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COMPUTATION OF MINIMAL AND QUASI-MINIMAL
SUPPORTED BIVARIATE SPLINES *

C. K. Chui
(Dept. of Math., Tezas A 8 M Unsy,, College Station, Texas 77848, USA)
| He Tian-xiao
(Dept. of Appl. Math., Hefei Univ. of Technology, Hefes, Anhui, China)

When multivariate splines are needed to approximate the solution of a certain problem,
to generate surfaces or solids, to analyze discrete data, etc., with specified grid and degree
of smoothness, it is important to seek locally supported (ls) elements whose polynomial
pieces have the lowest total degree. In addition, it is usually desirable to select those with
minimal supports {ms). In [1] and {2], de Boor and Héllig studied ms splines in the 3-and
4-direction meshes and pointed out that their study, of the 4-direction mesh is not complete.
In [3], we have shown that even in the 4-direction mesh, it may happen that there are too
few ms bivariate gplifes to generate all the Is ones. Hence, the notion of quasi-minimal
supported (gms) splines was introduced. In this paper, the uniqueness problem is discussed,
and recurrence relations as well as computational schemes for both the 3-direction and 4-
direction meshes will be given. One interesting property of ms and qms splines is that all
of them in the same space are needed to form a partition of unity. We will also characterize
those spaces which are spanned by these 1s functions.

As usual, A1) and A(?) will denote the 3-and 4-direction meshes in R? with integral grid
points, respectively, and Sk (AG)}), i = 1,2, the spaces of functions in C* whose restricions
on the triangular cells are polynomials of degree m.

The number of “independent” locally supported functions Sk (A1)} will be called the
locally supported spline cardinality of S (A7), denoted by # lss of Sk(AB)), i =12 It
is well known (cf. [6]) that

4 s of SE(AD)=dh (@)= (m-k-[EEI)im-2k+ (20D ()
and
k+1

# lss of s,‘:,(aﬂ'l)=dﬁ,(4)=%(m-k—[ )4 (3m — 5k + 1+[5:—31) (2)

3

where [z] denotes, as usual, the integer part of z.

In order that S,’:l(ﬁ(‘]) may be uzeful for approximation purposes, we must have positive
#1ss. In addition, given the smoothness condition C¥*, the lowest degree m is desirable.
Following de Boor and Héllig [2], we set '

d;(k) = the smallest m such that dy, (i +2) > 0.
From (1) and (2), we obtain

*Received June 28, 15987.



Computation of Minimal and Quasi-minimal supported Bivariate Splines 109

k 2r-1 | 2r k 3r 3r+1 | 3r+2
di{k) | 3r | 3r+1 do(k) { 4r+1 | 4r+2 | 4r+4
Jlss |2 |1 #las | 2 1 3
3.direction mesh Al 4-direction mesh A®)

r=0,1, .- r=0,1, ---

If g is an Is function m S&‘l (k) (ﬂ{l}) whose support is a convex polygon, we will denote
its support by

supp ¢ = {d1, -, ds}

where d;, - -+, dg are nonnegative integers, indicating the number of units (i.e. horizontal or
vertical edges, or diagonals) of the partition Al in the “ directions” ey, €3, €2, ~€1, —€3, —€3,
respectively, where e¢; = (1,0),e; = (0,1),e5 = (1,1). If f is an Is function in Sﬁ:(k](‘ﬁ‘{zl)
whose support is a convex polygon, it is clear that none of its vertices lie on a grid point
determined by only two grid lines, and its support.will be denoted by

suppf = {d1,- ', ds}

.
where d;,---,dg are nonnegative integers, indicating the number of units of the partition
A2} in the “directions” e4,e;,e3, €2, —24, —€1, —€3, —€2, Tespectively, where ¢4 = (1, —1).
These are shown in the followig figures.

3-direction mesh 4-direction mesh

Following [4], we denote by g/ and f; the ls functions of Si(k} (A1*}) and Sff:{ k) (A3,
respectively, with minimal or quasi-minimal supports. In addition, we will call g0 and f?
the initial ones.
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Space [ S5 (al) SR
ms spline | g5 —Q:E gg '
support [{1,9,1,0,1,0} | {0,1,0,1,0,1} | {1,1,1,1,1,1}

Space | SO(AT) S1{AT?)
ms spline | fO = fg
support | 10,1,0,1,0,1,0,1} | {1,0,1,0,1,0,1,0} | {1,1,1,1,1,1,1,1} | -

Space S2(AP)
Is element | f3, ms fo, ms | fg, qms
support | (LLL1,L,1,15,1) | {0,2,0,2,0,2,0,2) | {2,0,2,0,2,0,2,0}

Let
9f=gg*ﬂg*“'*£* 9?:1:=1:2:3 (3]
'-.___.:,-——"
and
i f:=fg*f§*”'*f§*1?1'::1!2:'”:6' (4)

We remark that g and f/,» = 1,2,3, were discussed by de Boor and Héllig [1,2] and
r,i = 4,5,8 were formulated in our earlier work [3]. We summarise these results in the
following tables.

Space Sa- (AW [ §F.,(aT)
ms element | g7 | g5 g3
support {f +1,r,r+ 1,77+ 1, 1"}

{r,r+1,rr+1,rr+1}
{r+1,r+1L,r+1,r+1Lr+1,r+ 1}

Space Sar (AT [ Serda (a')
ms element | fi | f3 24
support {rr+Lrr+irr+1,rr+1}

{r+1,r,r+1l,rr+1,rr+1,r}
fr+1,r+Lr+r+lr+1lr+1,r+1,r+ 1}

Space - Sra(a)

Is element | fi, ms | f§, ms | f§, qms

support {r+1Lr+1,r+1Lr+1r+1Lr+1r 1,r + 1}

{r,r+2,rr+2,r,r+2,rr+2}
{r+2,rnr+2,rr+2,r,r+2,r}

In addition, the “ uniqueness ” of ff,¢ = 4,5, 6, has been established in [3]. By using the
. same technique, we may also conclude the * uniqueness” of the other ms functions. Here
we say that the “ linearly independent” ms functions fy,- ', fo in a spline space S are ©
unique” , if g(-) = c¢f;(- — 7) for some i = 1,---,p, some 3 € Z? and some constant ¢ # 0
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whenever ¢ is an ms function with convex support. We remark that when the definition
of minimal support was given in [1,2], the notion “ uniqueness” was used but no further
discussion was included. In fact, the problem of uniqueness ig still open if the convexity
assumption is not imposed.

Theorem 1. The functions f{ and f; are -un-.'q-u: ms elements in 53" +1 &{2]) 15 the
“ ynigue” ms function tn f,'.'_ﬁ[ﬁ(ﬂ ), ¢, g5 the ® unique ® ms functions in S2r~1(Al)),
and g5 the “unigue® ms funciion in S(le(ﬁ (1)),

Skeich of Proof. We first consider A Let

-y for yzﬂ and z+4y <0,
Ai(z,y) = z for z4+y>0 and z <0,

0 otherwise;

y+zfor z4+y>0 and 2z<0,

Az(z,y) =¢ y—zfor 2>0 and y2z,
0 otherwise;
2y* for y>0 and z+y <0,
. 22 —(z+y)2 for z+y>0 and z <0,
el = (z — y)? for z>0 and y2 =z,
0 otherwise,

Then Ay, Az € S?(A2), D e S2(A(2), Following (3], we consider the integral operators

Ji = '/‘l:mb f((z,y) +t¢")dt, 1=1,4
0

and

0
Ji = [ f{(z,y) +te;)dt, 7=2,3

and set J = JyJsJ2J;. Then

3
r+‘Pn

]3r+3 3

J" A |y:=-o and z+y<o = Y

JrAilz}ﬂ and y>« = ( Pi

JrD'y}ﬂ and z+y<o0 ~ ¥ g
Jrﬂl T — y)3r+2q

3r+2

>0 and y>z = (

for some appropriate polynomials p;, §;,¢ and g, and the collections

{JrA;(—j):5€ Z2%i=1,2}

and

{J'D(-—j):3€ Z?}



112 C.K. CHUI AND HE TIAN-XIAO

are bases of ST, ,(A(®)) and $37+1(A2)), respectively. Hence, for any f in S§Jr_,(A(3)
with supp f = {d;,---,ds}, by using the first basis we obtain minimal pairs (cf. [3])
(diydiv1) =(r,r+1)or(r+1,r),i=1,...,8,dy =d,, and |
dy+dz 22r+1,da+d3 2> 2r+1, - -,dg + dy > 2r+1,
dy + d3 +ds = dg + dg + do, (5)
dy+dg +dy = ds + dg + d,.
Ifdy+d;+ds>3r+3andds+dg+d; > 3r + 3, then we have

suppf;{r,r—l- Lrr+1l,r,r+1,r,r+1} = supp f1

or

sSupp f;{r+1,r,r+ 1,r,r+1,r,r+1,r}=supp f;

so that f 1s not ms. Consequently, if f is ms, then we must have di+dz+ds <3r+2 or
d7 +dg + di < 3r£2, or both. In this case, using the same argument as given in [3], we

have
f=cfi(-—7) or f=cfi(-— j) for some ¢ # 0 and some j € Z°,

For any f € Sr12(A3)) with supp f = {d1, - -,dg}, by using the second basis we also
obtain minimal pairs (d),di4,) = (r +1,r + 1),i1=1,---,8,dy = dy, and
di+d222r+2,do+ds>2r+2,- ,dg+d; > 2r + 2,
dy +dy + dg = dgs + dg + d,
d7 + Dg +dy =da+ dg + ds.
If dy + dz +ds > 3r + 4 and dy + dg + d; > 3r + 4, then

suppf;{r+1,r+ Lr+Lr+1,r+ Lr+1Lr+1,r+ 1} =suppf:;'

so that f is not ms. Hence, if f is ms, we may conclude that d; + do +ds < 3r 4+ 3, or
d7 + dg + d1 < 3r + 3, or both, and it follows as in 3] that f = cf35( — j) for some ¢ # 0
and j € Z2.

To study the 3-direction mesh, we set
for z<0 and y>0,

otherwise;

1
El(m:y) = {0

1 for z>0 and y> gz,
Eﬂ'(z: y) e _ E

0 otherwise;

y for z<0 and y>0,
H{z,y) ={y—zfor 2>0 and y>gz,

0 otherwise

where E|, E; € 55(A(1)), H € S2(AM), and consider
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j — JanJl.

Then {J"E;(- —j) : J € Z%,7 = 1,2} is a basis of SZr-Y AU, and {JTH(-—j):j € Z%}
a basis of S§:+1(&{1)). Hence, for any f in SZT~1(A()) with supp f = {d1, - -,ds}, the
first basis yields minimal pairs: (d;,d; 1) = (r,r+1) or (r+1,r),s=1,---,6,d7 = d;, but
instead of (5), we have

di+dy > 2r+1,dy+ds>22r+1,---,dg+dy 2 2r+1,
dy + dy = dy + ds,

dy + d3 = ds + dg.
Similarly, for the space 527 ,(A(1)), the minimal pairs are (d;,d;y1) = (r + 1,7+ 1),2 =
1,---,6,dy = d;, as a consequence of using the second basis, and again instead of {5} we

have
d1+d2Ezr+21d2+d322r+2:"'rdﬁ+d1 > 2r + 2,
dy + dz = dq + ds,
da + ds = ds + ds.

This will complete the proof of the theorem.
From the property of box splines (cf. [8]), we have the following

r—1

Proposition 1. Set By, = gs~t and By, = f{~',r 2 1, where V| = {e1 :r,eq i e3:
r},Vo ={e1:r,ep i r,e3 : r,e4 : r}. Then for any v; € V} and vz € V2,

Dy, g7 (") = {8 * Bv,\u,) (1) — (g * Vv, \wi) (- = ua),
Dy, T () = (13 * Bvy\ea ) (1) — (£ * Bva\es ) (- — v2).
Proof.
Dy, 95 (-) = Dy, (g * Bv,)(")
= Dy, [ [p, Bvi(-— (3,1))g? (s, t)dsdt
= [ [ra 90(8,8)[Bvires (- — (8,8)) = Bvyruy (- — o1 — (s,t))]dsdt
= (g?(s,t) * By,\o, } (1) — (8] * Bvi\e, ) (- = v1).

Similarly, we can prove the formula for Dy, f7(-).
From Proposition 1 and a formula in [8], we also have

Proposition 2. If z =}, fyv and r > 1, then

(#V1 — 2)gf () = D _[ta(gf * Buy\o) () + (L = ) (g’ * By, \v)(- — v}];

H = Ztuu and r > 1, then
Vs

(#V2 — 2) 11 () = D _[t(f2 * Br\o) (1) + (1 = to){£ * Bya\o)(- — v)]-
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In order to tonsider computational schemes for gf and f], we need to decompose each
convolution in (3) and (4) with g0 and f by using integral operators

(L) y) = [ (@) + b, §=1,2,3,4 (6)

as follows. :
Lemma 1. (i) gixg = (IsL1)"g, g€ Sjl(k](ﬁ“)), (i) fix f=(LLLL)f f€E
ng(k} (‘&[2})

Proof. First, note that by setting

o(z) = (¢ - 1)/(iz)

we have

(95 % £)(z,9) = f(z,y)s(2)s(v)s(z + v).
On the other hand, '

-

6,9 = [ " fy)x(z ~ t)dt (7)

where x is the characteristic function of [0, 1]. Thus

(1. ) (2, v) = f(=, v)s(=).

ABS)=y) =

z—1

Similarly, we have

(If) (=, v) = f(z,v)s(y),
(I f)(z,¥) = f(z,v)s(z +v),
(1af) (2, ¥) = flz, ¥)s(z - v).

This completes the proof of Lemma 1.
Next, consider

gt = (IZ)gf and TN = (QIIGITM

i

where

D=L -1 I3=I I3 B=5L --L, "=5hL -4,
N e’ e e ¥l e e

L% u " m

and it 1s obvious that

f‘r-}-l - ff‘iLLLl - Iifir;l,l,l,ﬂ . [I4I3)fir:1,1,ﬂ,ﬂ — (Iifdfz)f:u,n‘u'n i (I4I312I1)f:-

|

Then, we have the following
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Proposition 8. For the 3-direction mesh,
9: e S:: :I:‘:l(ﬁm)
where k.1_1 — k112 - —1, k1‘3 = 0,&111 - dl,? = 0, d1,3 = 1, and 1
max(m,n,u),l; = 3r + m+ n + u. For the 4-direction mesh,

2r+m4+n+ u—

fr 11,1 4,0 & Sdi Nt [a{zl)

. 2,5H2

where k2,1 = kg2 = O,k23 = Lkay = ka5 = kag = 2,d3,) = dzz = l,dg3 = 2,dy4 =
d2i5=d2'ﬁ =4, and

pia = 3r+m+n+ u+ v — max(m,n, u,v),

lo=4dr+m+n+u+v.
"Proof. We only give the proof for g;' . Since

grmm = (R IPIP)GE = (I IP) (60 » By,) = o0 % (I I2 I7) By, = g2+ By

4

where V =V, U {e; : m,ex i n,e3;u} = {e; : v+ m,e5 : r + n,e3 : r + u}, all the partial
derivatives of gt"" "% of order kl ; + pq are cnntmunus In addition, from Lemma 1, we

know that the-total degree of g * By is that of g0 plus #V, which is d; ; + ;.
We now consider the following computational schemes:

63:9:100( — (&, 1)) = gf (- ~ (K, 1)) = gf (- = (k + 1,0)),
20 N0 = (kD)) = gl = (k) - g0 - (K, 1+ 1)),

207 = (kD) = G0 = (k1) — g7 — (k+1,1+ 1)),
2SO0 — (k) = F1( = (kD) = F7( = (k+1,0),

;y rllﬂﬂ(_(k”)_ rlﬂﬂﬂ(_(kt)]_ r1nnn(_[k1+1])

sefi O = (k) = 00 = () = F7NOO( ~ (k4 1,14 1)),

s fit = (B D) = N0 = (k1) — £7VRO( - (k4 1,1 - 1)),

From these formulas, we can use the computation procedure in [5] to determine the Beziér
nets of the polynomial pieces of ¢, f7 for all r,s.
From the properties of the initial Is functions and the generating formulas (3) and (4),

we have the following
Theorem 2 (Partition of unity). For each r = 0,1,---, we have

z__-gez: gs(-—7) =1,

iezaloi(-—2) + a2 - 7)) =1,
Sienlil-i=1,

Cien(fl =D+ K- =1,
E;ez;ﬂfﬂ' ~ N+ Al-D+ B - =1
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Next, we study the basis problem for the spaces Sﬁf[k](ﬁ{"}). Let Gy = {d1.1, " ";d1,6}
and Go = {dz1, -~ ,d2,3} be closed convex sets in R2. From the results in 1], [2] and [3],
we know that the collections {g/ (- —j) :4 = 1,2, € Z2n Gy}, {g5(-— 1) : 7 € Z2 NG},
(Grl—5):i=1,2,7€ 220G}, {fi(- = 1)1 € 22 NGz} and {fI( - j}:v=4,5,6,7 €
Z? N Gy} span the spaces {f € f € S2r-1(AM): supp f C G1}, {f € S, (a):
supp f € G1}, {f € 837, (A®): supp f C Gz}, {f € 8331 (A3): supp f C G2} and
{fe 83+2(A2): supp f C G2}, respectively. Thus we have the following

Proposition 4. Every box spline f in Sffi{ k) (A1) can be written as a linear combination
of the translates of ms (and/or gms) splines in the same space whose supports are contained

in supp f.
We now discuss the problem of global basis. Let §(A, ) = {f € S(A): supp FuQl # 0},

Theorem 3. Let { be a rectangular region. Then

span {9{( - 1),95( 2 E)} = Sg:_l(ﬁ{”,ﬂ) @ r=0,1,
span {g5(- —2)} = 832,’.'_,,_1(&[1),[]] =

and

»

- Span {ff(‘"‘i):fg("ﬁ)}= Sf:+1(5{2]:ﬂ) < r=01,
span {fI(- —7)} = Serid(a?,0) & r=0,
span {fI(-—7), fe(- — k), fo(- —3)} = SIrE3AB) Q) e r=0, L

Proof. The necessary conditions can be proved by using the fact that dim Sé“,{ k}(ﬁ“] ,§1)
does not exceed the cardinality of the corresponding spanning set.
Analogously to a result in {3], we can prove the sufficient conditions by noting that

S:f,-{k)(ﬁ“]: Q) =Hgx + P+ B

where Ilg (x) denotes the space of polynomials of degree d;(k), P the linear span of the
corresponding truncated powers (or cone splines), and B the linear span of the correspinding
box splines (cf. [1], {7})-
For 1= 1,1f
3k

dl(k) = E’: (8)
then Iy (xy and P C B, and by using Proposition 3, Sﬁlw}(&“},ﬂ) is contained in the
linear span of the corresponding ms splines ¥or : = 2, if

dﬂ(k) > %1 (9)

then Iy, (xy and P C B, and from Proposition 3, .S'{'fﬂk]{ﬁ{m, (1) is contained in the linear
span of the corresponding ms (and /or gms) splines.

If ¥ = 2r — 1, then d;(k) = 3r and (8) follows provided » = 0,1. If k = 2r, then
d (k) = 3r + 1, so that for the special case r = 0, inequality (8) holds. For the 4-direction
. mesh, in each of the three cases (i) k = 3r and r = 0, 1, (i) £ = 3r + 1 and r = 0; (iii)
k = 3r+2 and r = 0, 1, inequality {9) also holds. This completes the proof of the theorem.
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