Juunia.l of Computational Mathematics, Vol.10, No.1, 1992, 21-28.

A NEW KIND OF SCHEMES FOR THE OPERATOR
' EQUATIONS*
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Abstract

This paper provides a new kind of three-layer explicit schemes for solving the
operator equation. It has good stability, and suits particularly the semidiscrete
problems grising from solving multi-dimensional parabolic-type equations by
the finite element method. The amount of its computation time is far less than
that of any other algorithm of the finite element method and less than that of
various economical schemes of the difference method. If the accuracy-of the
nonstandard finite element schemes (2.7) is not enough, it can be improved
using extrapolations.

¢1. Introduction

In numerical computation, for evolution equations the explicit schemes with good
stability are more economical than the implicit schemes. In particular, when solving
the evolution equation with the finite element method, we usually obtain a large
system of ordinary differential equations about the time ¢. To discretie for time ¢,
usually implicit schemes are used, but the amount of computation time is very large.
In [1], the author has got a kind of explicit schemes for heat equations in the case of
one and two dimensions under a special subdivision. In this paper, we remove the
restriction of the number of dimensions and subdivision and consider the genefal
operator equations. We get a kind of three-layer schemes with good stability. Of
course, we are especially interested in the explicit forms of these schemes.

We consider discrete schemes for the operator equation

= da(t)

B it - Aa(t) = f(t), a(0) = ay. . (1.1)
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For the concepts, definitions and notations in this paper, please refer to [2] (Chapters
1, 5, 6). For the operator equation (1.1), the standard form of three-layer schemes

13

By + 7°Ryg + Ay = (1),
¥(0) = yo,9(7) = y1, 0 <t =n71 <1, (1.2)

n=1,2,..., ng—1, 1=mnypT.
The solution of {1.2) may be presented in sum form y = §+ ¢ , where § satisfies the

homogeneous equation
By +m°Rys + Ay =0, 3(0) =yo, u(7)=1y1, (1.2a)
and 7 satisfies the inhomogeneous equation with homogeneous initial condition

By; + ?Ryp + Ay = ¢(t), 0<t=n7 <ty, (0)=y(r)=0. (1.2b)

»

§2. A New Kind of Schemes for the Operator Equations

We consider a kind of three-layer schemes of the finite-dimensional operator

equation and their stability. In the finite-dimensional space, a linear operator is
‘equivalent to a matrix. So, we let A, B be matrices of order N and ap be a given

vector of dimension N.
In (1.1}, we make the following approximation: let

B = By + B; + Ba, | (2.1)

where the diagonal elements of B; are zero. Assume

_ doft -

By d( ) ~ B{Jﬂ’i (t), (2.2)
f

_ do(t _

8,2 . Bioye) (2.3)
5

_ daft . |

By CE( ) ~ Bgﬂ:t(t), (2.4)

dt
ry Y oD 3
Aa(t) =~ Aa(t) + 1 ?ﬂ:ﬁ(t), (2.5)
ari 0
Dij=1 - | ¢ | & o (2.6)

0 anNnN
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We substitute (2.1)—(2.5) into (1.1) and, noting that o4 (t) = oy (t)—l-%ﬂ!&(f), oz(t) =

a3 (1) — g-ﬂzﬁ (t), use y to denote the discrete solution of (1.1) and rearrange. Then

we have discrete schemes of (1.1):

By, () + TQ(D; % g Bl)ya(t) + Ay(t) = o(t),

y(0) =m0, (7)==, 0<t=n71 <. (2.7)

These are just of the standard form of three-layer schemes (1.2) where B = B,

D; B,—B < ~
R = —-2ﬁ g 1, A = A and y; is to be given by an other method, such as

two-layer schemes or the Taylor formula,
We point out that decomposition of B into By, By, and B, is quite arbitrary.
Different decompositions correspond to different schemes for solving (1.1).
According to A.A. Samarskys stability theory [2] we may immediately obtain

the fnllﬂwing‘res*lﬂts:
Theorem 2.1. Assume A = A* > 8E, and R = R* are stationary operators. If

B = B(t) >0, forall t € w, (2.8)
R > ?}A? (2.9)

then scheme (1.2) is stable on the initial value and the right-hand side and we have
the following estimale fort > 7:

1Y ¢+ )| < HY(7)ll + M }Igtﬂ,»ét(||90(t’)|lzq—1 + ezl a-2), (2.10)

where My is a positive constant, depending only on ig.

Theorem 2.2, Assume A = A* and R = R* are stationary nonnegative opera-

tors and B(t) is a non-self-adjoint positive definite operator, 1.e.,
B(t) > ¢E, (2.11)

where € is a positive constant independent of h and T, and

R> %A. (2.12)

Then the solution of problem (1.2b) has priori estimate

. t
o+l < 223 o] (2.13)

/=t
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Theorem 2.3. Assume A = A* > 0, and R = R" are stationary operalors.

When B(t) > ¢k, and R > EA, scheme (1.2) is stable on the initial value and the
right-hand side, and has an estimate

1 ¢ o187 1/2
¥ (¢ + Dl < IV + 7= [l (2.14)
1Y@+ 1)l < 1Y ()| + Mz max [e(t)] (2.14)

where € and M, are positive constans independent of h and 7.

If A and R depend on t, we must introduce the Lipachitz continuity for A and R
about the time 1.

Definition 2.1. The operator A(t) is Lipschitz continuous about the time t, if
((A(t) — At — 7))z, z)] < Ca7(A(t — 7)a, 7) (2.15)
P

forallz € H and t = 27,---,(n — 1)1, where c3 is a positive constant independent
of h and 7. |

For nonstationary operators A and R, the norm ||Y (¢ + 7)|| = [[Y(t + 7))
depends on ¢:

¥ (¢ +7)I% = FA@EE+7) +3(0), 3t + 1) +3(0)

+r2((R(1) - 7A@ D), H(), (2.16)

Y O, = 7(AG — 7)) + 3t = 1), 90 + y(t = 7)

+72((R(t — 1) — %A(t — 7))yz(t), ye(2))- FIB

Theorem 2.4. Assume A(t) = A*(t) > 6FE, and R(t) = R*(t) are nonstationary
operators, and Lipschitz continuous about the time t, and |

R(t) > 14 &

A(t), forall 0<t=nr <ty (2.18)

where § and & are positive constants independent of h and 7, then scheme (1.2} is
stable on the initial value and the right-hand side and has an estimate

[Y(t+Dliey < MilY (7HIo) + M2 max [lp(t)l|a-1¢0) + lee@) a1yl (2:19)
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when B(t) > 0,7 < t = n1t < ty;

i
Y ¢+ )y < MY (9l oy + Ma 3 rlle(@)i?] (2.20)
1Y ¢+ 7l < MY (7l o) + Ma max lle(e)] (2.20)

when B(t) > eE, where ¢.M;, M3 are positive constants independent of h and T.

Remark 1. Some conditions of Theorems 2.3 and 2.4 may be weakened. In
Theorem 2.3, when B(t) > 0 there is stability on the initial value. In Theorem 2.4,
when A(t) = A*(t) > 0 (instead of A(t) = A*(t) > 6E,6 > 0) there is stability on
the initial value. In order to obtain estimate (2.20) or (2.20), it is sufficient that
operator A(t) is positive. The condition B > 0 may be replaced by

B> —cymA (2.21)

»

where ¢4 is a positive constant independent of k and 7. If condition (2.21) is satisfied,
' 1

then (2.19) holds, when 7 < 19,79 = T

Remark 2. The semidiscrete standard finite element equations for several evolu-
tion equations are just equations of form (1.1). Hence, discrete schemes for (1.1) are
also completely discrete schemes for the corresponding evolution equation. There-
.fore, if (1.1) is a semidiscrete standard finite element equation, then (2.7) are a
kind of nonstandard finite element schemes. Especially, when By, By are selected
appropriately, i.e., 2Bs + By is a diagonal matrix, then we obtain a kind of explicit
schemes with good stability. For example, let us use the finite element method for
the semidiscrete heat equation with the first kind initial-boundary condition.

For the one-dimensional case, B and A are three-diagonal symmetric positive-
definite matrices. If the net of spatial variables is uniform, then

4 1 0 2 -1 0
o 18 . 1| - Ty,
51 1 4 | 1 2
P | R |
0 1 4 O —1 2

For the case of two dimensions, B and A are relative to the subdivision of the
region . B and A are at least five-diagonal matrices. For instance, if §2 is divided
according to Figure 3 in'[1], then B is a seven-diagonal matrix. With the number of
spatial dimensions increasing the diagonal band of matrices B and A widens rapidly.
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In schemes (2.7), if 2B, + By is a diagonal matrix, then we immediately obtain
schemes (2.14) and (3.8) in [1] respectively.
In [1], we have proved that (2.14) and (3.8) have good stability.

For application, we provide the following example.

Example. Consider the heat equation

B—U_&u=f, XeQC R, O<t<ty, u=0,
ot - (2.22)
(z,t) € 00 x [0,tp], u(z,0)=uo(z), X €Il
Ny,
Assume up(X,t) = Z a;(t)y;(X) is a semidiscrete standard finite element solu-
j=1

tion, where {;(x)} are basis functions of the trial function space of finite elements,
and {;(t)} are the solution for (1.1) (see [3]). Discretize (1.1) according to (2.7).

1 -
For example, if R > ZA holds, then completely discrete schemes (2.7) for (2.22) are

stable and have an error estimate

t o . ;
jU™ — u(ta)ll < U° — uoll + ch™{ lluoll- + fﬂ Hgt‘i ds}+ei(1+7/h)T (223)

where U and u are respectively a completely discrete nonstandard finite element
Np

solution and a true solution for (2.22), and U™(X;) = Z y;i(En )35 (24).
=1

First, we consider stability. As the mass matrix B is a Gram matrix, it is positive
definite. As the original differential equation is self-adjoint positive definite, A is

symmetric positive definite. But the condition K > Z}i 1s generally not easy to test.

In another paper [4], we provided a sufficient condition, which is easy to test. The

result shows that R > %ifi holds for arbitrary B; and Bz. Therefore (2.7) are stable.

Secondly, we consider the error estimation. Note that
U™ — u(ty) = U™ — un(tn) + up(ta) = ultn)- (2.24)

By means of [3], the semidiscrete standard finite element solution has the error

estimate

tOu
lun(t) —u(@)l < NUC — upl| + Ch"{HugH,, —i—f “_.3—t
0

For the semidiscrete finite element equation (1.1) for (2.22), the truncation error of

{(2.7) is O(r) + O(72) + O(r*/h?). Hence

U™ — up(tn)|| < Cim(1 +7/R?), | (2..26)

ds}, for t > 0. (2.25)
.
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thus
n 0 T £110u 2
U7~ u(ta)ll < T° — woll + k" {Jluolls + [ || 5], dsJerr(1 + /82
0 tllr

By means of the nonstandard finite element schemes (2.7) and their extrapola-
tion, the accuracy of numerical solution for the parabolic equation achieves Q{72 +
72/h?) or O(7%). So the accuracy is good enough for general practical problems while
the amount of computation time increases not too much.

§3. A Numerical Example

We consider a model problem

Ou
ot Oz

# u(0,t) = u(m,t) =0,

32
> =0, 0<t<1, O<z<m,

u(x,0) =sin2z, 0<z<m.

Its analytic solution is

u(z, t) = e sin 2z.

Let h = =/2¢%! d = 4,7 = 1/4%. For the intervals [0, 7] and [0,1] we make
equidistant subdivision. On a computer M-150 we calculated this model problem
by a standard linear finite element method, a difference method, and a nonstandard
linear finite element method and its extrapolation. For the time variable, the stan-
dard linear finite element method used the Crank-Nicholson approximation. The
difference method used a six-point symmetric difference scheme. The results of
computation are shown in Table 1.

Table 1 indicates that the extrapolated solution of the nonstandard finite element

method is very near to the standard finite element solution.

Table 1
t T t.s. s.f.e.m. d.m. g.ext. n.f.e.m.
w/8 | 0.260130 | 0.259297 | 0.260972 | 0.259294 | 0.257619
0.25 _

w/4 | 0.367879 | 0.366701 | 0.369070 | 0.366697 | 0.364329

x/8 | 0.012951 | 0.012785 | 0.013119 | 0.012781 | 0.012457
1

]’ﬂ'/*i 0.018316 | 0.018081 | 0.018553 | 0.018075 | 0.017617

t.s. — true solution, s.f.e.m. — standard finite element method,.
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d.m. — difference method, g.ext. — global extrapolation

n.f.e.m. — nonstandard finite element method.

§4. Conclusions

(1) The amount of computation time is small. For the multi-dimensional case the
amount of computation time of our schemes is far less than that of any other algo-
rithm of finite element methods and also less than that of various economical schemes
of difference methods, because our new schemes do only one explicit computation
whatever dimensions the space variable has. Even if we extrapolate them, we need
only to do three explicit computations. Other algorithms of finite element methods
are implicit schemes, and so the amount of computation time is very big. For eco-
nomical schemes of difference methods the increase in the amount of computation
time follows the increase in the dimension. For example, in the two-dimensional case
2—4 nne—dimensinna}. implicit computations are needed, some schemes even need one
more explicit computation. Thus the amount of their computation time approxi-
mately corresponds to 4-8 one-dimensional explicit computations. This amount of
computation time is larger than that of the new schemes. Therefore the new schemes
offer a way to reduce the amount of computation time needed in solving parabolic
type equations using finite element methods. In addition, they are also effective for
difference methods.

(2) The applicable range is vast. Our schemes apply not only to finite element
methods and difference methods but also to other discrete methods for the space
variable, and not only to the linear elements but also to high-order elements.

(3) The stability is good. For the parabolic type equations our schemes are

almost absolutely stable.
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