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ON THE PROBLEM OF BEST RATIONAL APPROXIMATION
WITH INTERPOLATING CONSTRAINTS (I)* V)

Li Jia—kai Xu Guo-liang
(Computing Centler, Academia Sinica, Besjing, China)

- Abstract

The aim of this conjoint paper is to discuss the problem of best rational approxi-
mation with interpolating constraints. In Part I ,we give the necessary and sufficient
conditions for the existence of the best rational approximations and establish some
characterizatoin theorems for such approximations. The problems of uniqueness, the
properties for the set of best approximations, strong uniqueness and continuity of the
best approximation operator are considered in Part II. The results obtained in this
paper are the completion and extension of those given in [1].

§1. Introduction

Let m,n and, ¢t be nonnegative integers {i.e. m,n,t € N},

E

a2 <3 < <3, <D,
and {ko,k1, - ,ks} € N such that

a
0k =¢t, 1 =0,1,---,8; kEZ[k,:+l]£m+n.
§=0 |
Let

H; = {P:P(z) =) a;z’, a; € R},
— _
R{m,n) = {P/Q: PeHn,,Q € H,, P/Q irreducible}.
For g € C*[a, b], we define the set R;(m, n) to be

Ri(m,n)={ReR(mn):(R-g)(z;)=0,1=0,1,...8; =0,1,..., k;}.

‘The problem that we wish to consider in this paper is: For a given f € Cla,}], find an
element R from R;(m, n), such that |
If—R|=__inf ||f =T =di(f} (1.1)
| TERl{m,n] |
where || - || denotes the Chebyshev norm in Cla,b]. -

The set R,(m,n) is called the interpolating restricted range. The cardinalities about
this set are discussed in [2]. We assume in this paper that R, {m,n} N C|a, b] # ¢ and that
the denominators of the elements in R, (m, n) N Cla, b| are positive on |a, b).

Next we study the solvability of problem (1.1) and the characterizations of its solutions.

* Received November 7, 1987, |
}) The Project Supported by Science Fund for Youth of the Academy of Sciences of China.



234 LI JIA-KAI AND XU GUO-LIANG

§2. Existence
For the given g € C*[a,b] , we introduce first the following sets:
L(m,n)={(P,Q) e H,.,x H, : (P - Qg)){z;) =0,
| $=0,1,.,8 7=0,1,... k)

Ro(m,n) = {P/Q € R(m,n) : 3¢ s.t. (¢P,qQ) € L(m,n)}.

Then we introduce the following problem which is related to the problem (1.1): Find R €
Ro(m, n) such that

|f ~ Rl = inf{[|f = T} : T € Ro(m, )} = do(f). (2.1
It is easy to deduce that R, (m,n) C Ry(m,n), therefore |
' do(/) < d(f). (2.2

Next we discuss the solvabilities of problems (1.1) and (2.1) and the relationship between
them. _

- Example 1. Let m=0,n=1, |a,b] =[0,1], s =0, ky = 0, 2, = 0, and g = 1. Then we

have |

R, (f": n) = { :a € R}, Ro(m,n) =R;(m,n) U {0}.

az + 1
" a) Take f = —2z + 1, then (1.1) is unsolvable. The reason for this 18, for any R &
Ri{(m,n), |[f—R||>1, and Ry = :.z: :-/ffk € Ry(m, n) such that |[f — Rx|| — 1. Therefore

di(f) = 1. However , problem (2.1) is solvable and B = 0 is one of its solutions.

b) Take f = C (constant), then for any a > 0, R = 1/(az + 1) is a solution of problem
(1.1) if C < 1/2, while R = 0 is the unique solution of (21) if C < 1/2.

c) Take f = C,C > 1/2 and C # 1, then the two problems have the same, and infinitely
many, solutions. .

This example illustrates that the solvability of (1.1) is a complicated problem compared
with the problem of ordinary best rational approximation. For problem (2.1), however, we
have the following determinate conclusion.

Theorem 1. Problem (2.1) is solvable for any given f € Cla, b].

Proof. Similarly to the proof given in, |3, p.155], there exists a sequence

{Rk = Pk/Qk:k= 1:2:"'} C RO(m:ﬂ]

such that
Pe—P, Qe —Q, IQl=1Ql=1 P/Q- f]l = dolf), (2.3)

where P/Q is the irreducible form of 2/Q. Now we shall show that P/Q € Ry(m, n).
By the definition of Ro(m, n), there exist g, such that ~

(-plek) = Qk(Hn Qk) = L(mlﬂ')l

~and w(z) = [I;_o(z — 2:)**! can be divided exactly by ¢x. Since g.s are bounded above ,
we may assume gx — g without loss of generality. Then we have from (2.3) that

Ph_“""qpr ok__"'?'é*
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Therefore | |
B (2:) — (aPY)(z), O (z:) — (¢0)9) (=),
t=0,1,...,8 7=0,1, .., k.

From
(ﬁk — Qék){”[zi) =0,2=0,1,..,8 7=0,1,..., ki,

it follows that
(¢P — qu)m(z,-] =0,1=0,1,...,8 7=0,1,..., k;,

ie, (gP,qQ) € L(m, n). Then P/Q € Ro(m,n). It implies that P/Q is a solution of
problem (2.1).
Now we can consider the solvability of problem (1.1).

Lemma 1. Let R = P/Q € R (m,n). Then
card(Ry(m,n)) =1

tf and only if m+ n < k+ d(R), where card {-) denotes the cardinality of a set ,and
d(R) = min{m — 3P, n—9Q}.
Proof. Suﬂicienf:y. Let By = P, /@, € Ry(m, n). Then it is easy to deduce that

" (PQ-PQ)) () =0, §=0,1,..,5 7=0,1,.. k.
This means that P, Q — PQ; has at least k zeros. Since
3(P,Q - PQ,) < m+n—d(R) <k,

so P1Q — PQy =0, and then R; = R.

Necessity can be derived directly from the theorem established in [2].
Let
X={z,:1=0,..,3},

Y(R)={ye€la,b]:]|flv)— R(y) |=If - R||}, R e Cla,b),
R (m,n) = {R € Ro[m,n): ||f - R| < ds(f)}.

Then one has from Theorem 1 that R{{m, n}#é.

The points in Y(R) are called deviatson points, and those in Y{R)N X are called neutral
devtation points.

Theorem 2. Let f € Cla,b]. Then problem (1.1) is solvable if and only if one of the
followsng two conditions is satisfied: |

(i) SReR(mn), suchthat Y(R)NX £ porm+n < k + d( R).

(ii) There does not ezist such an R which satisfies

a) R=P/QER£(m,n)\R1[m,n], |

b) 35 (0 <1< s), each of which is an even snteger for z; € (a,b), sush that

(P f_[[:r - z,)%,Q fI(z - z.-]"‘) € L(m, n).

-4=0) 1=0
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Proof. If condition (i} is valid, then by Proposition 1 in 1] or Corollary 3 and Lemma 1
in this paper , the theorem holds. If problem (1.1} is unsolvable under condition (ii), then,
similarly to the proof of Theorem 1, there exists R; = P;/Q; € R.1(m,n), such that

5y — Py 1y —9, Q5] = 1@l = 1,
”R.f o fli— d1(f),

and
17 = B/Q)| = du(f),

where P/Q is the irreducible form of P/Q. Since (1.1) has no solution , we have £/J ¢
R;(m,n). Besides, it is easy to show that (P, Q) € L{m,n); then P/@ € Ro(m,n). Thus
P/Q satisfies condition a) of the theorem.

Since Q; > 0 on [a,b], if z; € (a,b) is a zero of Q, its multiplicity must be an even
integer. Hence, from the boundedness of P/Q , z; is also a zero of P with at least the same
multiplicity. Then condition b) is satisfied by }?’/ Q. This is a contradiction. Therefore (1.1}
is solvable.

If (1.1) has a solution , we shall prove that condition (ii) must be true without condition
(i) being valid. This proof needs the characterization theorem. We leave it to §3.

Corollary 1. Suppose that the interpolating conditions are imposed on one or both
end points of the interval [a,b], and condition (i) is not true. Then problem (1.1} is solvable
if and only if the solution of (2.1) is in R;{m, n). Furthermore, if (1.1) is solvable, then the
two problems have the same solutions.

Lzample 2. Take [a,b] = [0,1],¢ = f, f € C*[a,b]\ Ry(m,n). Find R R(m, n), such
that

RU(0) = f)0), 7=0,1,.. k-1,

If — Rl| = min.

We can see that R is a kind of approximation between ordinary best rational approximation
and Padé approximation. In practice it may be a more suitable approximation of f for some
special purposes. The conditions of Corollary 1 are satisfied in this case.

Corollary 2. If condition b) in Theorem 2 is not valid for any R — P/Q € (Ro{m,n)\
R (m, n)) N Cla, b], then problem (1.1) is solvable for any f Cla, b).
Example 3. Take [a,b0] =[-1,1],9=1,m=0,n = 1,z =0,35=0, kg = 0. Then

1
Rilpn) = {u:r+ 1

Since Ro(m,n) \ R (m,n) = {0}, and R = 0 does not satisfy condition b} of Theorem 2,
problem (1.1) is solvable for any f € C|a, d)].

a€ R}, Ro(m,n) = Ry(m, n) U{0}.

§3. Characterization
For R € R;{m, n) N C|a, b],_deﬁne

P - RQ={P-RQ:(P,Q) € L{m,n)},
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then P —~ RQ is a linear subspace of Cfa, b].
Theorem 3. Let R € Ri(m,n) N Cla,b], f € Cla,b] \ Ri(m,n). Then R is a best
approzsmation of f in Ry{m,n) if and only if

seifp, fv) - Rly))é(y) <0, ¥¢ € P - RQ.

Proof. Sufficiency. f B = P/Q is not a solution of (1.1), there exists R* = P*/Q* &
R,(m,n), such that |[R* — f|| < ||f — R|l. Let ¢ = P* ~ RQ". Then ¢ € P — RQ. Let
o(y) = sign{f — R)(y). Then

oW/ - B*)y) S If - R < |f — Rl = o(9)(f ~ R)(¥), y € Y(R).

Therefore o(y)(R* ~ R}(y) > 0. That is, (f — R)(y)¢(y) > 0, Yy € Y(R). Since Y(R) is a
closed set, inf ey (r){f — R)}{y)¢(y) > 0. This is a contradiction.
Necessity. Suppose there exists ¢ = P* — RQ* € P — RQ, such that

ot U — B)lyjely) > 0.

Let |
Ry(z) =

Q+AQ+

»

Then we hate from Lemma 2 of [2] that Ry € R;(m, n) when ) is sufficiently small. Now
we shall show that A > 0 can be chosen small enough, so that

If — Ra|l < |[f — R.

Let .
X1 ={z€la,b:(f— R)(z)é(z) < 0}.

Then X, is a closed set, and X; NY(R) = ¢ . Therefore, if we let
sup |f(z) — R(z)| = 4,
zEX,
then 4 < ||f — R||. Thus A > 0 can be taken so small that
IR— Rall < |if — R| - u- (3.1)
It follows that, if z € X,

£(z) - Ra(3)] < 1f(2) ~ B(z)| + [R(z) — Ra(2)
<u+l|R- R <[if - Rl

If z € [a,b] \ X3, since (f — R)(z)¢(z) > 0, we have

_ o(z)¢(z) |
o{z)(R ~ R,)(z) = AQ(z] 2G5 < 0. (3.2)

Then the two terms on the right side of the equation
£(z) = Ra(2)| = lo(z)(f - R)(a) + o(2)(R - Ra)(a)}
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have opposite signs. It follows from (3.1) and {3.2) that

e - Rl < maz(if(e) — R\, ARG - Radaly <\ - Ry,

Hence {f{z) = Ry(2)] < |f - Rf| for all 2 € (4,3}, and then |f - R,}j < ||f - R\
Corollary 3. Let R € Ri{m,n} N Cla,b|, f € Cla,b] \ Ry(m, n). Then R is a best
approximation of f in R;(m, n) if and only if for any R, € R, (m, n) there exists y € Y (R),
such that
1F(y) — Rul9}| 2 || — R|l.

The Alternation Theorem given in [1] can be derived from Theorem 3. In order to carry
out the proof, we now introduce

Lemma 2. Let R = P/Q € Ri(m,n) N Cla,b]. Then

(i) Ifm+n<k+d(R),

P - RQ = {0} .
(i) If m+n>k+d(R),
P-RQ= %Hm+n—d(ﬂ)—k ;

Proof. Conclusion () can be derived from the proof of Lemma 1. Next we prove (ii}.
Let ) | |
¢ =FPy—RQo €P — RQ, (P,Q0) € L{m,n) .

Since QFy; — PQp can be divided exactly by w , we have

Fo—-P
= i Q Yo = -“'QtEP: FEHm+n-—d(R]-k '

- On the contrary, let p{z) € Hyin-d(r)—k . Since. P and Q are coprime to each other,
there exist polynomials Py € H,,,, Qo € H,, (see [1]), such that

pw = PDQ“ PQCH

that is, pw/Q = Py — RQo. This means that {F, Qo) € L(m,n). Hence
i
¢

Theorem 4. Let R € Ri(m,n) N Cla,b],f € Cla,b] \ Ri(m,n). Then R 15 a best
approzsmation of f in Ry(m, n) if and only if one of the following three conditions is satisfied

() Y(R)NX#.

(i) m+n < k+d(R).

(iiy 7 = f— R alternates at least m + n — d(R) — k + 2 times according to w (the
meaning of alternating according to w can be seen in [1]).

Proof. Sufficiency. If condition (i} or (ii) is valid, then R is a solution of (1.1) by
Lemma 1 and Corollary 3. Now assume that (iii) is true and we shall prove that R is a best
approximation of f. On the contrary, there is ¢ = wp/Q € P — RQ from Theorem 3 , such

that ;
(f — R){y)¢(y) = w(y)}(f — R)(v)p(¥}/Q(y) >0, VyeY(R). (3.3)

¢

reP - RQ.
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It follows from condition (iii) that p(y) alternates at least m+n—d{R) —k+2 times. That is,
p{z) has at least m+n—d(R)—k+1 geros. Hence p = O by noting that 3(p) < m+n—d(R)—k.

This contradicts (3.3).
Necessity. If (i) and (ii) do not hold , then for any p € H,,4+n—d(r)-&, We have from

Theorem 3 that

. w(y)(f — R)p(y) < 0. | (3.4)

Let
V - {-u[y) ERm+n—d{R]—k+1 .

v(y) = w(y)(f — B)(W)(L,y, ...y HEI=FT y e Y(R)).
Then V ¢ RmM+7—d(R)-k+1 j5 4 compact set , and relation (3.4) implies that the inequality

(v,e) >0, veV

i8 unsolvable. Then by the theorem on linear inequalities and the Carathéodory theorem(
gee [3),p.17-19) there exist t; € Y(R), such that

a<t) << - < <b, I<m+n—-d{R)—-k+2,

! {
ZA;U(#; = 0, ZA‘ =1, A; 2 0.

F =1 ==

Let a; = A;w(t;)(f — R)(t;). Then the relation above can —
t
Y aill b, e T TERITET 2,
1=1

Since {z7}} is a Haar system , we have
l=m+n—d(R)~k+2, |a;| >0 and a's change sign with 1 alternately.

Therefore w(t;)(f — R)(t;) change sign with ¢ alternately, and then the theorem is proved.
In order to complete the proof of Theorem 2 , we introduce the following distinct facts

without proof.

Lemma 8. Letto <t; <---<ty, and let p be a polynomial. Suppose that
p(t;) = (—1)*A; (2=0,1,---,1), and A;'s do not change sign with s (3.5)
and
plt;) =p'(t;)=-- = p{""'}(t;] = 0, 1of there are k;(> 0) t's cotnciding unth ;.

Then p has at least | zeros (counting multiplicity) on [to, t)], and if Xg # O (or Ay # 0, or
AoA; # 0), these zeros are contained in the interval (tg, 8] (or [to, 8}, or (o, t:1) ).

Now we are in a position to finish the proof of Theorem 2.

Suppose that (1.1) has a solution R and there exists R; = P;/Q; which satisfies condi-
tions a} and b) of Theorem 2 . We shall come to a contradiction. Let ¢ = []{_,(z — x;)*.

Then by using
If — Rafl < ||f — RY
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and Theorem 4, there exist ¢; such that a < t; < t; < .- < Em+n—-d{R)-k+2 < b,

w(t:}(B1 — R)(t:) = w(t:)(Ry — [+ f — R)(t;) = (1) A,

Ai's do not change sign, 1 = 1,2,---,m+n — d(R) — k + 2. Let w;(z) = w(z)/g(z). Then
by Lemma 2 ;

Pi(z)Q(z) — P(z)@Q1(z}) wwip wi¢p
Q1(z)Q(z) Q@ @1Q°

where p € Hy, +n-d(R)~k. Since j; are even integers when z; € (a,b), and Y(R) N X = ¢,
we have

w(z)(Ry — R)(z) = w(z)

p(t;) = (-1)'X;, i=1,2,- - ,m+n—d(R)-k+2,

and i;a do not change sign. It follows from Lemma 3 that p has at least m+n—d(R) —k+1
zeros, and hence p = 0 and R = R;. This is a contradiction and then the theorem is proved.

Finally, we point out that Theorem 4 can be used to construct the Remes algorithm for
computing the best rational approximation with interpolating constraints. It is a natural
and convenient tactics to replace the interpolating constraints by linear ones. That 18, we
try to find a solution of problem {2.1). Therefore it is important for us to introduce problem
(2.1) and to discuss the relationship between the two problems.

»

&=
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