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Abstract

In this paper, an iterative algorithm for solving a coefficient inverse problem 1is
submitted. The key of the method is to project an unknown coefficient function on
a finite dimensional function space. Thus, the inverse problem can be changed into a
nonlinear algebraic system of equations.

§1. Introduction

Now, the coefficient inverse problem of differential equations is becoming more and more
noticeable in the.fields of economics, science and technology, national defence and so on.
It can be applied to many aspects such as resources prospecting, system identification,
telemetering and remote sensing, etc. Many authors studied the problem and presented a
lot of valuable results in theoretical analysis and numerical computation!23, However,
since the inverse problem is nonlinear and ill-posed, much difficulty remains in theoretical
analysis and numerical solution. So, there are still a lot of problems to be solved in both
respects.

We will take the coefficient inverse problem of the one-dimensional convection-diffusion
equation for example and derive an algorithm to solve 1t.

Consider the initial-boundary problem

‘;’:’ a“l (k(n:)g—ij P t]g—:— ~ flzt), O<z<1, £>0, (L1)
u(z,0) = yp(z}, O0<z <], (1.2)
F(O,t) = go(t), wu(l,t)j=gq(t), t>0, (1.3)

with additional seasured condition
Pu(,t) = h(t), t>0, (1.4)

where k € & = {k € H'{0,1]; k(z) > k. > 0,z € (0,1) }, v, f, 9o, 91 and h are given functions,
and P is an operator, for example

Pu(-,t) = u(zq,t), =z0€(0,1) (1.5)

or

Pu.,t) = g—:({),t}, (1.6)
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and so on.

By the general theory of differential equations, the {classical or generalized) solution
of problem (1.1)-(1.3) exists and is unique under certain conditions. But now, we aim at
finding k € @, such that the solution u = u(k;z,t) of problem (1.1)-(1.3) satisfies the
additional measured condition (1.4). This is the “inverse problem”.

This problem has an important background in physics. If v = 0, (1.1) is a heat conduction
equation, the problem is to find the thermal conductivity of an inhomogeneous materiall®].
If v # 0, it is a problem of identification of the diffusion coefficient in a water quality model
for a riveri4l. The existence and uniqueness of the solution of the inverse problem have been
discussed in [6]; we only put forward an algorithm to solve it.

§2. An Iterative Algorithm

Through a simple map, (1.1)-(1.4) can be changed into the following form

Z_: B g;(k(zlz_:] + v(=, t)g_: = f(z,t) — g(t)k'(z), O<z<1, t>0, (21)
u(z,0) =u0(z), O0<z <], (2.2)
u(0,8) = u(l,§) =0, ¢>0 (2.3)

and
Pu(-,t) = A{t), | (2.4)

where v, f, g, ug, and A are given functions.
2.1. Appraximation of the inverse problem
Suppose 4, - - - , €, are linearly independent functions in H}[0,1}, and E,, = span {e;,- - yen}-
For any k € =, let

u” = Z c;(t)e; ()

be an approximate solution of problem (2.1}—(2.3).
Taking the inner product of e;{j = 1,-- -, n} with equation {2.1) in L?|0,1], we have

du du Ju :
(E;,c_,-] + (k-a—z—,c}) + (UEE,EJ') = (f,e;) + glt)(k,e3), 7=1,--,n
Substituting u by u® = z: ¢;(z)e;(t) in the above formula and making a simple arrange-
=1

ment, we obtain

A%+ [Ba (k) + Va()]Clt) = Falt) + o(t) Ra(k),
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where
An — [(ﬂis Ej']}nx_ni

Bn(k) = [(ke, €3)]nxn,

Va(t) = [{v(t)e]s €5)lnxn,

Fo(t) = ((f,e1), -5 (f1€a))",
R.(k) = ((k,e1), -, (K, en))T,
C(t) = (c1(t), -~ ca ()T

(2.5)

(-, ) is the inner product in L%(0,1). Let C° = (¢}, -+, ¢cy) such that uf = Z cye;(z) is an
=1

orthogonal projection of up(z) onto E,,. Then

{ AnZZ 4 (Ba(k) + Valt))C(8) = Falt) + 9(t) Ra(k), (2.6)
C(0) = C° (2.7)

can be take as an approximation of problem (2.1)-(2.3). Obviously, the solution C of problem
(2.6)-(2.7) depends ngt only on time ¢t but alsoon k€ 2, ie. C=C (k;t).

Define the nonlinear operator Q° as follows: Yk € w,

n

QUk;t) = > cjilk;t)Pe;(-),

i=1

where C(k;t) = (c1(k;t), ,calk,t))T is the solution of problem (2.6)—(2.7) for a given
ke e
Thus, the coefficient inverse problem presented in §1 can be replaced approximately by

Problem (I). Find k € 2, such that

Q° (ki t) = h(t). (2.8)

Because of the nonlinearity of the operator equation (2.8), it is required to use an iterative
algorithm to find its solution. Up to now, the Fréchet derivative of the nonlinear operator
Q°(k; t) with respect to k, QY'{k;t) is needed in most methods. So, how to find this kind of
Fréchet derivative is the key of many algorithms, such as PST method!®! the perturbation
method(?], and TCC method!”l. In this paper, we will give another one.

2.2. Solving problem (I) approximately

re
Suppose tg,: ', ¥ are linearly independent functions, and qu_,— = 1L,¢; 2 0,7

3=0
0,---,m. Let

¥m = span {1|£'ﬂ1 S I¢M}

Then we have
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a; € £,7=20,---,m. Define a set

D={a=(ag, ,a,) € R, a;¥;(z) 2 k., z€|0,1]
3=0
If we solve the operator equation {2.8) on the set & N ¥,,, problem (I) is equivalent to
Problem (II). Find a € D such that

Qlast) = h(t), (2.9)

where

Qst) = Qlao, +, amit) = Q°( 3 aywsit).
1=0

Thus, for any o* € D, the Fréchet derivative

8Q(a*;t) 6@(&*:&)“‘ (2.10)

ag = Bam

Quli®; i)= |

is an {m + 1)-dimensional vector function. We will discuss how to find @’ {«*;t) in the next

gection.
Now, we wifl give an iterative scheme to solve problem (II). Suppose r € R™+1, We

define the functional

Jola®,r] = Qu(a”;t) - r + Q(a™;t) — A(t) |5 + wlir|iZ,

where S = L?(0,T), T > 0 is a given number, and || -||2 is the Euclidean norm in R™ 1!, The
following Newton-regularized iterative scheme will be used to find the solution of equation
(2.9):

ait) = ol 4} 1=0,1,2,--- (2.11)
where rl) € R™+! ig the minimum point of the functional me[a“),r], 1.e.,
() (= (1)
qu} [ﬂ: y ¥ ] rE}{n-£+1 JM(:}[E! ,r], (2.12)

and w') > 0 iz a chosen number.
By the variational principle, problem (2.12) is equivalent to the Euler equation

(DY) 4+ ) )t = 20 (2.13)

where

3Q(a!") 3Q(al?)
ot = [(Z8E), ) Jmsintomesy

() — [(h . Q(ml[l})II BQ({I“})) e (h, - Q(a(l})’ 3Q(a(”)) ]T:

dap dam
and £ is an identity matrix. So, (2.11)-(2.12) become

{ 2+ = o) 4 o)

2.14
(DU} + OB = 20 1=0,1,2,- . (2.14)
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2.8. Computation of the Fréchet derivative Q' (a!');t)
3Q(a"; 1)
do;

As discussed above, if we find L 3=0,---,m,Q, (a“), t) is achieved immedi-

ately by (2.10).
M
For any a € D, let k = Ea_,-gb_,-. Then k € 2. It follows from {2.5) that

3=0

B.(k) =Y a;Hj;,

3=0
m

R.(k) = Eﬂ‘iyir
=0

where _ _
HJ' = [(‘b:,'"ﬂ::: 3“]:1)("-: g 01 AL

Yy = [(¢J':¢i)= il (1})3-1.5:;)]1‘,_7' =0, ,m.
(2.6)-(2.7) become

m m
*A“id? s [Z a; Hy + V,,(t)]C = Fa(t} + g(t) E a;¥;,
J':D 1=0

Cc(0) = C°.
: (4). |
Let W{*) = BCE;:‘. ) £=0, --,m. Then WU)) satisfies the following equations
dw (3 |
Ao Y [Ba (k1) + Vo ()W) = g(8)Y; — HiC(al);2), (2.15)
w(0)=0, $=0,--,m (2.16)
where

B (kW) =3l H;, k=) "ally;,
=0 §=0

and C(a™;¢) is the solution of (2.6)—(2.7) for k = k!*).
From the expression of @Q{a;t), we can see

BQE;;:};” _ iwf)(‘) Bi ), # m0prom (217)

3=0

Thus, we can get @’ (a!”;t) through (ﬁ.15)—(2.17).

2.4. The choice of regularized parameter w!)

The choice of the regularized parameter w!!) plays an important role in the iterative
scheme (2.14). It affects the convergence and the rate of convergence of the scheme. However,
so far, there is no fixed principle to follow to choose the parameter and there is no direct
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and convenient method to apply. Next, we will propose a self-adaptive algorithm to choose
the parameter w{?), 50 that the iterative process is convergent. By the way, we do not think

our method 18 the best.
Let

p(a) = (|Q(a;¢) — h(t)|I5-
The following 18 our algorithm:

(1) Pick an initial guess a(®) | and control quantities £; > 0,e3 > 0, and g > 1 {i can be
2, 5 or 10 etc.};

(2) Compute C(a(®;£), Q(al®;1), @, (a!®; 1), p(a!®)), matrix D®) and vector Z(0). Let
w0 = go[am)). If w(® < g, then a!®) can be considered as the approximate solution and
the process can be ended. Else, turn to (3};

(3) Solving the system of equations

(D{D} i w(“)E)r(D) = Z0)

we obtain r(® (w(®))}. Compute al!) = a9 + r(0(w(O)), p(atV)). ¥ p(a!®) < p(al?}), then
turn to (4); else turn to (5);

(4) Let w!® = uw!9; turn to (3);

(5) If [|[r(®|2 < €2, al!) is the approximate solution we want; else, let o!® = al!) and
turn to (2).

Remark, Sttp (4) is based on the work of Wang [8].

3. Numerical Examples and Discussion

We have not yet demonstrated the convergence of the above algorithm. In order to test’
the feasibility of the scheme, some examples are given. See Figs. 1-15. These numerical
results have fully proved that our algorithm 1s effective in practice.

In Figs. 1-5, the operator P takes the form of (1.6), i.e. Pu(-,t) = du/dz(0,t); in Figs.
6-15, P takes the form of (1.5), i.e. Pu(-,t) = u(zg,t), zo € {9,1)}. In Figs. 1-9, the values
of the unknown function k(z} at the ends of the interval [0, 1], £(C) and k(1), are priori
known, while in the remaining figures, we know nothing about function k(z). We have the
following experiences in numerical experiments: Whether k(0) and k(1) are known or not
will not affect the convergence of the algorithm. But, it will produce a more or less impact
on the rate of convergence, especially for the case that the operator F takes the form of
(1.8). In addition, the choice of the operator P, that is, the nature of measurement data,
will affect considerably the convergence and the rate of convergence of the algorithm.

In light of the main idea of our method, it i1s clear that the algorithm can be extended
to the coefficient inverse problems of all the linear differential equations and linear opera-
tor equations, including the determination of several unknown coeflicient functions. Some
results will be reported in the near future.

Compared with some algorithm presented already, ours avoids finding Green’s function
(PST method) and solving the adjoint equation (perturbation method). However, a large
amount of computation has not been reduced yet. The shortcoming can be overcome through
parallel computation or a kind of discrete technique. This point will be shown in another
paper.

Acknowledgment. The author would like to thank Professor L1 Yue-sheng for his encour-
agement and guidance.
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