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Abstract

Asystem E:C" — O™ is said to be an exponential one if its terms are ae'™iE

ei™mnZa  This paper proves that for almost every exponential system E:C" — C" with
degree (q1, - *19n), £ has exactly H?=1[2Qj) zeroes in the domain

D={(Z1,*",ZH)EC"I Z_,'=Ij+1:yj, e y; € K, 0< z; <2, '=1,--~,n},

P
and all these-zeroes can be located with the homotopy method.

§1. Introduction

Let E: C* — C™ be an exponential system, where C" is the n-dimensional complex
space. By an exponential system, we mean that each term in every equation is of the form

im 21 IMuln (1.1)

ae - € ;

wherei =+/—1,a i3 a complex number, Z; a complex variable, and m; an integer. For each
term in each equation, consider the sum Iy | + -+ ||, Let g5 be the maximum sum in
equation 7. We assume g; = 0 for all 5. We call g; the degree of E;, and (g1, - , gr) the
degree of the system E. In this paper, let

D={[Zl,--—,Z“]€C“: Z; = zj + Y5, T y; € R, 0 < z; <2m, j=1,---,n},

Let E: C™ — C™ be given as above. Now, we distinguish certain coefficients of E. Let
ax; be the coefficient of term S4:%5 in E,, and bg; the coefficient of the term e™*9* %i in E;

for k,j = 1,---,n. Let A= ((ak;)|(brs)) € 27" Define B to be the other coefficients of
the terms with degree gi m E, foralk=1,---,n. Let g; be the constant term of E; for
i=1,---,nand a= (a1, " a,) € C™. Let b be o1l coefficients of E other than a, A and
B. Then (a, A, b, B) uniquely defines E. We write E as E(:,a, A,b, B).

Utilizing homotopy methods, this paper studies zero distribution of exponential systems.
Section 2 discusses numbers of the zeroes of the systems. Section 3 applies the results to
triangular polynomial systems. Section 4 explores the relationship between exponential
systems and polynomial systems, and points out that 1t 's unreasonable to transform ex-
ponential systems into corresponding polynomial systems for the purpose of locating all
" isolated zeroes. Section 5 contains several numerical examples.
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§2. Main result

Lemma 1Y, Let . gn x g™ _, R? be a smooth mapping. Suppose 0 1s o regular
value of H. Then for almost all g & R™, 0 1s a regular value of H(,a): R® — RP.

Lemma 2i1. Suppose F : C* — C" s an analytic mapping. Regard F as a real
mapping F : R?" — R?™ in the way of dentrfying (Z,, -, 2,) with (z,,y,, - o B )
where Z; = z; + 1Yy, L= /-1 Bis i € R Jor 9= L voom. Then Bhe real Jacobian
determinant detdF /3(z;,y,, "3 Tn, Yn) 15 nonnegative everywhere. Furthermore, if 0 45 q
reqular value of F, then the determinant 1s positive in F~1(0).

Lemma 8121, fqp g . pn X [0,1] = R"™ be a smooth mapping. Suppose 0 13 a regular
value of H. Then for any curve A(s) = (z(s),¢t(s)) in H~1{0),

Sgn f(s) = sgn det %E[A[s)) for all s
z

or
. aH
sgn t(s) = —sgn det EE(A{S)) for all s |

where s 1s the arc length.
Let E be an exponential system with degree (g, - - - ¢n), and define an auxiliary mapping
Eo = (Eoy, -, Bon): C™ — O™ by

Fo;(Z) = 4% 4 =055 o 1=1,---,n.

It is clear that E; has exactly IT7. , (2g;) zeroes in D and 0 is a regular value of E,.

Define homotopy H : C™ x [0,1] — C* by
H(Z,t) = tE(Z) + (1-¢t)Ey(Z) . (2.1)

Then H(-,0) = Ey(-) and H(: 1) = E(-). The following lemma is direct from Lemma 1.

Lemma 4. Assume H as in (2.1}). Then for ali A,b and B, and for almost all 4 o
0 15 a regular value of H. |

We say H is regular if 0 is a regular value of H. Fix a € C™ such that H is regular. Then
H~1(0) is a one-dimensional manifold. By Lemmas 2 and 3, for any curve A(s) = (Z(s), t(s))
of H=1(0), t(s) is a monotone function of s. So we can write A(s) as At) = (Z(¢),t),0 <
t < 1. Hence, we have '

Lemma 5. Assume H as above. Then H™1(0) consists of four kinds of curves as follows
(shown in Fig.1): '

(1) curves of finite lengths starting at C™ x {0} and ending at C™ x {1},

(2) unbounded curves with only one boundary point in C" x {0};

(3) unbounded curves with only one boundary point 1n C™ x {1};

(4) unbounded curves in C™ x (0,1).

Now, we prove that for almost all A e @ H ~'(0) is bounded. F Irst, we give some
definitions. Let E be an exponential system with degree (91, -,4,). Let s = (81, ,8,) €
{1,-1}". Define Z; = %% for § = l,---,n. Then E(Z,a, A, b, B} becomes a mapping
E,Z,a,A,b, B) that consists of the terms like a 274 - 2™, Let PR, = (PE,;, -, PE,,.)
be the polynomial part of E,(-ya, A, b, B). That is, PE,{Z) consists of all polynomial terms
like aZ™ L (my; > 0 for 5 = L,.--,n) in PE4(Z), k = 1,. ,n. We call PE, the
polynomial system of £ with respect to s. It is clear that the degree of PE, is (g1, -, In)-
Since the number of the elements of {1, —1}" is 2, we have 27 different polynomial systems
PE,, each of which has a different s.
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Let PH, be the polynomial system of H with respect to some § € {1, —1}". That 1s,
PH,(Z,t) =tPE,(Z) + (1 - t)PEo,(Z) ,

where PE,, and PE, are respectively the polynomial systems of Eg and E with respect to
e It is clear that the degree of PH, in Z is {q1, --,qn)- Let PH, be the homogeneous
polynomial system of PH, in Z with highest degree. Then (A, B} and s uniquely define

PH,. The next lemma is direct from {3].
t 4

Fig. 1

Lemma 6. Assurme PH, as above. Then for almost all A € C27" and for all B,0 ts a
reqular value of PH, in the domain (C™ \ {0}) X 0,1].

By the homogeneity of PH, in Z, if 0 is a regular value of PH, in the domain (C™ \
{0}) x [0, 1], it is easy to know that for any ¢ € [0, 1], PH,(.,t) has only a trivial zero.

Lemama 7. Let E{-,a, A, b, B) be an ezponential system with degree {q1, - -, qn). Assume
H as wn {(2.1). Then for almost all A € C2n” gnd a € C™, for arbitrary b and B, H™'(0} s
bounded.

Proof. Suppose H™!(0) is unbounded. Choose {{Z(k),t{k))}$>, < H™'(0) such that
Z(k) — oo as k - co and t(k) € [0,1]. First, if y; — oo as k — oo for some j, without loss of
generality, we assume that y;(k) — +oo or y;(k) — —oo as k — co. Define s = (81, -, 3n)
as follows. For =1, ,n,

1, if y;(k) — —o0 as k— o0,
gy =
. —1, otherwise .

Let PH, be the polynomial system of H with respect to s. Let n(k)} = (nulk), s k)
and n;(k) = e?1Zitk) for § = 1,---,n. With the fact €%/ = ¢™¥% (cos z; + 15in z;) and the
definition of s, we have |

PH,;(n(k)/ (), t(k)) = In(k)=% P, (n{k), £(k))
= In(R) I~ (PR, (n(k), t(k)) — Hy(Z(K), ¢ (k)

—0as k — oo .

Hence, any cluster point (Z°,t%) of {(n(k)/lIn(k)|l, t(k})}¥Z, is 2 nontrivial zero since
PH,(Z°°) = 0 and [|Z2°}j = 1. It contradicts Lemma 6. Thus, for almost all 4 € C?°,
H~1(0) is bounded in directions yi, ', ¥Yn-

Now, suppose z;{k) — oo as k — oo for some j. By the periodicity of H and the
boundedness of H~1(0) in directions y;, -, yn, there 13 a bounded set of D X [0, 1] such
that the set contains infinitely many curves of H~'{0). This contradicts the regularity of
H. So H™'(0) is bounded in directions zy,- -+, Zn.
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Hence, #71(0) is bounded for almost all 4 € 27’

Now, we are ready to prove our main result,

Theorem 8. Let E(,a, A, b, B) be an ezponential system with degree (g, - - ‘yqn). Then
for all b and B, and for almost all a € C" and 4 ¢ C'ﬂ":, E{.,a,A,b,B) has ezaclly
7_,(2g;) zeroes in D,

Proof. Define H as in (2.1). By Lemmas 5 and 7, any component of H~1(0) has two
boundary points; one is in O x {0} and the other in C" x {1},

Now, we prove thst any two curves A1(t) and A,(t) in H~1(0) starting at different zeroes
(Z!,0) and (Z2,0) (that is, Z' — Z2 £ 9%x for all integers k) of Ey intersect O™ x {1} at
different zeroes (Z'*,1) and (2%*,1) of E respectively. Otherwise, suppose Z1* — 72+ _
2kom for some integer k. Then, by the periodicity of A , the curve in H~!(0) starting at
(Z* — 2kom, 0) must intersect O™ x {1} at (Z2%,1). This contradicts the regularity of H.

Similarly, any two curves in H~1(0) starting at different zeroes of £ must intersect
C™ x {0} at different zeroes of Ey. |

Since £y has exactly I17_  (2¢;) zeroes in domain D, the number of zeroes of £ i exactly

nr_,(2¢;} in D.

§3. The ANumber of Zeroes of Triangular Polynomial Systems

Consider P = (P, - .. y Frn) 1 C™ — C™ with

n Ny
Pi(Z) = a; + x x[am cos ({Z) + by sin (LZx)); =1, -« n.
k=1i=1
We call ¢; = mkax{njk} the degree of P; for 5 = 1,---yn, and P a triangular polynomial

system with degree (g, - - 1) H

Suppose P: C" — (" js given as above. Let ai; be the coeflicient of cos(g:Z;) in B, by
be the coefficient of 8in(g; Z;) in P;, and 4 = ({a:;)|(b:;)). Let a; be the constant term of
F, and a = (ay, - - y@n). Define B to be the other coeflicients of P, Obviously, (a, A, B)
uniquely defines P, We write P} as P(-,q, A, B).

Notice that cosZ; = (¢'%; + e™*%:)/2 and smiy = (e'%i — ¢=i4;) f9;, Then, the next
theorem is direct from Theorem 8.

Theorem 9. Le: P(-,a,A,B) be a triangular polynomaigl system with degree (g, - - 5 o
Then for all B, and Jor almost alla € C™ and A € C’z":; P(-,a, A, B) has exactly II%_, (2g,)
zeroes in D,

&+

84. Relation Between Expenential Systems and Polynomial
Systems

It may seem natural to solve an exponential system by transforming it inte the corre-
sponding polynomial system. This section shows why it is unreasonable.

Let E(.,a, A, B) be an exponential system with degree (91, ',9n). Since £'%52%x 4p¢
nonzero for all 5,k = 1, -, n, multiplying E:(Z a, A,b, B) by e'%é1 .. ge;Z, g . § =
1,--,n, we obtain an exponential system contaming only terms as

im131 ! ingn

e - ,
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where all m; are nonnegative. Denote the system by Et. Tt is clear that E and E' have
the same zeroes in D. Let Z; = ¢'% for j = 1,---,n. Then the system E! becomes
a polynomial system. Denote it by PE'. It is easy to know that the degree of PE! is
((n+ 1)q1, -+ ,(n + 1)gn). Let PE' be the homogeneous system of PE!. Since PE! has
nontrivial zeroes, PE! is a deficient polynomial system. That is , the number of its isolated
zeroes is less than its total degree (n + 1)"II7_, q;.

Example. Let E = (E;, E;) : C? — (2,

E\(Z) = ay16'1 % + qppe' %2 4 by o7 05 4 bype™ 0% gy

Ey(Z) = 21671 + 00677 + by1e 1191 bope ™19 tay

Then
| E%(Z} — ﬂllg‘:ﬂqlzl'i'iﬂlzﬂ 4 alzciqlzlﬁquz,
+bueiqlzi A bmeffhzl + ﬂlei'hzl*i'ifhzi :
Eé(Z) — ﬂ213£2’1321+iQEZJ -+ ﬂzzﬂiq:31+i2hz:
L Jq & fn & |Qn B Qe 2
+b21E“JE R bggﬂwg } A ﬂzﬂlﬂz 1143 i]
»
and - .
2 2
PENZ)= a2/ 23" + 0122 Z3™ + b1 Z]* + b2 2] + a1 21" 23
- 2
PEN(Z) = a1 22 28 + 03028 229 + b3y 237 + b 21 + 0,20 29
Since

PE}(Z) = 011 27" 23" + 0122 23"
PEMZ) = a21 27" 2 + a222{7 237

for general (@14, a12, 21, aze) € C*, the zero set of (PE}, PEL) is {(Z:,0),(0,22) : Z,,22 €
C}. Hence (PE}], PE}) is a deficient polynomial system.

For the deficient polynomial system PE!, if we use homotopy in [4] to locate all of
its isolated zeroes, the majority of the homotopy curves will diverge to infinity. On the

other hand, since E has at most I17_, (2q;) zeroes in D and the total degree of PE!' is (n+

1)*I%_, 45, it is unimaginable to follow (n+1)"I17_, g5 curves to find II7_, g; zeroes of PE!.

Hence, unless we have efficient methods to locate all isolated zeroes of the deficient system
PE!, it is unreasonable to transform exponential systems into corresponding polynomial
systems to find all isolated zeroes of the exponential systems.

§5. Numerical Experiments

A program was written for zeroes of the exponential systems on the basis of the algorithm
in [5]. The following are some examples calculated with homotopy (2.1).

Example 1. E: C? — C? is defined by

E1(Z) = 0.1¢2% = 273 4 0.2¢72%1 — 7272 4 ¢%0 4+ 244,
Ey(Z) = e%1 4+0.5e%? + e %1 4+ e7%1 4 241
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The eight resulting zeroes of £ are
(—0.2071 +1¢ 1.8105, —0.3726 + ¢ 2.5745) |
(—1.5888 +4 2.7418, —0.9827 ++ 5.9463)
(—1.3033 +14 2.7651, 1.0035 + 1 0.2538) |
(—0.5836 + ¢ 1.9454, 0.1767 + 3.7927} ,
(1.2651+: 3.5091, 0.8664 + ; 0.2234) ,
(0.5869 +1 4.3628, 0.1382+ i 3.7405) |
(0.2224+1 44742, —0.5556 + 1 2.5919) |
( 1.4607 +: 3.5199 —0.7264 +1 6.0031) .

Example 2. Let £: 2 —, 2 be
£1(Z) = sin (2Z;) + sin (Z2) +cos (Za) +1+14,
E3(Z) = cos (Z,) +sin (Z,) +1+1 .
The eight resudting zeroes of £ are
(1.5192 ~ ¢ 0.7354, 2.7119 + 4 1.5708) ,
(1.0421 45 0.9421, 3.7709 — 4 1.6949) |
(2.8864 +1 0.3374, 25369 + 1 0.9993)
(3.6998 — ¢ 0.2027, 4.4177 — 1.0325) ,
(5.6272 ~ 1 0.6207, 1.8145 + 5 0.4727) ,
(4.4859+14 0.1143F — 01, 4.6944 — ; 0.8796) ,
(5.6707 + 1 0.8982, 1.6556 4 5 1.3718) |
(6.4865 — 7 0.6303, 3.5311 — 4 0.8074) .
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