$ is the mixed element solution of the following problem:

$$
\begin{equation*}
-\Delta u=f, x \in \Omega_{1},\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega \cap \partial \Omega_{1}}=0,\left.\frac{\partial u}{\partial n_{1}}\right|_{\Gamma}=d^{n} \tag{29}
\end{equation*}
$$

(28) is the compatibility condition for (29). By (15) we know that $\left(\sigma_{1}^{2 n}, u_{1}^{2 n}\right)$ is the unique solution of (12)-(14) for $\mathrm{i}=1$. Since $n_{2}=-n_{1}$, using (2) we have that

$$
\begin{equation*}
\int_{\Gamma}-d^{n} d \Gamma-\int_{\Omega_{2}} f d x=-\int_{\Gamma} d^{n} d \Gamma-\left(\int_{\Omega} f d x-\int_{\Omega_{1}} f d x\right)=0 \tag{30}
\end{equation*}
$$

which is the compatibility condition of the problem

$$
\begin{equation*}
-\Delta u=f, x \in \Omega_{2},\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega \cap \partial \Omega_{2}}=0,\left.\frac{\partial u}{\partial n_{2}}\right|_{\Gamma}=-d^{n} \tag{31}
\end{equation*}
$$

$\left(\sigma_{2}^{2 n}, u_{2}^{2 n}\right)$ is the mixed element solution of (31). From (16) we know that $\left(\sigma_{2}^{2 n}, u_{2}^{2 n}\right)$ exists and is unique.

Using (11) and Lemma 3.1 we can get that the system (18)-(21) has only one solution. It is clear that $d^{n+1}$ defined by (22) belongs to $S(\Gamma)$, from (19) we can get that

$$
\begin{aligned}
\int_{\Gamma} d^{n+1} d \Gamma & =\theta_{2} \int_{\Gamma} \sigma_{1}^{2 n+1} \cdot n_{1} d \Gamma+\left(1-\theta_{2}\right) \int_{\Gamma} \sigma_{2}^{2 n+1} \cdot\left(-n_{2}\right) d \Gamma \\
& =\theta_{2} \int_{\Omega_{1}} \operatorname{div} \sigma_{1}^{2 n+1} d x-\left(1-\theta_{2}\right) \int_{\Omega_{2}} \operatorname{div} \sigma_{2}^{2 n+1} d x \\
& =\theta_{2} \int_{\Omega_{1}} f d x-\left(1-\theta_{2}\right) \int_{\Omega_{2}} f d x=\int_{\Omega_{1}} f d x .
\end{aligned}
$$

That is (28) holds for $(n+1)$. The proof is completed.

## 4. Some Lemmas

Let $\pi \in P_{0 h}$ be the same as in (16). For $v_{1} \in L^{2}\left(\Omega_{1}\right), v_{2} \in L^{2}\left(\Omega_{2}\right)$, define $v=\left[v_{1}, v_{2}\right] \in L^{2}(\Omega)$ such that $\left.v\right|_{\Omega_{1}}=v_{1},\left.v\right|_{\Omega_{2}}=v_{2}$. We give the following notation:

$$
\begin{gather*}
W_{i}=\left\{(q, v) \in Q_{i} \times M_{i}: \operatorname{div} q=0,(q, \widetilde{q})_{i}-(\operatorname{div} \widetilde{q}, v)_{i}=0, \forall \widetilde{q} \in Q_{i}^{0}\right\}, i=1,2,  \tag{32}\\
N=\left\{(q, v)=\left(\left[q_{1}, q_{2}\right],\left[v_{1}, v_{2}\right]\right):\left(q_{i}, v_{i}\right) \in W_{i} ;(q, \widetilde{q})-(\operatorname{div} \widetilde{q}, v)=0, \forall \widetilde{q} \in P_{0 h}\right\},  \tag{33}\\
V=\left\{(q, v)=\left(\left[q_{1}, q_{2}\right],\left[v_{1}, v_{2}\right]\right):\left(q_{i}, v_{i}\right) \in W_{i}, i=1,2 ;\left.\left(q_{1}-q_{2}\right) \cdot n_{1}\right|_{\Gamma}=0 ;\right. \\
\left.\int_{\Omega_{1}} v_{1} d x=0 ; \sum_{i=1}^{2}\left(\left(q_{i}, \pi\right)_{i}-\left(\operatorname{div} \pi, v_{i}\right)_{i}\right)=0\right\}, \tag{34}
\end{gather*}
$$

For $q \in H\left(\operatorname{div} ; \Omega_{i}\right)$, let

$$
\begin{equation*}
\|q\|_{i}^{2}=(q, q)_{i}, i=1,2 \tag{35}
\end{equation*}
$$

it is clear that
Lemma 4.1. For $(q, v) \in W_{i}$ we have that

$$
\begin{equation*}
\|q\|_{i}=\|q\|_{H\left(\mathrm{div} ; \Omega_{i}\right)}, i=1,2 . \tag{36}
\end{equation*}
$$

Lemma 4.2. For $(q, v)=\left(\left[q_{1}, q_{2}\right],\left[v_{1}, v_{2}\right]\right) \in N,(\widetilde{q}, \widetilde{v})=\left(\left[\widetilde{q}_{1}, \widetilde{q}_{2}\right],\left[\widetilde{v}_{1}, \widetilde{v}_{2}\right]\right) \in V$ we have that

$$
\begin{equation*}
(q, \widetilde{q})=\left(q_{1}, \widetilde{q}_{1}\right)_{1}+\left(q_{2}, \widetilde{q}_{2}\right)_{2}=0 \tag{37}
\end{equation*}
$$

Proof. From $(\widetilde{q}, \widetilde{v}) \in V$ we have that $\left.\left(\widetilde{q}_{1}-\widetilde{q}_{2}\right) \cdot n_{1}\right|_{\Gamma}=0, \widetilde{q} \in Q_{h}$. Using (11) we know that there exist $\widetilde{q}_{11} \in Q_{1}^{0}, \widetilde{q}_{22} \in Q_{2}^{0}, g=\left[g_{1}, g_{2}\right] \in P_{0 h}$ such that

$$
\begin{equation*}
\widetilde{q}=\left[\widetilde{q}_{1}, \widetilde{q}_{2}\right]=\left[\widetilde{q}_{11}, 0\right]+\left[0, \widetilde{q}_{22}\right]+\left[g_{1}, g_{2}\right] . \tag{38}
\end{equation*}
$$

From the definition of $N$ and $W_{i}$ we have that

$$
\begin{gather*}
\left(q_{1}, g_{1}\right)_{1}+\left(q_{2}, g_{2}\right)_{2}-\left(\operatorname{div} g_{1}, v_{1}\right)_{1}-\left(\operatorname{div} g_{2}, v_{2}\right)_{2}=0,  \tag{39}\\
\operatorname{div} \widetilde{q}_{i}=\operatorname{div}\left(\widetilde{q}_{i i}+g_{i}\right)=0, i=1,2,  \tag{40}\\
\left(q_{i}, \widetilde{q}_{i i}\right)_{i}-\left(\operatorname{div} \widetilde{q}_{i i}, v_{i}\right)_{i}=0, i=1,2 . \tag{41}
\end{gather*}
$$

Summing (39) and (41), by (40) we know that (37) holds.
Let $S_{h}(\Omega) \in H_{0}^{1}(\Omega)$ denote the space of continuous, piecewise linear functions, $X_{h}=\left\{q \in Q_{h}: \operatorname{div} q=0\right\}$. We have ${ }^{[4]}$

Lemma 4.3. If $q \in X_{h}$ then there exists a scaler function $\psi \in S_{h}(\Omega)$ such that

$$
q=\operatorname{curl} \psi=\left(\frac{\partial \psi}{\partial x_{2}},-\frac{\partial \psi}{\partial x_{1}}\right) .
$$

Conversely, if $\psi \in S_{h}(\Omega)$, then $\operatorname{curl} \psi \in X_{h}$.
Lemma 4.4. There exist two constant $\sigma, \tau$, independent of $h$ such that

$$
\begin{equation*}
\sup _{(q, v) \in V} \frac{\left\|q_{2}\right\|_{2}^{2}}{\left\|q_{1}\right\|_{1}^{2}} \leq \sigma, \sup _{(q, v) \in V} \frac{\left\|q_{1}\right\|_{1}^{2}}{\left\|q_{2}\right\|_{2}^{2}} \leq \tau . \tag{42}
\end{equation*}
$$

Proof. From $(q, v) \in V$ and the definition of $V, W_{i}, i=1,2$ we have that $q \in Q_{h}$, $\operatorname{div} q=0, q \in X_{h}$. Using Lemma 4.3 we have that there exists $\psi_{0} \in S_{h}(\Omega)$ such that

$$
\begin{gather*}
q=\left[q_{1}, q_{2}\right]=\operatorname{curl} \psi_{0} \\
\left\|q_{1}\right\|_{1}^{2}=\int_{\Omega_{1}} q_{1} \cdot q_{1} d x=\int_{\Omega_{1}}\left(\operatorname{curl} \psi_{0}, \operatorname{curl} \psi_{0}\right) d x=\int_{\Omega_{1}}\left|\nabla \psi_{0}\right|^{2} d x \tag{43}
\end{gather*}
$$

Similarly $\left\|q_{2}\right\|_{2}^{2}=\int_{\Omega_{2}}\left|\nabla \psi_{0}\right|^{2} d x$.
Let $S_{h}^{0}\left(\Omega_{i}\right) \subset H_{0}^{1}\left(\Omega_{i}\right)$ denote the restriction of $S_{h}(\Omega)$ on $\Omega_{i}, i=1,2$, when $\omega \in$ $S_{h}^{0}\left(\Omega_{i}\right)$, it is clear that

$$
\left\{\begin{array}{l}
\text { divcurl } \omega=0 \\
\left.\operatorname{curl} \omega \cdot n\right|_{\partial \Omega_{i}}=-\left.\frac{\partial \omega}{\partial \tau}\right|_{\partial \Omega_{i}}=0 .
\end{array}\right.
$$

where $\frac{\partial}{\partial \tau}$ denotes the tangential derivative, therefore curl $\omega \in Q_{i}^{0}$. Since $(q, v) \in V$, $q=\operatorname{curl} \psi_{0}$, using the definition of $W_{i}$ and $V$, we have that

$$
\begin{aligned}
\left(\nabla \psi_{0}, \nabla \omega\right)_{i} & =\left(\operatorname{curl} \psi_{0}, \operatorname{curl} \omega\right)_{i}=(q, \operatorname{curl} \omega)_{i} \\
& =(q, \operatorname{curl} \omega)_{i}-(\operatorname{divcurl} \omega, v)_{i} \\
& =0, \forall \omega \in S_{h}^{0}\left(\Omega_{i}\right), i=1,2 .
\end{aligned}
$$

That means $\psi_{0}$ satisfies the condition of Theorem 1.2 of [2], from which we know that there exists a constant $\sigma$, independent of $h$ such that

$$
\begin{equation*}
\sup _{\psi \in S_{h}} \frac{\int_{\Omega_{2}}|\nabla \psi|^{2} d x}{\int_{\Omega_{1}}|\nabla \psi|^{2} d x} \leq \sigma, \tag{44}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\sup _{(q, v) \in V} \frac{\left\|q_{2}\right\|_{2}^{2}}{\left\|q_{1}\right\|_{1}^{2}} \leq \sup _{\psi \in S_{h}} \frac{\int_{\Omega_{2}}\left|\nabla \psi_{0}\right|^{2} d x}{\int_{\Omega_{1}}\left|\nabla \psi_{0}\right|^{2} d x} \leq \sigma . \tag{45}
\end{equation*}
$$

Similarly we can prove the second inequality.
Lemma 4.5. For function $(q, v)=\left(\left[q_{1}, q_{2}\right],\left[v_{1}, v_{2}\right]\right)$ we have that

$$
\begin{equation*}
\sup _{(q, v) \in N} \frac{\left\|q_{2}\right\|_{2}^{2}}{\left\|q_{1}\right\|_{1}^{2}} \leq \tau, \sup _{(q, v) \in N} \frac{\left\|q_{1}\right\|_{1}^{2}}{\left\|q_{2}\right\|_{2}^{2}} \leq \sigma \tag{46}
\end{equation*}
$$

where $\sigma, \tau$ are the same as those in Lemma 4.4.
Proof. $\operatorname{For}(q, v) \in N$ define $\left(q_{2}^{\prime}, v_{2}^{\prime}\right) \in Q_{2} \times M_{2}$ such that $\left.q_{2}^{\prime} \cdot n_{1}\right|_{\Gamma}=\left.q_{1} \cdot n_{1}\right|_{\Gamma}$ and

$$
\begin{align*}
\left(q_{1}, \pi\right)_{1}+\left(q_{2}^{\prime}, \pi\right)_{2}-(\operatorname{div} \pi, & \left.v_{1}-\left|\Omega_{1}\right|^{-1} \int_{\Omega_{1}} v_{1} d x\right)_{1}-\left(\operatorname{div} \pi, v_{2}^{\prime}\right)_{2}=0,  \tag{47}\\
\left(q_{2}^{\prime}, \widetilde{q}\right)_{2}-\left(\operatorname{div} \widetilde{q}, v_{2}^{\prime}\right)_{2}=0, & \forall \tilde{q} \in Q_{2}^{0},  \tag{48}\\
\left(\operatorname{div} q_{2}^{\prime}, \widetilde{v}\right)_{2}=0, & \forall \widetilde{v} \in M_{2} . \tag{49}
\end{align*}
$$

then $\left(\left[q_{1}, q_{2}^{\prime}\right],\left[v_{1}-\left|\Omega_{1}\right|^{-1} \int_{\Omega_{1}} v_{1} d x, v_{2}^{\prime}\right]\right) \in V$. Using Lemma 4.2 we have

$$
\begin{gather*}
\left\|q_{1}\right\|_{1}^{2}=\left(q_{1}, q_{1}\right)=-\left(q_{2}, q_{2}^{\prime}\right)_{2} \leq\left\|q_{2}\right\|_{2}\left\|q_{2}^{\prime}\right\|_{2}, \\
\frac{\left\|q_{1}\right\|_{1}^{2}}{\left\|q_{2}\right\|_{2}^{2}}=\frac{\left\|q_{1}\right\|_{1}^{4}}{\left\|q_{1}\right\|_{1}^{2} \cdot\left\|q_{2}\right\|_{2}^{2}}=\frac{\left\|q_{2}\right\|_{2}^{2} \cdot\left\|q_{2}^{\prime}\right\|_{2}^{2}}{\left\|q_{1}\right\|_{1}^{2} \cdot\left\|q_{2}\right\|_{2}^{2}}=\frac{\left\|q_{2}^{\prime}\right\|_{2}^{2}}{\left\|q_{1}\right\|_{1}^{2}} \leq \sigma . \tag{50}
\end{gather*}
$$

Then the second inequality in (46) holds. Similarly we can prove the first one.

## 5. Convergence Analyses

For the solution $\left(\sigma_{h}, u_{h}\right)$ of (5)-(6) it is easy to see that

$$
\begin{array}{r}
\left(\sigma_{h}, q\right)_{i}-\left(\operatorname{div} q, u_{h}\right)_{i}=0, \forall q \in Q_{i}^{0}, i=1,2, \\
\left(\operatorname{div} \sigma_{h}, v\right)_{i}=(f, v)_{i}, \forall q \in M_{i}, i=1,2, \\
\left(\sigma_{h}, q\right)_{1}-\left(\operatorname{div} q, u_{h}\right)_{1}+\left(\sigma_{h}, q\right)_{2}-\left(\operatorname{div} q, u_{h}\right)_{2}=0, \forall q \in P_{o h}, \tag{53}
\end{array}
$$

Let $q=\pi \in P_{o h}$ in (5) we have that

$$
\begin{equation*}
\left(\left(\sigma_{h}, \pi\right)_{1}-\left(\operatorname{div} \pi, u_{h}\right)_{1}\right)+\left(\left(\sigma_{h}, \pi\right)_{2}-\left(\operatorname{div} \pi, u_{h}\right)_{2}\right)=0 . \tag{54}
\end{equation*}
$$

Let $\pi_{i}^{n}=\sigma_{i}^{n}-\sigma_{h}, e_{i}^{n}=u_{i}^{n}-u_{h}, x \in \Omega_{i} ; \pi^{n}=\left[\pi_{1}^{n}, \pi_{2}^{n}\right], e^{n}=\left[e_{1}^{n}, e_{2}^{n}\right]$. Using (51)-(54) and (12)-(22) we get that

1) $\pi_{i}^{2 n} \in Q_{i}, e_{i}^{2 n} \in M_{i}, i=1,2$

$$
\begin{array}{r}
\left(\pi_{i}^{2 n}, q\right)_{i}-\left(\operatorname{div} q, e_{i}^{2 n}\right)_{i}=0, \forall q \in Q_{i}^{0}, \\
\left(\operatorname{div} \pi_{i}^{2 n}, v\right)_{i}=0, \forall v \in M_{i}, \\
\pi_{i}^{2 n} \cdot n_{1}=\theta_{2} \pi_{1}^{2 n-1} \cdot n_{1}+\left(1-\theta_{2}\right) \pi_{2}^{2 n-1} \cdot n_{1}, \\
\int_{\Omega} e_{1}^{2 n} d x=0, \\
\sum_{i=1}^{2}\left(\left(\pi_{i}^{2 n}, \pi\right)_{i}-\left(\operatorname{div} \pi, u_{i}^{2 n}\right)_{i}\right)=0, \tag{59}
\end{array}
$$

2) $\pi_{i}^{2 n+1} \in Q_{i}, e_{i}^{2 n+1} \in M_{i}, i=1,2$

$$
\begin{gather*}
\left(\pi_{i}^{2 n+1}, q\right)_{i}-\left(\operatorname{div} q, e_{i}^{2 n+1}\right)_{i}=0, \forall q \in Q_{i}^{0},  \tag{60}\\
\left(\operatorname{div} \pi_{i}^{2 n+1}, v\right)_{i}=0, \forall v \in M_{i},  \tag{61}\\
\left(\pi_{1}^{2 n+1}, q\right)_{1}-\left(\operatorname{div} q, e_{1}^{2 n+1}\right)_{1}=-\left[\left(\pi_{2}^{2 n+1}, q\right)_{2}-\left(\operatorname{div} q, e_{2}^{2 n+1}\right)_{2}\right] \\
=\theta_{1}\left[\left(\pi_{1}^{2 n}, q\right)_{1}-\left(\operatorname{div} q, e_{1}^{2 n}\right)_{1}\right]-\left(1-\theta_{1}\right)\left[\left(\pi_{2}^{2 n}, q\right)_{2}-\left(\operatorname{div} q, e_{2}^{2 n}\right)_{2}\right], \forall q \in P_{0 h} . \tag{62}
\end{gather*}
$$

Let $v=\operatorname{div} \pi_{i}^{2 n}$ in (56), $v=\operatorname{div} \pi_{i}^{2 n+1}$ in (61) we have that

$$
\begin{equation*}
\operatorname{div} \pi_{i}^{2 n}=\operatorname{div} \pi_{i}^{2 n+1}=0, i=1,2 . \tag{63}
\end{equation*}
$$

Similarly to the proof of Theorem 3.1 of [2], we can prove that:
Theorem 2. When $\theta_{1} \in\left(1-\frac{2(\tau+1)}{\sigma^{2} \tau+\tau+2}, 1\right), \theta_{2} \in\left(1-\frac{2(\sigma+1)}{\tau^{2} \sigma+\sigma+2}, 1\right)$, there exist two constants $k_{1}, k_{2} \in(0,1)$ such that

$$
\begin{equation*}
\left\|\pi^{2 n+2}\right\|^{2} \leq k_{1} k_{2}\left\|\pi^{2 n}\right\|^{2} \leq\left(k_{1} k_{2}\right)^{n+1}\left\|\pi^{0}\right\|^{2}, n \geq 0 \tag{64}
\end{equation*}
$$

$$
\begin{equation*}
\left\|\pi^{2 n+1}\right\|^{2} \leq k_{1} k_{2}\left\|\pi^{2 n-1}\right\|^{2} \leq\left(k_{1} k_{2}\right)^{n}\left\|\pi^{1}\right\|^{2}, n \geq 0 \tag{65}
\end{equation*}
$$

where $\left\|\pi^{j}\right\|=\left\|\pi_{1}^{j}\right\|_{1}+\left\|\pi_{2}^{j}\right\|_{2}^{2}$.
Proof. 1) From (55)-(59) we know that $\left(\pi^{2 n}, e^{2 n}\right) \in V$. Define $\left(\widetilde{\pi}_{1}^{2 n}, \widetilde{e}_{1}^{2 n}\right) \in W_{1}$ such that

$$
\begin{equation*}
\left(\widetilde{\pi}_{1}^{2 n}, q\right)_{1}-\left(\operatorname{div} q, \widetilde{e}_{1}^{2 n}\right)_{1}=-\left[\left(\pi_{2}^{2 n}, q\right)_{2}-\left(\operatorname{div} q, e_{2}^{2 n}\right)_{2}\right], \forall q \in P_{0 h} \tag{66}
\end{equation*}
$$

By (33) we know that $\left(\left[\widetilde{\pi}_{1}^{2 n}, \pi_{2}^{2 n}\right],\left[\widetilde{e}_{1}^{2 n}, e_{2}^{2 n}\right]\right) \in N$. Similarly we define $\left(\widetilde{\pi}_{2}^{2 n}, \widetilde{e}_{2}^{2 n}\right) \in$ $W_{2}$ such that $\left(\left[\tilde{\pi}_{1}^{2 n}, \tilde{\pi}_{2}^{2 n}\right],\left[\tilde{e}_{1}^{2 n}-\alpha^{2 n}, \tilde{e}_{2}^{2 n}\right]\right) \in V$; define $\left(\tilde{\pi}_{2}^{2 n+1}, \tilde{e}_{2}^{2 n+1}\right) \in W_{2}$ such that $\left(\left[\pi_{1}^{2 n+1}, \widetilde{\pi}_{2}^{2 n+1}\right],\left[e_{1}^{2 n+1}-\alpha^{2 n+1}, \tilde{e}_{2}^{2 n+1}\right]\right) \in V$; define $\left(\widetilde{\pi}_{1}^{2 n+1}, \widetilde{e}_{1}^{2 n+1}\right) \in W_{1}$ such that $\left(\left[\tilde{\pi}_{1}^{2 n+1}, \pi_{2}^{2 n+1}\right],\left[e_{1}^{2 n+1}, e_{2}^{2 n+1}-\alpha\right]\right) \in V$, where the constants $\alpha^{2 n}, \alpha^{2 n+1}, \alpha$ are determined by using the definition of $V$.
2) From (61)-(64) we know taht $\widetilde{\pi}_{1}^{2 n+1}=\pi_{1}^{2 n+1}-\left(\theta_{1} \pi_{1}^{2 n}+\left(1-\theta_{1}\right) \widetilde{\pi}_{1}^{2 n}\right) \in Q_{1}$, $\tilde{\widetilde{e}}_{1}^{2 n+1}=e_{1}^{2 n+1}-\left(\theta_{1} e_{1}^{2 n}+\left(1-\theta_{1}\right) \widetilde{e}_{1}^{2 n}\right) \in M_{1}$,

$$
\begin{aligned}
\left(\widetilde{\widetilde{\pi}}_{1}^{2 n+1}, q\right)_{1}-\left(\operatorname{div} q, \widetilde{\widetilde{e}}_{1}^{2 n+1}\right)_{1}=0, & \forall q \in Q_{1}, \\
\left(\operatorname{div} \widetilde{\widetilde{\pi}}_{1}^{2 n+1}, v\right)_{1}=0, & \forall v \in M_{1} .
\end{aligned}
$$

By Lemma 3.1 we have $\widetilde{\pi}_{1}^{2 n+1}=0,\left[\pi_{1}^{2 n+1}, \pi_{2}^{2 n}\right]=\theta_{1}\left[\pi_{1}^{2 n}, \pi_{2}^{2 n}\right]+\left(1-\theta_{1}\right)\left[\widetilde{\pi}_{1}^{2 n}, \pi_{2}^{2 n}\right]$. Using the method of Zhang and Huang ${ }^{[2]}$ and Lemma 4.2-Lemma 4.4 we can prove that

$$
\begin{gather*}
\left\|\pi^{2 n+1}\right\|_{1}^{2} \leq k_{1}\left\|\pi^{2 n}\right\|_{1}^{2}  \tag{67}\\
k_{1}=\left[\left(1-\theta_{1}\right)^{2}\left(\sigma^{2} \tau+\tau+2\right)-2\left(1-\theta_{1}\right)(\tau+1)+\tau\right] \tau^{-1} . \tag{68}
\end{gather*}
$$

Similarly we can get that

$$
\begin{gather*}
\left\|\pi^{2 n+2}\right\|_{1}^{2} \leq k_{2}\left\|\pi_{1}^{2 n+1}\right\|_{1}^{2},  \tag{69}\\
\left\|\pi^{2 n+2}\right\|_{2}^{2} \leq k_{2}\left\|\widetilde{\pi}_{2}^{2 n+1}\right\|_{2}^{2},\left\|\widetilde{\pi}^{2 n+1}\right\|_{2}^{2} \leq k_{1}\left\|\pi_{2}^{2 n}\right\|_{2}^{2},  \tag{70}\\
k_{2}=\left[\left(1-\theta_{2}\right)^{2}\left(\sigma \tau^{2}+\sigma+2\right)-2\left(1-\theta_{2}\right)(\sigma+1)+\sigma\right] \sigma^{-1} \tag{71}
\end{gather*}
$$

From (68)-(70) we know that (64) holds. Similarly we can prove that (65) holds.
Remark: When $\theta_{1}=\frac{\sigma^{2} \tau+1}{\sigma^{2} \tau+\tau+2}, \theta_{2}=\frac{\tau^{2} \sigma+1}{\tau^{2} \sigma+\sigma+2}$ we have $k_{1}=\frac{\sigma^{2} \tau^{2}-1}{\sigma^{2} \tau^{2}+\tau^{2}+2 \tau}$, $k_{2}=\frac{\sigma^{2} \tau^{2}-1}{\tau^{2} \sigma^{2}+\sigma^{2}+2 \sigma}$, which take their minimum values. In practical computation, the values of $\theta_{1}, \theta_{2}$ can be determined by using of the computational results(see [2], [6]).

## 6. Numerical Example

Consider the following problem

$$
\begin{equation*}
-\triangle u=f, r \min \Omega, \frac{\partial u}{\partial n}=g, \operatorname{on} \partial \Omega \tag{72}
\end{equation*}
$$

where $\Omega=(0,2 \pi) \times(0, \pi), f, g$ have been chosen in such a way that the exact solution is $u=\sin x \sin y$. We use a uniform mesh with $10 \times 5,20 \times 10$ elementary squares $(h=0.2 \pi$ and $h=0.1 \pi$ respectively). Decompose the domain into $\Omega_{1}=(0,0.8 \pi) \times(0, \pi), \Omega_{2}=$ $(0.8 \pi, 2 \pi) \times(0, \pi)$, using the algorithm given in Section 2 . The error $E_{\sigma}, E_{u}$, denoting $L^{2}$ error for $\sigma$ and $u$ respectively, are depicted in the following table.

|  | $h=0.1 \pi$ |  | $h=0.2 \pi$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $E_{\sigma}$ | $E_{u}$ | $E_{\sigma}$ | $E_{u}$ |
| $\mathrm{n}=0$ | 2.82 |  | 2.78 |  |
| $\mathrm{n}=1$ | 0.437 | 0.07 | 0.235 | 0.047 |
| $\mathrm{n}=2$ | 0.093 | 0.017 | 0.088 | 0.021 |
| $\mathrm{n}=3$ | 0.017 | 0.007 | 0.051 | 0.008 |

Acknowledgement: The author wish to thank Professor Yuan Yirang for his guidance and helpful suggestion.

## References

[1] Zhang Sheng, Huang hongci, The parallel iterative domain decomposition method for elliptic equation-the more subdomains case. Scientia Sinica(A), 1991, 1233-1241.
[2] Zhang Sheng, Huang hongci, A parallel iterative domain decomposition method for elliptic equation-two subdomains case, Mathematica Numerica Sinica, 1992, 240-248.
[3] R. Glowinski and M.F. Wheeler, Domain decomposition and mixed finite element methods, in First International Symposium on Domain Decomposition Methods for Partial Differential Equations(eds.R.Glowinski and others)SIAM, Philadelphia, 1988, 144-172.
[4] T.P. Mathew, Schwarz alternating and iterative refinement method for mixed formulation of elliptic problems, Part II: convergence and theory, Numer. Math., 65(1993), 469-492.
[5] P.A. Raviart and J.M. Thomas, A mixed finite element method for second order elliptic problems, Lecture Notes in Mathematics 606, 292-315.
[6] L.D. Marini and A. Quarteroni, A iterative procedure for domain decomposition methods: a finite element approach, in First International Symposium on Domain Decomposition Methods for Partial Differential Equations (eds. R.Glowinski and others) SIAM, Philadelphia, 1988, 129-143.


[^0]:    * Received March 16, 1994.
    ${ }^{1)}$ This work is supported by Natural Science Foundation of Shandong Province and National Natural Science Foundation of China.

