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Abstract

The stability of symplectic algorithms is discussed in this paper. There are

following conclusions.

1. Symplectic Runge-Kutta methods and symplectic one-step methods with

high order derivative are unconditionally critically stable for Hamiltonian systems.

Only some of them are A-stable for non-Hamiltonian systems. The criterion of

judging A-stability is given.

2. The hopscotch schemes are conditionally critically stable for Hamiltonian

systems. Their stability regions are only a segment on the imaginary axis for

non-Hamiltonian systems.

3. All linear symplectic multistep methods are conditionally critically stable

except the trapezoidal formula which is unconditionally critically stable for Hamil-

tonian systems. Only the trapezoidal formula is A-stable, and others only have

segments on the imaginary axis as their stability regions for non-Hamiltonian sys-

tems.

1. Fundamental Definitions

Lemma 1. The solution of a linear ordinary differential equation with constant

coefficient Ẏ = AY is stable if all eigenvalues of A have nonpositive real parts and the

eigenvalues with null real part are single roots of the minimal polynomial.

The linear Hamiltonian system can be denoted as Ż = JSZ where Z = ( p̧q) , J =

(¸̧0 − EE0) , and the Hamiltonian function H(z) = z′sz2.

Lemma 2. The solutions of linear Hamiltonian systems are critically stable if all

eigenvalues of JS have null real part and are single roots of the minimal polynomial.

Definition 1. When the model equation Ẏ = AY is solved using a numerical

method, the method is A-stable if its stability region involves the whole left half plane.

Definition 2. When the linear Hamiltonian system Ż = JSZ is solved using

a one-step method, the one-step method is critically stable if all eigenvalues of the

amplification matrix have module 1 and are single roots of the minimal polynomial.
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Definition 3. When the linear Hamiltonian system Ż = JSZ is solved using a

multistep method, the multistep method is critically stable if all roots of the character-

istic equation are on the unit circle and are single roots.

2. The Stability of One-Step Symplectic Algorithms

When the one-step symplectic algorithms (such as symplectic Runge-Kutta meth-

ods, the one-step symplectic methods with higher order derivative) are used to solved

the model equation Ẏ = AY , in most cases the characteristic equation always has the

following form[1−2]:

ξ(µ) = P (µ)P (−µ)

where µ = hλ, λ stands for the eigenvalues of the matrix A and P is a polynomial with

real coefficient.

Theorem 1. The one-step method is unconditionally critically stable if the corre-

sponding characteristic equation can be expressed as ξ(µ) = P (µ)P (−µ).

Proof. When λ = iy, we have

ξ = P (µ)P (−µ) = P (ihy)P (−ihy) = P (ihy)P (ihy) = P (ihy)P̄ (ihy)

and

ξ = P̄ (ihy)P̄ (−ihy) = P̄ (ihy)P (ihy).

Therefore ξ · ξ = 1. The above relationship holds as long as λh is on the imaginary

axis, so there is no restriction on h.

Theorem 2. If all poles of ξ(w) are on the right half plane, then the corresponding

one-step symplectic method is A-stable.

Proof. .Unconditional critical stability means ξ = P (µ)P (−µ) = 1 as long as

µ = λh = iyh, where −∞ < y < ∞.

If all poles of ξ are on the right half plane, then ξ is an analytical function on the

left half plane. According to the maximum module principle we have ξ(µ) < 1 as long

as Re(µ) < 0.

Example 1. The midpoint formula yn+1 = yn + hf(yn + yn+12) and trapezoidal

formula yn+1 = yn + h2(f(yn) + f(yn+1)) have the same characteristic equation ξ =

1 + µ1 − µ, so they are unconditionally critically stable and A-stable. The symplectic

schemes, whose characteristic equations are diagonal Pade approximation, are the same

(such as s-stage Runge-Kutta methods with order 2s + 2).

Example 2. The composite symplectic schemes of order 4.[3]
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where c1 = 12 − 2
1
3 , c2 = −2

1
3 2 − 2

1
3 , have a characteristic equation ξ = {(1+ c1µ)(1+

c2µ)(1+c1µ)}{(1−c1µ)(1−c2µ)(1−c1µ)}−1 and a pole 2 − 2
1
3−2

1
3 which is on the left

half plane, so they are not A-stable and have an unstability region around the point

2 − 2
1
3−2

1
3 .

3. The Hopscotch Schemes for Separable Hamiltonian Systems[4−6]

The separable Hamiltonian systems extensively arise in astronomical mechanics,

so research of the numerical methods for them is significant. Because the hopscotch

schemes are explicit, they have important practical value. For separable linear Hamil-

tonian systems

ddt ( p̧q) = (¸̧0 − uv0) ( p̧q) ,

where u′ = u, v′ = v, the characteristic equation of the coefficient matrix is

| ¸̧λEuvλE| = |λE + uv| = 0.

If T−1uvT = diag(K1, · · · ,Kn), Ki > 0 and they are different from each other, then

the eigenvalues of the coefficient matrix are λi = ±i
√

k. It follows that the solutions of

the separable linear Hamiltonian systems are critically stable. The fundamental form

of a hopscotch scheme is

( p̧k+1qk+1) =
(

¸̧I − huhvI − h2uv
)

( p̧kqk) .

The characteristic equation of the amplification matrix may be expressed as
∣

∣

∣ ¸̧(λ − 1)Ehu − hv(λ − 1)E + h2uv
∣

∣

∣ = |λ2E − λ(2E − h2uv) + E| = 0.

We have λi = 12(2−h2ki±h
√

ki(h2ki − 4)). When h2ki > 4, the eigenvalues λi1, λi2

are a couple of real roots and λi1λi2 = 1, so the method is unstable. When h2ki < 4,

the eigenvalues λi are a couple of conjugate imaginary roots and have module 1, so the

method is conditionally critically stable. The stability region of the method is shown

in Fig.1 and Fig.2.

4. Multistep Symplectic Methods

Three classes of linear symplectic multistep methods are shown in [7].

1. Implicit linear symplectic k(even)-step methods of order k+2 (optimal methods).

Some examples are as follows:

l lk = 2, yn+2−yn = h(2fn+1−13∇2fn+2) Milne-Simpson formulak = 4, yn+4−yn = h(4fn+2+83∇2fn+3+14

2. Explicit linear symplectic k(even)-step methods of order k. Some examples are

below:

l lk = 2, yn+2−yn = 2hfn+1 leap-frog formulak = 4, yn+4−yn = h(4fn+2+83∇2fn+3)k = 6, yn+6−yn+5+yn
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3. Implicit linear symplectic k(odd)-step methods of order k+1. Some examples

are as follows:

l lk = 1, yn+1−yn = h2(fn+1+fn) trapeizoidal formula, k = 3, yn+3−yn+2+yn+1−yn = h12(5fn+3+7fn+2+7

Theorem 3. The linear symplectic multistep methods are critically stable.

Proof. Theorem 3 in [7] shows that there exists an interval D : [−hi, hi] on the

imaginary axis of λh-plane such that all roots of the characteristic equation of linear

symplectic multistep methods lie on the circle ξ = 1 as long as λh ∈ D. This means

the conclusion of our theorem holds.
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Fig. 4.Fig. 3.

Theorem 4. All linear symplectic multistep methods are conditionally critically

stable except the trapezoidal formula and their stability regions are only segments sym-

metric to the null point. The trapezoidal formula is unconditionally critically stable and

A-stable.

Proof. First we prove that unconditionally critically stable linear multistep meth-

ods are A-stable. Let

r(z) = (1 − z)kρ(1 + z1 − z) =
k

∑

i=1

aiz
i, s(z) = (1 − z)kσ(1 + z1 − z) =

k
∑

i=1

biz
i.

If the linear multistep method M(ρ, σ) is unconditionally critically stable, all the roots

of the characteristic equation corresponding to infinity on the λh plane, are on the
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unit circle of ξ plane. i.e., all null points of s(z) are on the imaginary axis of z-plane

and r(z) are the same (because all roots of ρ(ξ) are on the unit circle). Because r(z)

and s(z) are polynomials with real coefficients, their roots are conjugate. We conclude

that ai ≥ 0, bi ≥ 0 (i = 1, 2, · · · , k). The multistep method M(ρ, σ) is unconditionally

critically stable, thus all roots of the characteristic equation corresponding to all points

on the imaginary axis of λh-plane are on the imaginary axis of the z-plane and all

poles of r(z)s(z) are the same. If Re z 6= 0, r(z)s(z) is analytic and Re r(z)s(z) 6= 0. It

follows that Re(r(z)s(z)) has the same sign when Rez > 0. Since ai ≥ 0 and bi ≥ 0, we

have Re(r(z)s(z)) > 0, i.e., when |ξ| > 0, Re(ρ(ξ)σ(ξ)) > 0. This means A-stability.

It has been shown by Dahlquist [8] that an explicit linear multistep method cannot

be A-stable and the order of an A-stable linear multistep method cannot exceed 2.

Therefore all linear symplectic multistep methods are conditionally critically stable

except the trapezoidal formula and their stability regions are only segments symmetric

to the null point.

Example. 1. The stability region of the leap-frog formula is shown in Fig.3.

2. The stability region of Milne-Simpson formula is shown in Fig.4.
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