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Abstract

In this paper the following canonical form of a general LP problem,

nax & =67 X,
subject to AX > b

is considered for ){ € R™. The constraints form an arbitrary convex polyhedron {1™ in
R®. In Q™ a strictly interior point is successively moved to a higher isometric plane
from a lower one along the gradient defined in the paper. Finally, the highest boundary
point which makes the objective function value maximum is found or the infinite value
of the objective function is concluded. For an m « n matrix A the arithmetic operations
of a movement are O(mn) in our algorithm. The algorithm enables one to solve linear
equations with ill conditions as well as a general LP problem. Some interesting examples
illnstrate the efficiency of the algorithm.

§1. Introduction

The following cononical form of a general LP problem
maxZ = CT X, subject to AX > b (1.1)

is considered in this paper, where C? denotes the transpose of C,C = (c1,¢2, - -, énlt, K=
(zl,mz,---,iﬂ)T, A= (gt = Lpvoomg = L2 ~yne = (by,- ,bm)T. Note that
problem (1.1) is called general LP problem because X > 0 is not required speclially in the
constraints, that is, the constraints of problem (1.1) can form an arbitrary convex polyhedron
in an n-dimensional space R®. The convex polyhedron 18 an empty set if the constraints
of (1.1) are inconsistent. In this paper, {(1.1) is said to have no solution if and only if the
constraints are inconsistent.

Although L.G.Khachiyan published the first polynomial-time algorithm for linear pro-
gramming, the ellipsoid algorithm!®, in 1979, the methods which are practically efficient are
the simplex method and the method presented by N.Karmarkar in 19848251 In 1947,
G.B.Dantzig designed his famous simplex method, but the idea can be traced back to
1.B.J.Fourier in the 1820s(t%l. In showing how to find the best L., approximation to a
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solution of linear equations, he used the notion of a point moving along the edges of a
polyhedron from one vertex to another(l!,

If in the simplex method the objective point is moved along a broken line on the boundary
of the convex polyhedron, then Karmarkar’s algorithm is a method in which the objective
point is moved along a curve in the convex polyhedron. The isometric plane method pre-

slack variables or duality principle.
Throughout the Paper we always suppose that the dimension of the vector space R™ n >
2, the number of constraints m 2 1, and

Ci?=(ailrdiﬂr“':ﬂin):}£0: !:=1I”.lml

and naturally C # 0.

. §2. Description of the Method

The m constraints of problem (1.1) form a convex polyhedron ™ in R"™. Set

Ct?z{ailsﬂiﬂs“':ain): i:lr"'Jm'
(2.1)

The polyhedron 2™ may be denoted as

ﬂ""={XeR"|C‘f'Xzb;, i=1,-,m}.
(2.2)

We first suppose that 1™ js nonempty and has interior points.
The boundary 80)™ of Q™ consists of all or part of hyperplanes

i
Zﬂ;jz_.,* =0; , 1 ﬂiﬁm}.

1=1

H={XER"

(2.3)

The normal vector of F; is C; denoted by (2.1). The positive direction of vector C; passing
through X* directs to the inside of ™. The intersection of Fi and 30™ s called a surface

of {3™, denoted as

P =P nonm™ .
Regarding C in the objective function of (1.1) as a vector, we define the ¢-line passing
throigh Y :
L;={XeR“jX—Y=tO,teR1}, (2.4)

~ and denote ¢ > 0 as the positive direction of L. The objective function value in (1.1) is
increased with a point moving forward in the positive direction of L{ from Y. Therefore,
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the positive direction of L may be regarded as the c-height direction (or simply height
direction), and the hyperplane

Q; ={XeR"|CT(X-Y)=0} (2.5)

may be defined as the c-isometric plane {or simply isometric plane). Clearly, any two points
on the isometric plane have the same objective function value (i.e. the same height).

Let 4,..-,{,, be any permutation of 1,---,m. The boundary points of the convex
polyhedron (1™ denoted by {2.2) can be divided into three classes: the surface point, the
edge point and the vertex. The edge point is the point Y which satisfies

CTY =b;, i =l1,bp, ", by, 1<r<n, Y 0;C, #£0, Vay, -, a, € R, a? #0,
=1

1=1
CiY >bi, =141, -, im- {2.6)

In order to emphasize the degree of freedom, the edge point defined by (2.6) is usually called
an (n —r)-dimensional edge point. When r = 1, an (n— 1)-dimensional edge point is a point
on the surface of {1, and it is called a surface point. And when r = n, a O-dimensional edge
point 18 a vertex of {1™. If the dimensions are not specified, an edge point will mean only
the point satisfying (2.6) and 2 < r < n— 1 later on. Let Y be an (n — r}-dimensional edge
point defined by (2.6). We now call the intersection of r hyperplanes in the form of (2.3),

E';={:::ER“|CE[X—Y]=O, g 1w p} (2.7)
an (n — r)-dimensional edge of ™. The vector
d, =C - o;C, (2.8)
r=1

1s called the gradient of the edge (2.7), where the coefficients a;(3 = 1,---,r) are chosen
such that

Cld,=ClC-) o;CFC,,=0,i=1,---,r. (2.9)

=1

In this section we suppose that the initial interior point X9 is given. Assume the sequence
of interior points X%, X, ..., X*¥(0 € k € n— 1) monotonously increasing height have been
found, and the % linearly independent surfaces B, B,,---, P, recorded. Our algorithm
finds a higher interior point X**! and records the corresponding surface P, {or turn to
an appropriate exit] to complete an iteration or an iterative circle by the three steps as
follows. |

Step I. Construct the di-line

L% ={XeR"|X- X*=td,, t e R} (2.10)

passing through X* where the vector di equals C for k = 0 or denotes the gradient of
the edge intersected by P, , P, -, P, for k > 0. As in (2.4), t > 0 denotes the positive
direction in (2.10). L:‘,: does not intersect any one of A, , P, - -, F, for k > 1.

1) L:ﬁ does not intersect d{1™ in the positive direction. Clearly, in this case 2™ is non-

closed and the positive direction of ﬂ:i makes the objective function value increase infinitely.
Problem (1.1) has been solved. Go to the exit INF.
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ii) In the positive direction, L% intersects g0™ an (n — s)-dimensional edge point
Y*(1 < s < n), which is an Intersection point of s linearly independent surfaces By o By
(s is usually 1.)

Y'=X*+¢t,d, t, = min {((6; - T x*)/CT 4y > 0} .

1<i<m

a
C=) X0, A\ek i1 <s<n, (2.11)

1=1

then, by (2.7) and (2.5}, EJ. is located in the isometric Plane Q¢.. Theorem 3 in §3 gives us
the sufficient and necessary condition to determine if ¥* is the highest (n — s)-dimensional
edge point. If Y* is the highest vertex, then the solution is obtained. If ¥+ 18 the highest
edge point, then any point Z of ESe N AN™ is a solution of (1.1) and ¢TZ = cTy+ Go to
the multisolution exit MUL. Assume Y* is not the highest (n — s$)-dimensional edge point
or (2.11) does not hold. Let

YO = Xk 010(Y* — X*) = x* 4 8,6t.d,,
p {1, s=1orf; <05,

0<6, <1, 6= (2.12)
1/{(264),s > 1 and f1 > 0.5,

and record the surface P, = 2 € s). Go to Step IL
Png is linearly independent of E;:"':En and, by 0 < 4, < 1, CTY? 5 OoT x* and

Step II. Construct the projective ray of Ot
JEH = (X € pn X-¥l= e, (" Cy,,/CTC)C), t > 0) (2.13)
Passing through X* in the 1sometric plane Q0. Where _
Dy, = Oh:-H = (GTCHHL/GTO)C

is the projective vector of Cy, . All or part of J:,fl 1s located in Q™
i1} A portion of JEHL 4o located in 0™, namel Jrb1 intersects 30™ at the oint
v ? y y p

Zﬂ = YU + tﬂfk+1, by = Hll]'l {((bj = O;"Yﬂ)/cffk+l) - 0} .
1<5<m

Take
Xkt - ﬂgzﬂ o (1 — 52)}’“ = o i ﬁgtﬂfk+1 00 < 1 ; (2.14)

and go to Step III.
i} All of J:J'l 15 located in (3™ , namely J;{,'H does not intersect 9™ at any finite point.

Let g =1 in (2.14) and take X*+! 44 g0 to Step III.
Note that X*+1 5 , strictly interior point of ™ unjess 6y = 1in {2.12) and 6, = 0 in
(2.14). Evidently, we have
OV XF = 0 Tk

Step III. Investigate all the recorded surfaces P ... 5 . .
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i) If dpys # 0, then k + 1 < n; an iteration 18 completed. k + 1 = &, Xkl = X*. Go
to step L. |

i) If dgyr = 0, then k+ 1 < n; an iterative cycle 1s completed. The hyperplanes
P, -, P, determine a point V,. (Let # = 6; = 1in (2.12) and 83 = 0 in (2.14). We

can obtain an intersection point V,, of Fy - ., By, after the surfaces P, , -, Plp,, are
recorded.)
If V,, does not satisfy the condition of Theorem 3, then, by dr+1 = 0,
q k+1
C=YeiC,+ ), @G,
i=1 1=g¢+1
where oy, as, -, are all negative coefficients and 1 < ¢ < k+ 1. Record the surfaces

BB ,F’;q, g=k, Xkt = X*_ Qo to Step 1. There is at least one different recorded
surface between two successive cycles. If V., satisfies the conditions of Theorem 3, then
CTV, > CT X*+1, Create the vector V =V, — X k+1 which generates an acute angle with
C. And construct the v-line L®,,, passing through X*+1 gimilarly to (2.10). In the positive
direction, L),,, intersects 0™ at Y*. When Y* = V,, Y* is the highest vertex or edge
point of 1. When Y™ # V,, Y* is usually an (n — 1)-dimensional edge point, namely
LY., intersects the surface P, at Y*. Clearly, the surface B is different from any one of
P, - % Record B}, | = k, xk+l —> Xk Go to Step I and enter iterations of the
next cycle. There is also at least one different recorded surface between two successive cycles
in the case.

The convergence of the isometric plane algorithm is clear. Both bounded and unbounded
solutions of problem (1.1} can be obtained in a finite time of iterations. An iterative cycle
consists of n iterations at most. (Note that a number of iterations required for each circle
are not necessarily the same.)

We now investigate the parameters 6, and f in the algorithm. When 4, = 1 and 92 = 0,
the objective point rises monotonously along gradients of different edges. This is essentially
the simplex method 1] When 0 < #; < 1and §2 = 0, the objective point rises monotonously
along a broken line in {I™. This is similar to Karmarkar’s algorithm in a sense.

3. Theoretical Analysis

The possibility of the algorithm described in §2 will be concluded by the following The-

orems 1—4.
Theorem 1. Let Y be the edge point which satisfies (2.6) and r < n, and X* an interior

point of (1. Assume
C#Z)‘J-Cij1AJ+€R11.?-:1:"'17'-
—

Then the vector d, defined by (2.8) and (2.9) does not equal zero, and the line Y +td,.(t € R')
ss located in the edge (2.7). And

OTd. 20 ,
and d, 13 the vector which generates the minimal acute angle with C 1n the edge E. The

d.-line (2.10) passing through X* does not intersect any boundary face linearly dependent
on P, -, P,, where B, P, are the hyperplanes which form the edge (2.7).
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Theorem 2. Let Y be g surface point of 1™, which is located in the boundary face L
Assume

C, #tC, Vvte R!,

Then the projective ray J defined by (2.13) 35 located in the tsometric plane Q7 , and the
intersection of JI and 1™ 15 g line segment or ray, whick belongs to the tnaide of (1™ except
the end points.

Theorem 8. Let Y be the (n — r)-dimensional edge point satisfying (2.6). Assume

b

and there 13 at least a negative real number AMOng Ay, Az, -, A,. Then Y s the highest
edge point (r < n) or vertes (r =n) in the c-direction if and only if there 1s no positive real
number among A1, Ag, - - - A | -
Theorem 4, Letd. be the gradient defined by (2.8) and (2.9) of the edge (2.7),1<r < n,
and X* an interior pownt of 1™, Remove a hyperplane P, from the hyperplanes P,_, - .. i Y,
which form the edge (2.7). The remainder hyperplanes form the (n—r+1)-dimensional edge

E;'l ={X’ER"]CE(X—Y):{], LR R T % I 1<r<n, 1K<},
(3.1)
The gradient of (3.1) 15 denoted by d,_,. Let L:L"' be the d,_ | -line in the form of (2.10).

We have that, in the positive direciton, L:;“ sntersects Py, if and only if o < 0 1n (2.8).

In order to solve successively (2.9) and to determine the gradient dk, we need O(nk)
arithmetic operations using the positive definite symmetrical decomposition (LDL? decom-
position). And in order to find the mtersection point of 3Q™ and L:: in the positive
direction, we need O(mn) operations. Usually m > n > k; therefore an iteration needs
O{mn) operations, and an iteratjve cycle needs at most O(mn?) operations.

§4. Determination of Initial Interior Point

In this section we deal with the problem of finding the initial interior point X° and
simultaneously solve the problem of consistence of (1.1).

First, if O™ is degenerate, ie. 1™ is not empty but has no interior point, then the
equality holds in the constraints of (1.1), and we can decrease the dimensionality of the space
by using the equality or simply replace the equality with two perturbation inequalities!4l,
Therefore we can suppose that 2™ is non-degenerate. We now solve the inequalities

AX > b (4.1)

where A and b are as in (1.1).
Introducing a variable, we can convert (4.1} into the canonical form of 2 general LP
problem. In fact, let X™ be an arbitrary point in R™; then the problem

max 4 = —§,

4.2
subject to AX-f—{b—AXf-i-Aem) E2b £2>0 3
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is clearly a canonical LP problem in R®*! where the {n + 1)-dimensional unknown vector

(X) = (23,%2, " ; Tn, E)T, and

§
ESS G (4.3)
- L
A= max(ﬂ, max. (ZIEUIJ b,)) +83, 65>0. (4.4)
J‘=

0
If (4.1) has a solution X°, then (}E ) is clearly a solution of (4.2}. Conversely, if (4.2) has

X0 .
a solution ( o ), then XV is the solution of (4.1}). If (4.2) has a solution, but the solution

Xﬂ
is (E ),Eu > 0, then (4.1) is inconsistent. In fact, (4.3) and (4.4) lead to
0

b— AX" + Aey, > 0. | (4.5)

Noting (4.5) and £, > 0 in (4.2), we know that (4.1) is an inconsistent system.
It is easy to see the#t the constraints of (4.2) form the convex polyhedron 1™} in R***,

and that, by (4.3) and (4.4), " -
(s) B ( 1 )

is a strictly interior point of 1™ %!, Therefore, using the isometric plane method, we can

find the solution of (4.2).
With the solution of (4.2) we can usually obtain an initial interior point of (1.1) if (4.1)

1s consistent and non-degenerate.

§5. Numerical Examples

We have coded our algorithm. The program running on NI)100 computer uses LDLT
decomposition to solve successively (2.9). In order to make the most of the algorithm, the
program allows us to choose properly X” in (4.2) and the following six parameters,

ST1 — §; in (2.12) ER — error bound,
ST2 — 65 in (2.14) EU — infinitely great bound,
ST3 — 3 in (4.4) ED — infinitely small bound.

Example 1. Solve the linear equations formed by 40th-order Hilbert matrix

AX =b, a;; =1/(i +37), b= i, n=40. ' (5.1)

=1
The exact solution of (5.1} is

z; = 1, 'i=1,2,-“,40.
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We want to find the perturbation solution of the right-hand members with the perturbation
quantity 10~8; hence (5.1) is replaced by!4l
1 1
b—-10"% ! | <« AX <b+10-8 A (5.2)
1 1
Using the method described in §4 and choosing:
01 =08, 02 = 0.5, §; = 0.1, ER = 10712, EU = 1054, ED = 1018
X7 =(0.9, 09,--.,0.9)T

we obtain a solution of (5.2) as follows:

1.00000548, 0.99994156, 1.00013361, 1.00000466, 0.99990923,
0.99990284, 0.99994867, 1.00000707, 1.00005449, 1.00008161.
1.00008798, 1.00007752, 1.00005570 1.00002794, 0.99999886
0.99997199, 0.99994974, 0.99993358. 0.99992415, 0.99992145,
0.99992502, 0.99993406, 0.99994755, 0.99996434, 0.99998323,
1.00000301, 1.00002249, 1.00004057, 1.00005620, 1.00006843,
1.00007642, 1.00007940, 1.00007670, 1.00007677, 1.00005211,
1.00002933, 0.99999909, 0.99996115, 0.99991531, 0.99986143.

The number of iteration cycles is 6, and the total number of iterations is 28. If we choose
#1 =08, ; =05, 4, = 0.1, ER = 10~°, EU = 104, ED = 19-12
AT = (U, D:"'rﬂ)T :

then, after 40 iterations of 8 cycles, we have that X =

0.999517, 1.005445, 0.985203, 1.005554, 1.010444,
1.005098, 0.998457, 0.994318, 0.993145, 0.994134,
0.996270, 0.998738, 1.001001, 1.002770. 1.003935,
1.004501, 1.004540, 1.004155, 1.003459, 1.002561,
1.001558, 1.000532, 0.999549, 0.998662, 0.997906,
0.997309, 0.996886, 0.996644, 0.996584, 0.996703,
0.996992, 0.997440, 0.998034, 0.998761, 0.999605.
1000552, 1.001585, 1.002691, 1.003855, 1.005064.

Example 2. Consider Klee-Minty’s counter-example of a LP problem
max 7 = Z 10"'3_:53-,
3=1
it . 5.3)
subject to (22 10‘_3.7:3') +z; <1000 4 = 3,2, v~ .0, (
J=1
z2; >0, 17=1,2,-- . n.

- In order to get the highest vertex, the simplex method has to go through 2" — 1 iterative
cyclesl!l,
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We have tested solving (5.3) for n = 6,7,8. Since the constraints of {5.3) are clearly
consistent, we take

X7 = (0.1,0.1,---,0.1)7 ,

which is a strictly interior point of the constraint polyhedron of {5.3). The test results are
as follows. For n = 6, we choose

g, = 0.999999, #, = 0.000001, 63 =1, ER = 1078, EU = 10"%, ED = 107'2 .
After 15 iterations of 6 cycles, we have

X = (0,0,0,0,0,0.99999999999875 » 10*9)%
max Z = 0.99999990099875 » 1017 .

For n = 7, we choose
g, = 0.9, 6, =05, 3 =1, ER = 0.496873 + 10~¢ EU =107%, ED=10""°.
After 18 iterations of 6 cycles, we recnrd.the .highest vertex
Vz = (0,0,0,0,—0.73880  107%, —~0.12190 * 10~2, 1.00025 * 10'?)7

but have no max Z because of ER. Therefore the iterations restart from some interior point.
Altogether, using 31 iterations of 11 cycles, we obtain

X = (0,0,0,0,~0.76419 + 1074, —0.52122 + 107*, 0.99999 + 10™)" ,
max Z = 0.99999 * 10'2 .

For n = 8, we choose
§, =08, §, =05, 3 =1, ER=107° EU= 102, ED =107%° .

After 25 iterations of 8 cycles, we have
X = (0,0,0,0,—20 % 10~!, —1.47,-261.28, 0.97 » 10*4)7

max Z = 0.97=*10!%.

Example 3. Consider the cutting-stock prﬂblemlll

37
min Z:E 1o
i=1

37
subject to Za,-j:::_.,- =b, ,4=1,2,3,4;,z;, 20, 3=1,2, w5 B (5.4)
=1

where b; = 97, b; = 610, b3 = 395, by = 211, and a;;{(1 = 1,2,3,4, 7 = 1,2, ---,37) are
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listed in the following table.

_;r'12345678910111213141516171819
al,-2111111110000000000
ug,-0110000002221111111
a33-0001100000002111000
m,—o101032102100210432
7 20 21 22 23 24 25 26 27 28 29 30 31 33 33 34 5 36 37
;90 0000000000000 00 g
% 1 1.0 0 0 000000000000 g
% 0 08 2 2 211111000000 g
- ENEREEREFEREEE TR T T EDY

As a cutting-stock problem the numbers Z; must be nonnegative integers, but we first
consider (5.4) as a LP problem. Transform (5.4) into the canonical form

37
max (-Z) = — Z‘IJ‘,
3=1

37 37
» :
subject to Z{I{J-IJ- = b,; A, s Zﬂ{j.’ﬂj - —-b,; — &4, i = 11 2, 3,4,
g=1 1=1
T3 20, 7=1,2,--- 37, (5.5)

with €1 = 1077, ey = g3 = ¢, = 10-6. Using the method described in 84 and choosing
1 =0.9, 8, =05, §; = 10-2, ER — 107%, EU = 10%¢, ED = 10-!2
X" = (0,0,--,0)7,

we obtain an interior point of the constraint polyhedron after 46 iterations of 4 cycles. Then,
after 34 iterations of one cycle we obtain the solution of (5.5) as follows. Problem (5.5) has
multi-solution; one solution is

L1 = 13.32499999, Lo = 36.1249‘9931, &3 = 34.2250&]11, Ty — 2o =10 y
10 = 58.92499963, z;, = 57.02499993, z,, = 55.12500023 .
L1z = 19749999950, Tig — Zar = () ;

and
max(—2Z) = —452.2499999 _

Moreover, 34 iterations record the surfaces
Pdﬂjpﬁ 1P42:P1 1P41:P7 1}53 :F15rplﬁjPﬂ?:P45:P44:P351P401PET:P3E:P34 :
P141P391P261P251P31:P17} PSE}P.IE!PSE!PEBI P?ﬂ: P33:P13:P22:P23: P?'irpﬂﬂ .

Therefore, all optimal fractional-valued solutions belong to a 3-dimensional edge, for which
we know that |

Z4 —ZT9g =0, z)4 — 247 = 0, 212 = 197.4999995 :

Za'ijxj — bi — &y — ay, 13%13, 1 = 1,2,4, Ty > {}; _? = 11213’ 10, ]_1*1 12 . (5.6}
§
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We thus conclude that the LP problem (5.5) has no integer-valued solution, and that the
minimal objective function value of the cutting-stock problem (5.4)

37
min Z:rj- > 453 .
1=1

Let

T4 -2 =0, T14 — 225 =0, 233 — 237 =0, z13 =197, zz0 =1,
2z, + 22 + 23 = 97,

To + 23 + 2230 + 2211 + 22,2 = 610 — 197 = 413 ,

To + 2210 + 211 = 211,

Any integer-valued solution of (5.7) is an optimal integer-valued solution of {5.4}, which
makes

37
Y z; =453
7=1
#
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