ON THE SPLITTINGS FOR RECTANGULAR SYSTEMS*

H.J. Tian
(Department of Mathematics, Shanghai Normal University, Shanghai, China)

Abstract

Recently, M. Hanke and M. Neumann ${ }^{[4]}$ have derived a necessary and sufficient condition on a splitting of $A=U-V$, which leads to a fixed point system, such that the iterative sequence converges to the least squares solution of minimum 2-norm of the system $A x=b$. In this paper, we give a necessary and sufficient condition on the splitting such that the iterative sequence converges to the weighted MoorePenrose solution of the system $A x=b$ for every $x_{0} \in C^{n}$ and every $b \in C^{m}$. We also provide a necessary and sufficient condition such that the iterative sequence is convergent for every $x_{0} \in C^{n}$.

1. Introduction

It is well-known that the most prevalent approach for obtaining a fixed point system of the following system

$$
\begin{equation*}
A x=b, \quad A \in C^{m \times n} \tag{1.1}
\end{equation*}
$$

is via a splitting of the coefficient matrix A into

$$
\begin{equation*}
A=U-V \tag{1.2}
\end{equation*}
$$

If $m=n$ and U is nonsingular, we present the equivalent formulation of (1.1) by

$$
\begin{equation*}
x=U^{-1} V x+U^{-1} b \tag{1.3}
\end{equation*}
$$

If $m \neq n$ or if U is not invertible, we can, by taking a generalized inverse U^{-}of U (instead of U^{-1}), extend (1.3) by considering the fixed point system

$$
\begin{equation*}
x=U^{-} V x+U^{-} b \tag{1.4}
\end{equation*}
$$

Generalized inverses of matrices play a key role in our present work. It is instructive for our purposes to think of reflexive inverses as weighted Moore-Penrose inverses and to call the corresponding solution which induce weighted Moore-Penrose solution. In section 2 , we summarize preliminary results from the literature on generalized inverses

[^0]which are most relevant to this paper briefly. In section 3 , we derive a necessary and sufficient condition for a splitting (1.2) to yield a fixed point iterative scheme such that the limit point \bar{x} is a weighted Moore-Penrose solution to (1.1). In section 4, we provide a necessary and sufficient condition such that the iterative sequence is convergent for every $x_{0} \in C^{n}$ and every $b \in C^{m}$. In section 5 , a numerical experiment is presented to illustrate the performance of the splitting.

2. Preliminary and Background Results

Let $A \in C^{m \times n}$ and suppose $X \in C^{n \times m}$. Then X is called a reflexive inverse of A if

$$
\begin{equation*}
A X A=A \quad \text { and } \quad X A X=X \tag{2.1}
\end{equation*}
$$

Given a subspace $R \subseteq C^{n}$ which is complementary to $N(A)$ and a subspace $N \subseteq C^{m}$ which is complementary to $R(A)$, then there exists a unique reflexive inverse X of A such that

$$
\begin{equation*}
R(X)=R \quad \text { and } \quad N(X)=N \tag{2.2}
\end{equation*}
$$

and conversely, if X is a reflexive inverse of A, then $R(X)$ and $N(X)$ are complementary subspace of $N(A)$ and $R(A)$. In the following we shall use $R(\mathrm{~A})$ and $N(\mathrm{~A})$ to denote the range and the nullspace of a matrix A. Accordingly we write $A_{R, N}^{-}:=X$. It is known that

$$
\begin{equation*}
A_{R, N}^{-} A=P_{R, N(A)} \quad \text { and } \quad A A_{R, N}^{-}=P_{R(A), N} \tag{2.3}
\end{equation*}
$$

where $P_{R, N(A)}$ and $P_{R(A), N}$ denote the projectors on R along $N(A)$ and on $R(A)$ along N, respectively.

With any reflexive inverse X of A one can associate two vector norms, one in C^{n} and one in C^{m}, as follows:

$$
\|x\|_{R, N(A)}:=\left(\left\|P_{R, N(A)} x\right\|_{2}^{2}+\left\|\left(I-P_{R, N(A)}\right) x\right\|_{2}^{2}\right)^{1 / 2}, \forall x \in C^{n}
$$

and

$$
\|y\|_{R(A), N}:=\left(\left\|P_{R(A), N} y\right\|_{2}^{2}+\left\|\left(I-P_{R(A), N}\right) y\right\|_{2}^{2}\right)^{1 / 2}, \forall y \in C^{m} .
$$

Due to the finite dimensional setting which we work in, for any vector $b \in C^{m}$ the set

$$
\begin{equation*}
\delta_{b}:=\left\{\bar{x} \in C^{n}:\|b-A \bar{x}\|_{R(A), N}=\inf _{x \in C^{n}}\|b-A x\|_{R(A), N}\right\} \neq \phi \tag{2.4}
\end{equation*}
$$

and the vector $\bar{z}:=A_{R, N}^{-} b$ has the following properties:

$$
\begin{equation*}
\bar{z} \in \delta_{b} \text { and }\|\bar{z}\|_{R, N(A)}=\min _{\bar{x} \in \delta_{b}}\|\bar{x}\|_{R, N(A)} \tag{2.5}
\end{equation*}
$$

Therefore we can interpret any reflexive inverse as a weighted Moore-Penrose inverse and vice versa \bar{z} as a weighted Moore-Penrose solution to the system $A x=b$.

We next mention some choices of R and N which correspond to reflexive inverses that are frequently used in applications and in the literature. First,suppose that $N=$
$N\left(A^{*}\right)=R(A)^{\perp}$ and $R=R\left(A^{*}\right)=N(A)^{\perp}$,then $\bar{z}=A_{R\left(A^{*}\right), N\left(A^{*}\right)}^{-} b$ is the least-squares solution of minimum 2-norm of the system $A x=b$ and $A_{R\left(A^{*}\right), N\left(A^{*}\right)}^{-}$is the familiar Moore-Penrose inverse of A which is usually denoted by A^{+}. Let P, Q are definite matrices of order m and order n, respectively. If $N=P^{-1} N\left(A^{*}\right)$ and $R=Q^{-1} R\left(A^{*}\right)$, then $\bar{z}=A_{Q^{-1} R\left(A^{*}\right), P^{-1} N\left(A^{*}\right)}^{-} b$ is the least-squares (P) solution of minimum-norm (Q) of the system $A x=b$ and $A_{Q^{-1} R\left(A^{*}\right), P^{-1} N\left(A^{*}\right)}^{-}$is always denoted as $A_{P, Q}^{+}$.

A more specialized generalized inverse for a matrix can be defined when the matrix is square.

Let $A \in C^{n \times n}$ and let $\operatorname{index}(A)$ be the smallest nonnegative integer l such that $N\left(A^{l}\right)=N\left(A^{l+1}\right)$. Then there exists a unique matrix $X \in C^{n \times n}$, called the Drazin inverse of A and represented as A^{D}, that satisfies the following matrix equations

$$
\begin{equation*}
X A X=X, \quad A X=X A \quad \text { and } \quad X A^{j+1}=A, \quad \forall j \geq \operatorname{index}(A) . \tag{2.6}
\end{equation*}
$$

When $\operatorname{index}(A) \leq 1$, or, equivalently, when $R(A) \oplus N(A)=C^{n}$, then A^{D} is a reflexive inverse of A. This reflexive inverse is called in the literature the group inverse of A and denoted by A_{g}. It should be noted that A_{g} is simply $A_{R(A), N(A)}^{-}$.

Definition 2.1. Let A have a splitting (1.2). Given subspaces $T, \widetilde{T} \subseteq C^{n}$ and subspaces, $\widetilde{S} \subseteq C^{m}$, such that $T \oplus R(A)=C^{m}, \widetilde{T} \oplus R(U)=C^{m}, S \oplus N(A)=C^{n}$ and $\widetilde{S} \oplus N(U)=C^{n}$. Then the splitting (1.2) is called subproper if

$$
\begin{equation*}
T \subseteq \widetilde{T}, \widetilde{S} \subseteq S \tag{2.7}
\end{equation*}
$$

and it is called proper if equalities hold in (2.7).

3. Proper Splitting

In this section we are interested in semiiterative methods which converge to the weighted Moore-Penrose solution to the system (1.1). The following theorem forms the main result of this section.

Theorem 3.1. Let $A \in C^{m \times n}$ have a splitting (1.2). Given subspaces $T, \widetilde{T} \subseteq C^{n}$ and subspaces $S, \widetilde{S} \subseteq C^{m}$ such that $T \oplus R(A)=C^{m}, \widetilde{T} \oplus R(U)=C^{m}, S \oplus N(A)=$ C^{n} and $\widetilde{S} \oplus N(U)=C^{n}$. Then the sequence of iterates

$$
\begin{equation*}
x_{k}=U_{\widetilde{T}, \widetilde{S}}^{-} V x_{k-1}+U_{\widetilde{T}, \widetilde{S}}^{-} b \tag{3.1}
\end{equation*}
$$

converges to the weighted Moore-Penrose solution $A_{T, S}^{-} b \in C^{n}$ for every $x_{0} \in C^{n}$ and every $b \in C^{m}$ if and only if

$$
\begin{equation*}
\rho\left(U_{\widetilde{T}, \widetilde{S}}^{-} V\right)<1 \tag{3.2}
\end{equation*}
$$

holds and the splitting (1.2) is proper.

Proof. Assume (3.2) holds. Since $\rho\left(U_{\widetilde{T}, \widetilde{S}}^{-} V\right)<1$, then $I-U_{\widetilde{T}, \widetilde{S}}^{-} V$ is nonsingular. Since $T=\widetilde{T}, S=\widetilde{S}$, then

$$
\begin{aligned}
\left(I-U_{\widetilde{T} \widetilde{S}}^{-} V\right) A_{T, S}^{-} & =A_{T, S}^{-}-U_{\widetilde{T} \widetilde{S}}^{-} V A_{T, S}^{-} \\
& =A_{T, S}^{-}-U_{\widetilde{T} \widetilde{S}}^{-} U A_{T, S}^{-}+U_{\widetilde{T} \widetilde{S}}^{-} A A_{T, S} \\
& =A_{T, S}^{-}-A_{T, S}^{-}+U_{\widetilde{T} \widetilde{S}}^{-} \\
& =U_{\widetilde{T} \widetilde{S}}^{-}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left(I-U_{\widetilde{T} \widetilde{S}}^{-} V\right)^{-1} U_{\widetilde{T} \widetilde{S}}^{-}=A_{T, S}^{-} \tag{3.3}
\end{equation*}
$$

From (3.1)it is easily proven by induction that

$$
\begin{equation*}
x_{k}=\left(U_{\widetilde{T} \widetilde{S}}^{-} V\right)^{k} x_{0}+\sum_{j=0}^{k-1}\left(U_{\widetilde{T}, \widetilde{S}}^{-} V\right)^{j} U_{\widetilde{T}, \widetilde{S}}^{-} b . \tag{3.4}
\end{equation*}
$$

From $\rho\left(U_{\widetilde{T}, \widetilde{S}}^{-} V\right)<1$ and (3.4), it follows that $\left(U_{\widetilde{T}, \widetilde{S}}^{-} V\right)^{k} \rightarrow 0$ and

$$
\lim _{k \rightarrow \infty} x_{k}=\left(I-U_{\widetilde{T}, \widetilde{S}}^{-} V\right)^{-1} U_{\widetilde{T}, \widetilde{S}}^{-} b=A_{T, S}^{-} b .
$$

Assume the sequence $\left\{x_{k}\right\}_{0}^{\infty}$ with respect to (3.1) converges to the weighted MoorePenrose solution $A_{T, S}^{-} b$ independently of the initial vector x_{0} and b, we must have $\rho\left(U_{\widetilde{T}, \widetilde{S}}^{-} V\right)<1$ and

$$
\begin{equation*}
A_{T, S}^{-}=\left(I-U_{\widetilde{T}, \widetilde{S}}^{-} V\right)^{-1} U_{\widetilde{T}, \widetilde{S}}^{-} \tag{3.5}
\end{equation*}
$$

Since

$$
\left(I-U_{\widetilde{T}, \widetilde{S}}^{-} V\right) U_{\widetilde{T}, \widetilde{S}}^{-}=U_{\widetilde{T}, \widetilde{S}}^{-}\left(I-V U_{\widetilde{T}, \widetilde{S}}^{-}\right)
$$

then

$$
\begin{equation*}
A_{T, S}^{-}=\left(I-U_{\widetilde{T} \widetilde{S}}^{-} V\right)^{-1} U_{\widetilde{T} \widetilde{S}}^{-}=U_{\widetilde{T} \widetilde{S}}^{-}\left(I-V U_{\widetilde{T} \widetilde{S}}^{-}\right)^{-1} \tag{3.6}
\end{equation*}
$$

From (3.6), it immediately follows that

$$
\begin{aligned}
& T=R\left(A_{T, S}^{-}\right)=R\left(U_{\widetilde{T} \widetilde{S}}^{-}\right)=\widetilde{T} \\
& S=N\left(A_{T, S}^{-}\right)=N\left(U_{\widetilde{T} \widetilde{S}}^{-}\right)=\widetilde{S} .
\end{aligned}
$$

This completes the proof of this theorem.
Corollary 3.2. ${ }^{[4]}$ Let $A=U-V$ be a splitting of $A \in C^{m \times n}$. Then the sequence of iterates

$$
\begin{equation*}
x_{k}=U^{+} V x_{k-1}+U^{+} b \tag{3.7}
\end{equation*}
$$

converges to $A^{+} b$ for every $b \in C^{m}$ and from every $x_{o} \in C^{n}$ if and only if

$$
\begin{equation*}
\rho\left(U^{+} V\right)<1, \quad N(A)=N(U) \quad \text { and } \quad R(A)=R(U) \tag{3.8}
\end{equation*}
$$

Corollary 3.3. Let $A=U-V$ be a splitting for $A \in C^{m \times n}$. Let P and Q be definite matrices with order m and order n, respectively. Then the following sequence of iterates

$$
\begin{equation*}
x_{k}=U_{P, Q}^{+} V x_{k-1}+U_{P, Q}^{+} b \tag{3.9}
\end{equation*}
$$

converges to $A_{P, Q}^{+} b$ for every $b \in C^{m}$ and from every $x_{o} \in C^{n}$ if and only if

$$
\begin{equation*}
\rho\left(U_{P, Q}^{+} V\right)<1, \quad R(A)=R(U) \quad \text { and } \quad N(A)=N(U) \tag{3.10}
\end{equation*}
$$

Corollary 3.4. Let $A=U-V$ be a splitting for $A \in C^{n \times n}$ with $\operatorname{index}(A)=1$. Then the sequence of iterates

$$
\begin{equation*}
x_{k}=U_{g} V x_{k-1}+U_{g} b \tag{3.11}
\end{equation*}
$$

converges to $A_{g} b$ for every $b \in C^{n}$ and from every $x \in C^{n}$ if and only if

$$
\begin{equation*}
\rho\left(U_{g} V\right)<1, \quad R(A)=R(U) \quad \text { and } \quad N(A)=N(U) \tag{3.12}
\end{equation*}
$$

4. Subproper Splitting

In this section we will discuss the convergence of (3.1) in the case when (1.2) is a subsplitting.

Theoremm 4.1. Let (1.2) be subproper as Definition 2.1. Then the iterative sequence $\left\{x_{k}\right\}_{0}^{\infty}$ generated by (3.1) is convergent for every $x_{0} \in C^{n}$ if and only if the iteration matrix $U_{\widetilde{T} \widetilde{S}}^{=} V$ is semiconvergent, i.e.

$$
\begin{gather*}
\rho\left(U_{\widetilde{T}, \widetilde{S}}^{-} V\right) \leq 1 \tag{i}\\
\lambda \in \delta\left(U_{\widetilde{T}, \widetilde{S}}^{-} V\right) \quad \text { and } \quad|\lambda|=1 \Longrightarrow \lambda=1 \quad \text { and } \tag{ii}\\
\operatorname{index}\left(I-U_{\widetilde{T}, \widetilde{S}}^{-} V\right) \leq 1 \tag{iii}
\end{gather*}
$$

Proof. From (3.1), we have

$$
x_{k}=\left(U_{\widetilde{T}, \widetilde{S}}^{-} V\right)^{k} x_{0}+\sum_{j=0}^{k-1}\left(U_{\widetilde{T}, \widetilde{S}}^{-} V\right)^{j} U_{\widetilde{T}, S} \widetilde{S}
$$

Since $T \subseteq \widetilde{T}$ and $\widetilde{S} \subseteq S$, then $\left(I-U_{\widetilde{T}, \widetilde{S}}^{-} V\right) A_{T, S}^{-}=U_{\widetilde{T}, \widetilde{S}}^{-}$. Thus

$$
\begin{align*}
\sum_{j=0}^{k-1}\left(U_{\widetilde{T}, \widetilde{S}}^{-} V\right)^{j} U_{\widetilde{T}, \widetilde{S}}^{-} b & =\sum_{j=0}^{k-1}\left(U_{\widetilde{T}, \widetilde{S}}^{-} V\right)^{j}\left(I-U_{\widetilde{T}, \widetilde{S}}^{-} V\right) A_{T, S}^{-} b \\
& =\left(I-\left(U_{\widetilde{T}, \widetilde{S}}^{-} V\right)^{k}\right) A_{T, S}^{-} b \tag{4.1}
\end{align*}
$$

Therefore

$$
\begin{equation*}
x_{k}-A_{T, S}^{-} b=\left(U_{\widetilde{T}, \widetilde{S}}^{-} V\right)^{k}\left(x_{0}-A_{T, S}^{-} b\right) \tag{4.2}
\end{equation*}
$$

It follows that, from (4.2), a necessary and sufficient condition for the scheme (3.1) to converge from any initial vector x_{0} is that the iteration matrix $U_{\widetilde{T}, \widetilde{S}} V$ is semiconvergent.

If the splitting (1.2) is subproper and the iteration matrix is semiconvergent, then the iteration (3.1) will converge to

$$
\left(I-U_{\widetilde{T}, \widetilde{S}}^{-} V\right)_{g} U_{\widetilde{T}, \widetilde{S}}^{-} b+\left[I-\left(I-U_{\widetilde{T}, \widetilde{S}}^{-} V\right)\left(I-U_{\widetilde{T}, \widetilde{S}} \overline{ } V\right)_{g}\right] x_{0}
$$

5. Numerical Experiment

We illustrate the performance of the splitting with respect to the minimum-norm (Q) least-squares (P) solution to (1.1). Let

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
-1 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right], b=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \\
& P=\left[\begin{array}{ll}
0 & 1 \\
0 & 2 \\
0 & 3
\end{array}\right], Q=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
\end{aligned}
$$

In this case the minimum-norm (Q) least-squares (P) solution of the system $A x=b$ is

$$
x=\left[\begin{array}{c}
\frac{10}{3} \\
\frac{26}{3}
\end{array}\right]
$$

Let

$$
A=U-V=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]-\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
1 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right]
$$

be a splitting for A. Using this splitting, after $k=150$ iterative computations, we obtain the computed result

$$
x_{k}=\left[\begin{array}{l}
0.33333332 E+01 \\
0.66666667 E+01
\end{array}\right]
$$

References

[1] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications, New York, London Syden Toronto, Wiley 1974.
[2] A. Berman and R.J. Plemmons, Cones and iterative methods for best least squares solutions by iteration. SIAM J. Numer. Anal., 11(1974), 145-154.
[3] Y.T. Chen, Iterative methods for linear least squares problems, Ph.D thesis, University of Waterloo, Canada, 1975.
[4] M. Hanke and M. Neumann, Preconditionings and splittings for rectangular systems. Numer. Math., 57(1990), 85-95.
[5] R.S. Varga, Matrix Iterative Analysis, Englewood Cliffs, Prentice-Hall, New Jersey, 1962.
[6] M. Eiermann, I. Marek and W. Niethammer, On the solution of singular linear systems of algebraic equations by semiiterative methods, Numer. Math., 53(1988), 265-283.

[^0]: * Received January 23, 1994.

