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USING A PREDICTOR-CORRECTOR SCHEME
TO COMPUTE NAVIER-STOKES EQUATIONS
IN THREE-DIMENSIONAL SPHERICAL
COORDINATES

- CEHANG QIAN-—SHUN (% #0)
(Institute of Applied.Mathomatics, Academia Sinica, Beijing, China)

Abstract

A new predictor—corrector difference scheme is described for solving the time-dependent
Navier -Séokes equations in three-dimensional spherical coordinates. A boundary condition for the
pressure is deduced by auziliary velocity. A multigrid algorithm iz employed in solvirg equations of
the pressure. An example of application of this scheme is computed and its results are presented.

§ 1. Introduction

In a general numerical scheme for Navier-Stokes equations, velooities are
advanced explicitly in time. In such explicit schemes, the time step is restricted by
stability conditions, Thig is more stringent for a smaller Reynolds number and,
especially, in spherical coordinates. A predictor—corrector scheme is given in this
paper. It saves computational time and keeps properties of the differential
equations (#-Ve, #)=0. The pressure is computed by a -Poisson’s equaiion. A
boundary condition for the equation is given by means of auxiliary velocities. In
order to reduce computational time, a mulfigrid algorithm is employed in solving
Poisson’s equation,

In this paper ky, ks and ks are step sizes in 7, ¢ and @ direction, respectively.
The following notations for difference operators are used:
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§ 2. Differential Equations and Basic Algorithm

'We consider the Navier-Stokes problem in spherical coordinates

au+[ ou v ou, w é‘u_ruﬂ—l—wa]

&t or r 88 resinf op r
0 1 o gaﬂ i 1 o i 1 3‘“‘1&
P[rr"’ or (T Br)i 72 Einf? 26 5111839) r2.8in?f§ oO¢*
2 1 1 ow p _
= \¥Tn7 28 7 (sind- T ] B e

o dv L, v Ov w Gy, ww __ W
3t+[ 3?'?‘39+q*sin9 op T Tctgt?]

_ 1 & (adv 1 %, fu) 1 Fo
p[rﬂ or (q‘ ar * r*.smf o8 (sm@ G +Trﬂ-ai1159 op*®

2 [ u v cosd OSw 1 &p
— p
b g (39 2¢in?*¢#  sin®*f Op :|+ r o6 73 | 4:4)

ow ow , v ow W ow | urw | vw
-3_t+[ or ' 90 ' r-sm@ Bp T ctgﬂ]
.1 48 ,ﬂaw)*_ 1 3( ow 1 P
P[frﬁ or ("’ or /) r2emB 00 sin ¢ 39 s
Bu Oy ) op _
72 Binﬁ ( +Etg83gv 2*31119 T 51119 Op s, 2.3)
1 1. 1 ow
r? @fr W resin ¢ 36' . w)—l—r ginf? o - (2.4
u|p=0, (2‘5)
U|;_o=Ue(r-6-¢), (2.6)

where £ = (u, v, w) is the velocity vector, p is the ratio of the pressure 40 constani
density (for brevity, we refer to p simply as pressure) and v is a kinematio
viscosity coefficient.

In order to deduce the basic splitting scheme and the boundary condition of
the pressure, we write the Navier-Stokes problem in vector form:

ot

. — ik vu+?p=pdu+F (2.7
Vet =0, - (2.8)
u|r=ﬂ, (2.9)
2|, o=uUo(r:0-p). (2.10)

First, equations (2.7)—(2.10) are written in difference form only for time:

uﬂ"l"l —

= JE_“n.vun_an+l+pduﬂ+F"’ (2.11)
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Veurtt =0, (2.12)
“|r=0, (2.13)

Let the auxiliary velocity
d=u+z[—u*Vu+v du+ Fr], (2.14)
It follows from (2.11) that |

_ Ul =g — g Vi, (2.15)
In view of (2.12), we have Poisson’s equation for the pressure
ﬁp"+1=% V.5 - (2.16)

Agsume £ is & unit vector in the out ward normal direction on boundary I'. Then
the boundary condition for the pressure is given from (2.18) and (2.15) as

n+1 a2
3f;§ =l (2.17)

After equation (2.16) is written in difference form, the term #-§|, of equation
(2.16) and the boundary condition (2.17) will be deleted in the rigid wall. Thus,
the equation for the pressure hag a simple form in the rigid wall. Therefore, the
boundary econdition for the pressure (2.17) is simple and useful.

Equations (2.14)—(2.16) and the boundary conditions (2.13), (2.17) are a
splitting scheme for Navier—Stokes equations, whioh can be used in two or three
dimengions and in any coordinates. In computation, we compute auxiliary velocity
@ from (2,14) firstly. Then Poisson’s equation for the pressure is solved. Finally,
using the pressure values, the auxiliary velocity is modified o velocity #™" in new
time.

§ 3. Predictor—corrector Difference Scheme and Boundary Conditions

We use the non-staggered grid, because equations (2.1)—(2.4) in r=0, =0
and §=o are singular, All velocities and pressures in the difference scheme are
located at cell centers.Thus,singularities are avoided in computation.The difference
scheme has the following form:
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1<e<Ip 1<j<J3p; 1<i<Kp; I Jzand Kpare total numbers of points in
r, § and ¢ direction, regpectively.

We consider a unit ball centered at r=0 as a model problem. The no-slip-
rigid wall is located in r=1. The boundary conditions for the difference scheme in
r =1 have the following forms

ﬂ e —
Uz, +1,0,% = — UL, 1,80 Vloa1,d.6 = — V1m0 What1,4,6™ — W, 5.0
1 1 -
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where the pressure boundary condition is given in view of taking £ as r and the
boundary " as r=1 in condition (2.17). The boundary conditions in r=0, =0
and = are given by the property of spherical coordinates:
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where in the term ki Kz/2 plus is taken if t+ K 5/2 ig less than K5 otherwise
minus is taken. The solution satisfies periodic conditions in the boundary of
variable g: |
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We know the property (#-Va, #)=0 of the Navier-Stokes equations. 'The
corresponding property is kept in the above-mentioned difference scheme and
boundary conditions, since i |
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In order to obtain aumha,ry velocities #’ a.nd ' from the difference formulas
(3.1), (3.2) and the corresponding boundary conditions, we need to solve linear
algebraio equations with tridiagonal matrix, and they can be solved quickly using
two sweeps. The auxiliary wvelocity # satigfies linear eguations with almost
tridiagonal maitrix, which can be solved eagily by the method of triangular
decompeosition.

_I-w:l!fiiﬂ 5 Sq}w?!,!k] -w?;f,]ﬂ S

§ 4. Application of the Multigrid Method

Equations (3.4) satisfying the pressure are complicated, and are generally
golved by the iterative method, though in an expensive way. The mulfigrid
method is efficient for solving equations (3.4) in a finer grid.

In order that this paper may be reasonably self-contained, we consider a
brief descript{ﬂn of the multigrid method applied to the equation

Lu=F in Q,
Its approximate solution «; on the fine grid Q, satisfies
Lﬁﬁh =Fh in Qh.

The operator Ly is an appropriate approximation of the operator L, on a coarge
grid Q4. The operator I} is a resiriction operator from the fine grid &, %o the
coarse grid Qy. The operator I} is an interpolation operator from the coarse grid
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Qy 1o the fine grid £,. An approximate value «;” of the equation Lyu,=F; is given.
In order to find a new approximate value ¢#**Y the process of the multigrid method

should be:

7} ¥ ig iven 1 — New T&lﬂﬂ ﬂ.fa+1}=ulsl+v A)
g | h B

1, T

Compute the defect ,

= | v on 2, |
lzf | Tfi‘e}

i I Solve exactly on Qg

L di¥ on Og ] Lt medls?

Of course, this basic principle can be used recursively emplujing ooarser and

coarser grids.
In our computation, the ratio of the step sizes of the coarse grid 2y to the fine

grid ©, equals 2. The restriction operator is the average of neighboring points with
the same weight

1
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Linear interpolation in three dimensions is employed as the inferpolation operator
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§ 5. Numerical Stability

The bhasic condition of stability is that fluid must not be permitted to flow
across more than one computational cell in one time step, Thig restricts the fime

inecrement 0

(_ ln Tk fn-sinﬁf'hg) (5.1)
i gnl’ [V65n] |, 4,5 ' '
This condition is also necessary for accuracy, because the convecfive flux
approximations in the difference scheme (3.1)—(3.7) assume exchanges between
adjacent cells only. |

The heuristic stability theory proposed by Hirt™ is important for analysis of
stability. Making Taylor’s expansgion for the difference scheme at a point, the
lowest—order terms in the expansion must represent an approximate differential
equation, If we ignore the terms with order O(+*+4*) only, another differential
equation is obtained, which is called the first differential approximation in the
Soviet Union. The correctly pose-d conditions of the first differential approximation

< IMin
t,9:%
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are conditions of stability for the difference scheme. This method of determining
stability is rigorous for a linear equation with constant coefficient, Thomée in [9]
gave & theorem: If there exists a w, stable difference operator, then the initial
value propblem of a congistent differential equation i correctly posed in w, The
difference scheme is consistent not only with the prime differential equation but
also with its first differential approximation. Therefore, Thomée’s condifions are
necessary condifions of stability of the difference scheme. This method is not
rigorous for general difference schemes, and ig extremely useful and effective for a |
number of complicated difference schemes,

Now, we use the method to deduce stability conditions. Making Taylor’s
expangion at the point (4, 7, £, n), the following first differential approximation for
i is obtained

_@_+[u3u v o W X wﬂ-l-wﬂ}__p[l o Tﬂc’:?u

ot or T 80 re.sinf Op r r? Or or
wﬂ-iinﬁ? c’.’ia{? (smﬂgg I‘q'ﬂ'énﬂﬁ 3;%;
"% @ 51112;9 aa(ﬂmg Hm:ia g;: J+ 3
"F"_;;' g:q; 2 %[:ﬂ aﬁ- (”'E?: | Tﬂ-:mﬁ‘ o6 (51119 )
+*rﬂr 5111""9 dg” ] O(w+4%).
Differentiating equation (2.1) and eliminating %:u*_ﬁ_ from the above formula, we
have
‘?‘f g %*%‘ %ﬂ- oy %"' wajwﬂ] ’“H“*“ Ellljl.t? g v}
g 2o
ronn (Bl B B (%) g
+?%E[”+” F+ )
X[p+% (?ﬂf : f‘z)_%wﬂ]_&w}gﬂfﬂﬁ —— 3:1[119 3?'2;;
- frﬂ-:inﬁ aﬁ@. Lo D v, @)--0GA+5),

where D{(u, v, w) denotes several terms excluding second-order partial derivatives
of u. The correctly posed necessary oonditions of the above equation are the
nonnegativeness of the diffusion coefficients i.e.,

 vT [ Ou 21}) | VT 3%,__21)1
p'2(@a‘ >u" 2(3{:"4““}2@’
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2 \or r®
Since 7 ig a small gquantity, we have
7
> max (5 i 5 vhia 5 whix) (5.2)

The same stability condition (B.2) is obfained from the first approximation for o
and 4. It is better and is often employed as a necessary condition. This condition
oan be explained as avoiding the occurrence of truncation errors that have the form
of negative diffngion. Therefore, this is-an important condition. Sometimes, the
conditions for stability are more stringent than conditions (6.1) and (H.2) in
computation, because they are not sufficient for stability.

The truncation errors are unavoidable in finite differenoe approximations, and
they do influence the accuracy of calculaton. In order that the effects of » arc not
be ohscured by trunecation errors, the following condition is necessary: Re<4(Iz) 2
where Re is the flow Reynolds number,

§ 6. Computational Examples

To demonsirate the capacity of the three—dimengional predictor-corrector
difference scheme, two examples have been run on Prime-750 Computer and the
computational results of this scheme are compared with those of an exphmt scheme,
In the first example we fake '

FP=—2H[1—sin*@-co8p-gingp—sin #-cos - (sm;aa—{-msqv)],

Pe= (g —6 ) r(cosp—sing)+ H3r [28inp-cosp-cosf-sin b
+ (cos? g —sin? @) (sinp+cos @)1 — v (cosp—sing) (¢+1) (4r2—10) ey eo™
F{P = (67"~ 1) r[sin § — cos (sin p+cos )] -+ H ?r [sin § (cos? o — sin® @)

+cosf(cosp—sin@)| —w(t+1) (4r?—10)6™" [sin f—cos (sin p+-cosp)] -7,

where H = (™" —e 1) (#+1). The exact solution to the example is
0
uV=Hr CO8 @ — Sin @ o pB =0,
gin # — cos #{sin p+cos p)

The right hand side of the Navier-Stokes equation in the second example is given
ag |

¢ F®=F"V+ H-.sinp—2r% " ({4+1)sinp,

' CO3
FP=FP, FP=FP+H-—20.

Its exact solution ig
| " .
U =g =Hr cosp—sing ), p® =Hrsin g,
" \sin #—cos §(sin @+ cos )/
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by

‘The two examples have the same exact solution of velocity &, which ig written in-
the Cartesian coordinates (@, y, z) as

ﬂm R g
= u |= (@) F+1) o—2
Wa | Y—@

For comparison, the explicit difference scheme for the problem (2.1)-—(2.6) i9
;=Yg —gi (820475, + B300; 1 1+ B2 5.1) +7 41

The quantities p***, wrtl, ¢**' and w™* are computed by (3.4), (3.5), (8.6) and
(3.7), respectively. |

| We congider the first example and compare the implicii scheme with the
explicit in the coarse grid Ip=4, Jp=8, Kp=16 and the fine grid Iz=3_, Jp==10,
K =82, The computational results are listed in Tables 1 and 2. Since a bigger step
size of time is used, the implicit scheme saves much computational time. The
results computed by the multigrid algorithm are compared with those of the
iterative algorithm in Table 8 for the grid Ix=8, Jp=16, K3=32 and »=0.01. In
the tables, 7' denotes that the problem (2.1)—(2.6) is computed from =0 to =T,

EEUEH}?E 0 50— Ui 0 I ;

where u},, and «,, are the difference solution and exaot solution of velocity ¢,
respectively. EEV, EEW and EEP are the maximum errors for », w and p, similar
to EEU, and

AEV=1 =

N £,9.%
véaa

d B it
Uiy~ Vi,
£ ;

Ve g,k

where N is the total number of the points, in which 2§, ,+#0. The relative average
error AEW and AEP are similar to ARV,
In Table 2, the multigrid algorithm has saved only little computational time

Table 1 Resulis of the first example for Tp=4, Jy=8, Kz=16

v 0.01 0.1 1.0
Heherme FExplicit Implicit Explicit Implicit Explicit Impiicit B
44 &2 2 14 1 1 1
B CPU time (Second) 1968 127 7756 722 90000 7089
» EEU t 0.0387 | 0.0201 0.0058 0.,0065 0.0013
EEV 0.0462 0.0423 | 0.0349 0.0343 0.0342
| : EEW 0.0499 0.0444 0.0336 {.0326 0.0377
Error in ¢t=T

EEP 0.0556 (,0345 0.0743 0.0578 0.3288
AEV 6.40% 5.77% 7.80% 7.79% 8.5% 8.19%
AW + 5.00% 4.63% 6.23% §,10% 7.0% 5.93¢%

W
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because the grid employed in the example is too coarse. If we compute in a finer
grid, then the algorithm is much more efficient.

For the second example, we computed only in the case Iz=4 Jz=8, Kz=16.
Its results are given in Table 4. The UPU time is deleted because ity computation is
made on an IBM-Computer. In view of the computational results, we know that the

implicit scheme saves much computational fime and is efficient when the pressure
gradient is not equal 0 zero.

Table 2 Resulis of the first example for Tp==8, Jp=16, K =33, r=(.01

I ; l Hrror in t=T
Scheme T CEL e -
(Becond) | EEU EEV EEW EEP ARV AEW
Bxplicit 0.001 2567 0.0004 0.,0019 0.0032 0.0091 0.3195 0.46%
Implicit J 1 12710 0.0023 0.0073 0.0053 0.0072 1.59%, 1.01%
__—%_

Table 83 Results of the first example for =8, Jp=18, K =232, p==0,01

Method of Bolving the pressure I CPU time (Second)
Iterative Algorithm 1 12710
Multigrid Algorithm 1 11924

Table 4 Results of the second example for Ip=4, J3=8, Kpm=16

[ER
L
Stk
"mil

Hrror in t=T
v Scheme o i =
I H HB) EHEY EEW FEREP AEV ARW AEP
— o e T o]
Hxplicit 2 0,0467 0.0497 0.0521 0.0586 6.51% 5.33% 6.73%
0.01 e "
Implicit 2 0.0325 0.0448 G.0475 0.0428 5.93% 4 .83% 5.859%
mxplicit 1 0.0088 0.03643 0.0408 0.0767 7.97% 6.849; 8.050%
0.1 = -
- Implicit 1 0.0071 0.0357 (0.0386 0.0609 7.95% 6.599, 7.16%

From the computational proocess, we know that the errors near the singular
places r=0, §=0 or §=uo are much bhigger than inside. Especially, ratio of the

el g ! 2y ke Bl ve
errors at r= h, E=-§ fa (or fr-——z-ki, & (J 273 )hﬂ) t0 ingide is about ten. The
reason is easy to see in the difference scheme (3.1)—(8. 3) and the formulas

dBSCrlblng F in 'Whlﬁh there are terms F’iﬁ Vi g% m 'Iﬂ;,,,;; and so on,

Further, we should consider special techniques near r=0, §=0 and § =g.

This work was performed while the author wag visiting Paderborn University
in F. R. Germany. The author wonld like t0 express higs appreciation to Professor
R. Rautmann,
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