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. Abstract

A class of implicit trapezoidal TVD schemes is proven to satisfy a discrete

© convex entropy inequality and the sclutmn sequence of such implicit trapezoidal
schemes converges to the physmally relevant solution. for genuinely nonlinear .

scalar conservation laws.. The results are extended for: a- class of generalized

implicit one-leg TVD schemes.

Fra

§-1; Introduction -

We consider a hyperbolic conservation law:

u  8f(u)
3t+ . t >0, (1.1)

“(ﬂfa'ﬂl : :.HF‘:(.."':),_ —00 < T < 00.

If there exists a convex function V(u) and a differentiable functmn '3 ('-u.) such that
V'f! = F', the admissible weak solution of (1.1), satisfies

oV(u) OF(u)
TR 5z <0 (1.2)

in a weak sense, then inequality (1.2) is called the entropy inequality. The pair (V, F’)
is called the entropy pair. It is well known that the weak solution of (1.1) safisfying
the entropy inequality (1. 2) for all entropy pairs is unique. The weak admissible
solution satisfying the entropy inequality is called the entropy solution.

In the genuinely nnnlmeaa: case, where f | is, say, strictly convex, if the admissible
weak solution of (1. 1) satisfies one specla.l convex entrﬂpy mequa.hty (1.2), the weak
solution 15 unique (DlPema f1]). . 5 hES i B B S
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The idea of Total Variation Diminishing Schemes was proposed by Harten!?.
The solutions of the conservative TVD scheme have a subsequence which converges

1o the weak solution of (1.1) in a weak sence. Unfortunately, the limit weak solution
is not always unique. Hence, it is necessary to impose an entropy inequality to
the TVD scheme to ensure the convergence of the solution sequence to a unique
physically relevant solution. |

The entropy inequality for first order accurate TVD schemes have been widely
tudiedB-689. Osherld showed the entropy inequality for semidiscrete, second or-
“der accurate generalized MUSCL schemes. Osher and Chakrayarthy[5] constructed
semidiscrete, second order accurate TVD schemes, and proved that those schemes .
satisfy a semi-discrete entropy inequality. Osher and Tadmorl® considered the en-
tropy inequality for fully discrete second order accurate explicit TVD schemes. The
result given in [6] has the strict CFL linitation. As to first order accurate explicit
TVD schemes, the limitation of CFL number is also strictl®88, Hence, we should
consider the implicit TVD schéme to relax the limitation. Qur discussion is moti-
vated by papers [4-6, 10). "B |

In Section 2, we, gife some preliminary results for implicit TVD schemes. In
Section 3, we establish the entropy inequality {or implicit trapezoidal TVD schemes.
In Section 4 and 5, two examples of second order accurate implicit trapezoidal TVD
schemes are presented. In the last section we give some explanation about our
results.

82. Preliminary Results on Implicit TVD Schemes

We consider the semidi:s'crgéte approximation to (1.1) in conservative form:

duj 1 | _
b gl byl = (2:1)

w;{0) = 31-;/; w’(z)dz,

where fwn o ow | : -
T = {z:(j~1/2)Az <z < (G+1/2)Az}.
The corresponding discrete entropy inequality is written as |
dU (us(t)) , 1 U REe o U GES w
Rt b LA (FH% ,gj;%)__o L (23)

di" . Az
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where U/ is the convex function Gf %, and
Flw) = Flw,w, -+, w, f,Ar) / dew | (2.4)

(U, F') is called the consistent numerical entropy pair.
The consistent scheme (2.1) 1s called E-schemel® and the numerical flux A is

called E-flux if - |
(ujr — ui)(k,, 1 f(u))<0 V] (2.5)

for all « between u;4; and ;.

Theorem!®). Consider semidiscrete approzimation (2.1) and assume the entropy
inequality (2.3) holds for all consistent entropy pairs (U, F). Then the numerical fluz
h is an E-fluz in any separating interval.

E-scheme has at most first order accuracyl®). Hence, if we want to impose an
entropy inequality on the second order accurate TVD scheme, the entropy inequality
should be special. Osherl*=® considered special discrete entropy inequalities for
second order accurate TVD schemes.

In this paper, we consider the fully discretized implicit TVD scheme. The implicit
TVD scheme was originally developed by Harten!?, and further developed by Yee
at alltda?]

Consider a family of canserva.tive schemes of the form:

W (R - 00 — BODEE, B ))
= u} — M1 = ) (h(u]ry1re o ul) = AWy uly)), 0 < 0 < 1.(26)
Using the notation of [2], we let

(L-w)j=ui+x(h 1-h 1), _ (2.7)

J+2 J""%
(R-w)y= =M1 -n)(h, 1 =B, 1) (2.8)

Define the total variation of a mesh function u:

+ oo
| T‘,(u) = Z |tl_,+1 = HJ| = Z Iﬁj_l_lul (2.9)
TR, e L B
where ©
R A= Y = U

Let BV(R) = {u:TV(u) < oo}, the bounded variation function space.
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Now (2.6) can be rewritten as _
o L-y*t = R-u". |
diminishing) if TV (x*1*) < TV{(u").
(2.10) to be TVD if

| (2.11a)

(2.10)

Scheme (2.10) is called TVD ( total variation
Harten!s gave the following suflicient condition for

TV(R-u) < TV(w),
TV(L-u) 2 TV(u); (2.11b)

e numerical flux k in (2.6) is Lipschitz continuous and (2.6) can be written

Assume th
as
4" - IAC Ly Bi¥1/2% C;-—-'Uz&j'—lﬁ")"ﬂl
-=~H?3+ '\(1 5 7?)(5';4.1;2&_&“;2“. A C;-_.]Jzﬁj—lf‘lu)n S (2'12)
where S o
| » C;‘I:;i{i R g wigl)- (2.13)

If we c:_:mside:f the periodic boundary condition, 'the _sufﬁ;ient conditions for (2.12)
to be TVD are A . .
(2.14)

A1 =) (Clapa + i 1z) £1: (2.15)
1

= in {2.6), namely,
which is ‘at least second order accurate in
g. differentiable numerical flux).

From now on, we take 7 = using the trapezoidal rule to

discretize the semidiscrete system (2.1},

the time direction if the numerical flux is smooth (e.

The trapezoidal TVD scheme reads:
A fiarts © oEn - A

n+1l e o
uim 5 e T -

(2.16)

ot

Lemma 2.1. Assume ('2.14), (‘2.215:) are true. Then for the solution of scheme

(2.12) the following inequalily s § ow
St -wi<C
B fJ B ;i k- %

of &t and Az.
(7], we can extract the subsequence

to the weak solution of

is valid, where C 15 @ ;:onstantmf-nde;)endeﬂt
With the conventional technique given n
from the solution of TVD scheme (2.12), which converges

conservation laws in L'(R X [0,TD).
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We use the technique given in [10] to discuss the éntrnpy inequality for trape-

zoidal TVD scheme (2.16) with periodic boundary condition.
We-transform' 47 to v} via the formula

;= uj + (h Je1s2 — hi_1p2)-

The scheme (2. 16) is transformed to

n+1 | "B
j+ A(h1+1/2 h?—-lﬁ‘)
and
T 1 n | )
uit = ES’":‘“ +v7),

Triz = R(u a5 4)-
We multiply both sides of (3.2) by uj:
’. i
1

“?(”_?H; —"’;)z E[(.”;H )2 — (”;}) ] = “Auﬂ(h_ﬁ-l;'? ;'1—-1/2)-_

That 1s .
n n i LT +l '
uj(ij = Uj) “"\ﬁ+(‘“ h 1}2) A/ : ;+1;2

where A, denotes the forward difference. We define
: J ‘HJ‘
F(u) = [ wf (e = uf(w) - [ fw)de,

Then . . ok % g
AL F(u) = By(usflu) = [ flidw.

Hence, (3.6) can. be rewrll:ten as

S - I

2[( Y = 5T+ A Fate )= X j {(B2yage — fw))dw
Slmﬂﬂ.l‘ly,a usmg B B B T B
SR '?r':"-"'.."i"-"‘ ' : . 4 5 :x i ﬂ £ own e

v vJ' S u.’ K —(hj-l-l,fz J.""’lf?-) o
we get A e aon, B BT Bl stun gl B B :

(31)
(3:2)

(3.3)

(3.4)

{3.5)

- (36)

(3.7)

(3.8)

(3.9)

(3.10)

; (3.11)
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1
- MWy~ h7Z172)

and
n.+l |

Lty - (5 + A+ Fa @y =) f T, p - S, (319)

We combine (3.9) and (3. 13) to get
[( n+1)'2 s (un)ﬁl —ﬂ.l_(FA(u“) - FA(uﬂ+1)) + ._---[(hj_!_”.2 j-%,ﬂ)z

W (h3+1/2 - h:-—l/z)z] e [¢(“ﬂ+1) ¢(““)] g 5+(FA(“ +1) T FA(““))

<3 [ (mh ) do+ [T (B~ SN0 (3D

where
Az 2
| o fHlug) = —{u_,) +-§—(h3+§-—h 1) :

We call{3.14) the entropy inequality for the trapezoidal
(2.16).
Theorem 3.1. If the se

satisfies

impliéit TVD scheme

midiscrete appmmimatian numerical fluz (2.1}, hjr1/25

Up+l
)\ f (h_,,H,;—- f(w))dw < 0, Vi, (3.15)

with periodic bound-

then the trapezoidal TVD scheme under assumption (2.14), (2. 15)
ly nonlinear hyper-

ary condition has @ unique limit eniropy solution for the genuine

holic conservation law with iniiial value m BV.

§4. The Fully Discrete Implicit Second Order
Generallzed MUSCL Scheme

In (4], Osher considered the convergence of semidiscrete generahzed MUSCL

schemes for the scalar conservation law. He showed that the generalized MUSCL

scheme satisfying the entropy mequa.hty cunverges to the unique physical solution.
licit second order accurate gen-

Here we prove that the solution of tra.pezmda.l imp
oralized MUSCL scheme is also convergent to the unique entropy solution for the

genuinely nonlinear conservation law ander the same assumption.

First, we introduce Osher’s semidiscrete genera.hzed MUSCL schemel?.
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Let
h(uje1, 1) = Bigas

be an arbitrary first order accurate numerical flux function. The generalized MUSCL
scheme reads: |

Ou; | : Az Ax
a; - _E& h (‘L‘.j+1 o $i41, Uy + -2—83) § (4.1)

u_,-((:])z'/r uo(m)dzﬂlz

-

where A_ denotes the backward difference and s;(!) is the slope that satisfies

sj = wa(zj,) + O(AT) - (42)
and
| [ u(d), for £ < 244/,
" w(z;, 1) = { | (4.3)
u;41(l), forz 2> 244/ .

We discretize (4.1) as the trapezoidal conservative scheme:

1 Az : Az
n+1 n+4+1 n+1 n+1 n+1
uj +—)ﬁﬁ._h (ﬂ.+ ‘Sjlli HJ- + —s8; )

9 J+1 9 J
o d s Az Az
= U] - §f\&_h (uj 5 Sip1r Uy + ~2—33) (4.4)

Using Osher’s techniquem, we can prove the following results for the conservative
scheme (4.4).

Lemma 4.1. Assume h{u;41,u;) is C* with Lipschitz continuous second partial
derivatives in a neighborhood of w(z;,1) = u;(l), and

Azs;pn

ﬁ.;.ﬂj | = 1+ O(Az).

Then the scheme (4 4) is at least second order accurate for the smooth function w.

Lemma 4 2. If h :3 e E ﬁun: corms;aandmg tn an E-scheme (see (2 5)) the
scheme (4 4) 13 TVD :f | |

0 < ﬁa:s_, AzS;41
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Temma 4.3. If h is a fluz of a monotone scheme, the scheme is TVD if -

1 > 5i41 " %Az ' near points where hq £ 0, (4.6a)
2&+Hi
> e Bk Az  near points where ho # 0 (4.6b)
2&+H:‘
where
oh

dh
h.1 = 5;(11.,1}), h.u = 5;(11,1)).

Now, we give the convergence result for trapezoi

dal TVD scheme (4.4) :

Theorem 4.4. The sequence of appmz:'mate solutions satisfying (4.4) converges
a.e. to the unique solution of the scalar conver conservation law (1.1) with periodic

boundary value provided thal the-initial data are in BV, that for each 7(4.6) is lrue,
and that, if u; > w4,
(4.7)

—~Azs; L2 max(min{(u; — ﬁj+112)1(ﬁj—1/2 - ‘“-j))ao)
where
Uj1
/ wf'(w)dw
i ; = 2 , 4.8
Proof. As in [4], if (4.7) is true, we can prove that
| Uj+1 ;
A[ (hjy1/2 — flw))dw £ 0 (4.9)
o s

. so that the entropy inequality is imposed on the scheme

with the assumptions (4.6)
the unique solution of

(4.4). Hence, the solution sequence of (4.4) is convergent to

(1.1).

§5. Fully Discrete Oshei'-Ch;akravarthy’s
Second Order TVD Scheme

emidiscrete second order,
solution sequence of the

- In [5], Osher and Chakravarthy constructed a class of s
securate TVD schemes, and proved the convergence of the
«cheme to the unique physical relevant solution. In this section, we discretize Osher-

Chakravarthy’s TVD semidiscrete schemes with trapezoidal rule, and prove similar

convergence and uniqueness results.

._I'. ‘. .!'i:'.. i A .._u e S o
Lm-.dtf.!}}:ﬂﬂh .;I-I_."'_IF -'-... R St Er

=
p Il



The Entropy Condition for Implicit TVD Schemes . | - | 163

Let
; —h(u-,u-_l))M'
R+ = (f(u.}') 2 , 5-1
7 (fluie) = Mg, u M i
_ (Muign, ) = flug))M '
K. &= , 5.1b
7 hug,u5-1) — (1)) -
$(R) = max(0, min(R, 1)) (5.2)
where
ﬁ+h1(ﬂ:,ﬂ:)ﬁ+ﬂj
h | : A WM - h : u;) — _ [1 J‘i"l!‘? ]’
( (uJ+1 u’.}'} f(ﬂ_,)) ( (HJ'F] HJ) f(u'.?)) h(ﬂ;+1,ﬂj)—f(ﬂg).
(5.3a)
(Flujer) = Alujer,u))™
Ayho(uj, u;)A 4 u;
= U, — h{u; ,‘U-'Ll:l— 'H_Uz ] 5.3b
| ’(f( J+1_) ( 141 j)) f(uj-i—l) » h(uj-l-huj) ( )
where h(ﬁj“,uj) is F-flux and ai_l /o are both positive numbers;
oh &h
hy(u,v) = a—u(u,v), ho(u,v) = _3;(“’”)'
Osher-Chakravarthy’s semidiscrete scheme reads!®!:
du; 1 nc 1
8; = ——5—5& H (qu,ujH,uj,uj_l), u;(0) = v / u(s)ds .(5'4)

where

. 1 _
H (42,8410 %5, 45-1) = h(j41,05) = SR ) (w1, 45) = flu )™

y |
+ VRIS - h(uje1,25)))M. (5.5)
The scheme (5. 4) is TVD if o i+1/2 “are such that
. A1, 3) — £(;)
Iﬂj+1;2(h.1(!_‘i+11uj+l) o hl("‘jiuj)\ < ! Ai"’j J y (5'63')

. ; , | ;i) — h{u u |
"l“?—+1f'e’(h0fﬂj'-|'-1,uj+1) e hﬂ(ﬂj,ﬂj)l < f(uj1) = A8, i) (5.6b)

A,
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N O
J

__h(“j-i-h“j) = h(“’j“ u.]') [1+_.._
g 2 (Aluj41.u;) — h(uj,u) 1 By
= C; 1/2 2 0-,- (57&)
i 3} g n) 14 1 (h(uj,u;) - pug,ui= )M (BB g Il
A u; 2 h(uj41.%5) — h(uj,%;) R.;j- i
O B (5.7b)

The scheme (5.4) is convergent under (5.6) and the following assumptiontd:

[ san((Gaen) = (o= 3+ )

(A4 ;) Tha(ui+rs i) = ha(uj.uj)]

a

= B2
»

- ':_"I+1;2(A+u.f (58)

12 lho({Bi4 1, tj+1) — ho(u;,u;)] < 0.

Use the trapezoidal rule to discretize (5.4)

1 ” 1
n+l ; ac n4l . n+l  ntl o O S T ac n n WP
¥ +2AL\,H (ujw,,trpjﬂ,uj ,u.j_l)_._uj QA&_H (uﬁz,uﬂl,uﬂuj_l).

(5.9)

Lemma 5.1. Assume (5.6) 1s frue, and

- - |
5Ce T Cilap) st (P 10)
The scheme (5.9) is TVD. om
In [5] it is proved that, under.condition (5.8), the following is true:
¢ PPt p |
f C[Hi¥y2 — f{w)jdw < 0. (5.11)
u, - bl " |

Therefore, according to our results, we have:

5.10), the.solution sequence

5 2. Under the assumptions (5.6), (5.8),(
lar convex conservation law

the unique solution of the sca
lue, provided that the initial data are in BV.

 'Theorem

of (5.9) converges a.e. to
(1.1) with periodic boundary va
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§7. Discussion

In this paper, we do not discuss the numerical implementatiim of the implicit
TVD scheme. The scheme is highly nonlinear and implicit. It should be linearized
when used for practical computation. There is a rich literature on the linearized -

form of implicit TVD schemes. We refer the readers to [11, 12].
The semidiscrete approximation {2.1) can be fuily discretized in the generalized

one-leg form

‘u;.‘+1 : u? e o [h. (ﬁ;‘jﬁﬁ‘ -. ’ ﬁ?::ﬂ) *—j ( ﬂ+.1f2, s ’ﬁ;‘i—ll-’li)] | (7_1)

where

ﬁ;i+1/2 - nun+1 4 (1 _ n)u

The scheme (7.1) can be tra.nsformed mtn furm (2 12) with the functmna.l transfor-
mation ‘ '

Tt

uj = vy )‘(1 = ’?)(hj-;-“uz(”;‘-i;q-l} Ry V?{:).—'.h?_ug(v?_g, ey Vi) (72)
The incremental form of {7.1) reads

n+1__qM Hﬁlﬂ)& n+1_ C;-(T/-;U?)ﬁ_ n+1)

= u? +(1- )A( ;f;‘};”% c;'(;‘;;‘ma_u;). (7.3)

The scheme (7 3) is TVD 1f

00 >C > Cﬂ;‘;‘”’ > g, (1 1)))\( ';f;‘j;‘m e (7.4)

and if bc:unda.ry conditions are. suc.h that (7 3) has the solution which is bounded at
-each :n. We take 7 = 1}'2 -

¥ =g ) {h( S ) - (S )] e

where otk
ot g B £ G F 5 ‘n+1,2 :_ n.'!l n

The entrﬂpy mequa.hty fﬂl‘ (7 5) (see Section 3) is the following

‘n-l-lf?
1 u® n ~ T +1 n ;
(1) = 503 )’)+A+F.4( “”)m s (B53103 - f(w)) dw, ¥
(7.6)

j :
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Therefore, we can extend all results about implicit trapez'ﬂid_al TVD schemies to the
one-leg form with all assumptions on the values '

i SRl T Y )-

References

[1} R.J. DiPerna, Convergence of a.ppmxilﬁa,te solutions to conservation laws, Arch.
Rat. Mech Anal., 82 (1983), 27-70.
[2] A. Harten, On a class of high resolution total-variatiod-stable finite difference

~ scheme, SIAM J. Numer. Anal., 21 (1984), 1-23.
[3] S. Osher, Riemann solvers, the entropy condition, and difference approximation,

SIAM J. Numer. Anal., 21 (1984), 217-235.

[4] S. Osher, Convergence of generalized MUSCL schemes, SIAM J. Numer. Anal.,
22 (1984), 947-961.

(5] S. Osher and S. Chakravarthy, High resolution schemes and entropy condition,
SIAM J. Numer Anal., 21 (1984), 355-984.

[6] S. Osher and E. Tadmor, On the convergence of difference approximations to
scalar conservation laws, Math. Comp., 50 (1988), 19-51.

(7] P. K. Sweby and M. J. Bains, On convergence of Roe’s scheme for the general
nonlinear scalar wave equation, J. Comput. Phys., 56 (1984}, 135—148.

{8] E. Tadmor, The numerical viscosity of entropy stable schemes for systems of
conservation laws I, Math. Comp., 40 (1987), 91-103.

9] E. Tadmor, Numerical viscosity and the entropy condition for conservative dif-
ference schemes, Math. Comp., 43 (1984), 369-381.

[10] Wu'Yu-hua, The symplectlc property and conservation laws of trapezoidal schemes,

Preprint of the Computing Center, Academia Sinica, 1988.

(11] ‘H.C. Yee, Construction of explicit and implicit symmetric TVD schemes and

their applications, J. Comput. Phys., 68 (1987}, 151-179.

(12] H.C. Yee, R.F. Warming and A. Harten, Implicit total variation diminishing

(TVD) schemes for steady-sta,te calcula,tmns, J. Comput Phys., 57 (1985),
327-360. | | B

NS T e g T kR R i e e penm ey e o mE s



	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg
	File0008.jpg
	File0009.jpg
	File0010.jpg
	File0011.jpg
	File0012.jpg

