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Abstract

We give a brief account of recent results from a project to develop efficient
algorithms and practical computer implementations for modeling complex, 3-D
geological regions, with applications to exploration and general seismology. The
problem is divided into geometrical and material description and visualization,
forward modeling with ray tracing and finite element elastic wave propagation,
and finally, least squares inversion of travel time data.

1. Introduction

The construction of mathematical models of the Earth interior has been one of
the principal activities of seismologists for many years. As measuring and computing
tools have evolved, more ambitious goals have been set and achieved.

Currently, we are starting to perform interactive modeling in powerful work-
stations coupled with supercomputers. The aim is towards increasing accuracy,
resolution, detail and visualization capabilities, within a flexible human /computer
interface.

In this paper we discuss some of the mathematical and computational 1ssues
involved in developing such an interactive modeling environment. We shall con-
centrate on modeling Earth’s elasticproperties by seismic methods, without loosing
sight of the many other physical properties that are currently measured and that can
therefore be modeled, contributing to a hetter determination of the overall proper-
ties of a given geological region. In fact, cooperative modeling of different data sets
(magnetic, gravimetric, seismic, well-logs) is starting to be considered (4], and 1t
most likely will become an area of strong future development, once each individual
approach 1s mastered and more computer power becomes available. At that point,
tools of artificial intelligence may be necessary to manage the large knowledge data
bases that will result, and also to aid in collective reasoning with inferences from
multiple sources {1, 5].

We first consider issues of geometrical and material model description. This
will be basic for the direct and mverse modeling techniques to be discussed later.
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Seismic ray tracing and finite element solutions of the elastic wave equation will be
our forward modeling techniques, while inverse modeling is divided between static
and dynamic modeling. In the static case, a variation of forward modeling is used
only once to determine a preliminary model from measured data. This preliminary
model, coupled with any additional information is used to initialize an optimization
iteration that attempts to find the best fit to a parameterized model, consistent with
the measured data. In this dynamic inversion loop, forward modeling is used at each
step, and therefore large computational resources may be required.

2. Geometrical and Material Modeling

We consider the task of modeling a bounded volume V' of the Earth’s interior.
For resource exploration, V' will usually be a parallelepiped in Cartesian coordinates,.
while for other applications defferent coordinate systems and volumes maybe more
appropriate.

We are particularly interested in modeling complex regions, and consequently
our geometrical and material models must have sufficient generality to allow the
representation and manipulation of such regions. The type of models we consider are
of generalized blocky type, i.e., the volume V is subdivided in subregions V = |J; R;

of smoothly varying material. Each subregion H; is limited by curved surface patches
F;;, that separate abrupt (i.e.,discontinuous) changes of material. These patches
in turn, are limited by spatial curved segments Cj;;, with end points [v.-,-;,b,v;jh].
Adjacent patches are connected by having a boundary segment in common. Higher
smoothness can be enforced if desired. |

In this way, the geometry of complex material interfaces can be described
starting from simple elements, by adding sufficient connectivity information. Look-
ing ahead to the use of these models in ray tracing we require that the patches be at
least twice differentiable, concentrating the discontinuities at boundary curves. In
order to avoid artificial constraints, we represent the patch surfaces and the curved
boundaries in parametric form, although we require that the patches be univalued
with respect to at least one of the coordinate planes. This facilitates passing from
the parametric to an explicit Cartesian representation, and it is sufficiently general
to include all types of interesting geological interfaces.

Patch surfaces can be defined by formula from a data base of primitives, or
they can be blended from their curved boundaries by transfinite interpolation [6],
or they can be fit to given data. In these later cases, quadrilateral patches and
parametric cubic splines boundary curves are natural basic elements. They accom-
modate blueprint engineering views, contour line maps, and other standard ways of
describing 3-D objects. If we restrict the boundary curves to lie in planes, they can
be easily input, edited, and viewed interactively on a workstation. Unfortunately,
planar curves will not be general enough to describe all regions of interest, since the
intersection of two arbitrary surfaces need not be planar.



184 Journal of Computational Mathematics Vol. 7

e ———

An interactive system, GEOBLD [6], implementing these ideas has been writ-
ten, and Figs. 1 through 4 show some models generated with 1t.

Material properties of interest in isotropic elastic wave propagation are the
velocity of pressure and shear waves and the density. Alternatively one can consider
the Lame parameters. Attenuation, anisotropy, and other more complex phenomena
are starting to be modeled, but they will not be considered in this paper.

Homogeneous blocks are characterized then by three quantities: vy, v,, §; while
for inhomogeneous materials these quantities wll change from point to point. ‘Ve
will assume that this change is smooth, given by functions at least twice differen-
tiable. Again, discontinuities will be limited to the interfaces. We see then that
modeling these quantities in the inhomogeneous case is a problem akin to that of
modeling the interfaces, but one dimension higher.

3. Forward Wave Propagation Modeling

3.1. Ray Tracing

We have reported extensively on ray tracing elsewhere [3, 8-14, 16]. Let us
just say here that two-point ray tracing is an economical way of obtaining some
of the quantities that are important In many wave propagation problems. Given a
source and a receiver array, ray tracing aims to calculate all the relevant trajectories
that the source energy may follow to arrive to the receivers. Relevant here means
that enough energy is transported,that the trajectories remain in the volume being
modeled, and that the travel time falls within a window of interest. Thus, usually
direct arrivals and simple reflections from the interfaces need only be considered.

Three-dimensional two-point ray tracing in a piecewise smooth heterogeneous
medium involves the solution of a system of seven nonlinear ordinary differential
equations, subject to multipoint boundary conditions (for each ray between a source-
receiver pair). This can be a fairly intensive computational task, specially if thou-
sands of rays are required, and great care has been put to produce efficient and
robust software for it. |

The use of automatic initialization, re-start and search procedures, with re-
ceiver to receiver coherence, provides a versatile and robust algorithm, capable of
tracing rays in a complex, piecewise smooth inhomogeneous medium, as shown n
Figs. 5 through 12. We calculate not only the trajectories, but also the travel
times and amplitudes, as given by geometrical spreading and full Zoeppritz reflec-
tion /transmission coefficients. | | |

The current version runs on a variety of computer architectures, and it can
take advantage of vector processing capabilities, as well as fine and coarse grain
paralellization [13, 16]. In fact, if we call task T; that of ray tracing from a source to a
receiver array after bouncingfrom interface ¢, then task T: is completely independent
of task T;, as long as ¢ # 37, and therefroe they can be performed by different
processors. Observe that no communication is necessary, except to initiate the task
and to collect the results. In a standard 3-D survey, many different shots are set.
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Again, ray tracing from different sources are independent tasks, so we see that
there 18 an inherently large amount of coarse grain parallelism involved here, that
can easily take advantage of loosely connected networks of computers (processors,
workstations...).

3.2. Finite Elements
The elastic (vector) wave equation:

{u =f+(A+2p)V(V-u) - uV x (V x u)

with body force L and given initial and boundary conditions, can be solved nu-

merically in complex 2-D and 3-D media by using a finite element discretization in
space, and an explicit finite difference discretization in time. Absnrblng boundary
conditions should be used at artificial boundaries in order to avoid spurious wave
reflections. By careful subgridding according to the material properties it is pos-
sible to preserve stability and therefore take advantage of the simplicity and high
vectorizability of explicit schemes [15].

A most convenient arrangement is one in which pre-processing, prototype
testing and post-processing is done on a workstation, while large scale computing is
done on a supercomputer with a fast communication link to the workstation.

Currently, we can generate models with GEOBLD that are understood both
by the ray tracing and the finite element systems. This is important because it
allows these quite different modeling techniques to interact, so they can be used
where they can do the most good. For instance, time sections can be generated with
the finite element solver, simulating real data on a known model, which in turn can
be used by ray tracing based inversion schemes to try to recover the model in a
controlled fashion. This serves to debug, test and validate the techniques in a way
that would not be possible with real data, where the answer is truly nuknown!

In another application, detailed wave propagation by finite elements can be
done in the near field {say to model the source), and then ray tracing can be used
to propagate the energy to the far field; in this form large scale three dimensional
problems can be attacked with current hardware.

4, Static Inversion

The data collected in a reflection survey consists of a large number of dig-
1itized seismograms. Many shots are set at different locations, and the reflections
from buried structures are received at a geophone array. A limited time window is
recorded, and the objective of the exploration interpreter is to convert pictures of
this data into useful insights about the local geology.

After some preliminary processing, the interpreter starts locating mterestmg
structures. These are often characterized by strong, coherent signals, that form a
surface in (z,y,t) space, where (z,y) is the location of the sensor and ¢ is time.
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An approximate time to depth map can be effected in order to obtain a truly
spatial description of the geology. A variant of the ray tracing procedure can be used
in a layer by layer manner, starting from the free surface. In this way the structure
:s assumed known up to the current unknow reflector. A step by step algorithm has
heen devised to calculate the spatial position of a reflector from travel time data, and
then to estimate the material properties below it from amplitude data {12, 13]. The
accuracy of this method deteriorates as we proceed to deeper layers, but its main
purpose is to provide an snitial model to be later refined by more comprehensive
methods.

Let us assume for simplicity, that the data collected on the surface consists
of travel times T'(x,y) and arrival directions u (z,y), as they would be obtained by

three component sensors. T’ (z,y) corresponds to travel time from the source S to the
receiver at location (z,y), after a single reflection on the unknown interface I(z,y).
In order to illustrate the principle, we also assume that both T(z,y) and I(z,y) are
single valued, although this is not required in our actual implemented procedures.
With this information, we can shoot a ray (i.e., solve the ray equations with
known initial conditions), backwards from the receiver, with initial direction —u (z,y),
through the already known structure, up to the interface immediately above the un-
known reflector (see Fig. 13). This will produce then a point of intersection /. and

a refracted direction g " obtained by Snell’s law. For the other half of the ray we
can state a two point ray tracing problem between the source S and the point Lo
with the provision that 1t must reflect at the unknown point 7, and arrive to %
with direction —p . 1f we count the unknowns and conditions we will see that there

is & missing condition, which allow us to s troduce our additional piece of data: the

total travel time T(z,y). |
By solving these two problems consecutively, i.e., shooting back from the re-

ceiver to p o’ and then two-pointing from source to N, Ve obtain the reflection
point 7, and also, by taking the bisector between arriving and reflected directions
(in the plane they determine), we get v, the normal to the unknown interface at 7 .

Doing this for each source-receiver pair available, we obtain a set of reflection point-

normals (7] , ¥ ) which can in turn be used to fit surface patches by least squares.
TN

In complex regions, GEOBLD can be used profitably to decide the extent of dif-

ferent patches, connect them, grow faults, and in general use geological know-how,

together with any additional available information (like well-logs), to interactively

enrich the model.

5. Dynamic Inversion

The preliminary model derived in paragraph 4 is now used as an starting
model in a nonlinear least squares fit of the data. There are various ways in which
this can be accomplished, but again, a stagewise approach is the most advisable,
since it will allow tight human control in an interactive environment.
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For this procedure we use only the interpreted travel time data. Let M(a?; é, )
be the initial parameterized model, where O corresponds to interface parameters,

while 8 0 corresponds to velocity parameters. In its full generality, the data set is

very complex, since there will be many sources and receivers; for each source and
corresponding receiver array, we will have identified travel time surfaces (potentially
multivalued), corresponding (say) to simple reflections from buried reflectors. So, to
be precise, our travel time data should be described by functions T°(S, R, I), where:

S = source, R = receiver, I = reflecting interface, 0 = observed.
For each value of S, R, I and model M(a; 8 ), we can calculate

T°(S,R,I;a;8)

by ray tracing. The best parameters, in the least squares sense (by no means the
only norm that can be used to measure deviations between observed and calculated
quantities), can be obtained by:

min Y (T°(S,R,I) - T°(S,R,I;a;8)) (1)
ab sRI

where the sum is extended to all available data values. If this is not complicated
enough, we can also introduce constraints:

E,(E,: E,) = 9_.: (2)

h(a;8)20 (3)

that can-prevent the parameters from wandering into non-physical space. These
constraints are also important in regularizing the problem, and in bringing into the
formulation as much apriori information as is available. The nonlinear programming
problem (1-3) can be solved by using available high quality software [2].

We can, of course, include all the data at once, and try to improve upon all
the model parameters (a?; 8°) simultaneously. However, a more cautious approach

is to proceed from the free surface down, one region at a time, using only the
relevant data and parameters. This will result in similar problems, but of smaller
size. Once the model has been refined in this way, one can attempt a more global
fit. Ideally, the system should be sufficiently flexible to allow the choice of sub-
models and relevant data sets in a simple manner, providing good visualization
of the optimization results, so that local decisions can be made by the operator
interactively.

We have shown elsewhere {7, 13, 14], how this procedure can be implemented
with our ray tracing approach, in 2-D and 3-D, but only in the unconstrained case.
We hope to start considering the constrained case in the near future, and also to
consider full wave inversion, by using the finite element forward modeling system
within the optimization loop.
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Figqure 9. Two-point ray tracing - Figure 10. Same as in Figure 9.
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Figure 13. Schematic representation of two-point-gshooting migration.
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