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Abstract

This papsr gives a thorough analysis of the local refinement method or plane polygonal domains,
with special attantion to the treatment of reentrant corner. Convergence rates of the finite element
method under various norms are derived via a gystematic treatment of the interpolation theory in
weighted Sobolev spaces. It is proved that by refining the mesh suitably, the finite element

approximations for problems with singularities achieve the same convergence rates as thoss for smooth
solutions.

: § 1. Introduction

To the authors knowledge, analysis of the local refinement method was initiated
by A. Sohatz and L. Wahlbin. Baged on. an asymptotic expression of the solution
hiear a corner, which reveals the singularities of the golation, they obiained in [4]
some error estimates on locally refined meshes. But from the point of view of
approximation theory, their resulis are on fanctions of parficular forms, rather
than the norms of the error operator in suitable spaces. By introducing weighted
Bobolev spaces, [1] gave a satisfactory answer to this problem. They also obtained
the inverse = estimates which show that their resulis cannot be improved.
Unfortunately, the techniques used there eannot he extended readily to the case of
high order elements. In this paper, by using a sysfematic treatment of the
interpolation theory in weighted Sobolev spaces, we give a thorough analysis of the
finite element method on locally refined meshes. Hstimates obtained indicate the
dependence of the approximation properties on the singularities of the solution, the
order of the elements and the degree of refinement. TR ‘s

We use conventional notations in this paper, with O as a generic constant,
which may assume different value in difforent places,

§ 2. Weighted Sobolev Spaces

Let Q be a plane polygonal domain, with vertices @y, g, «+-, oy (see Fig. 1), wy

1s the inner angle of £ at z,, and w=2

)y

V={¢'1: Tgy ***y mﬂf}'
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For B= (B, Bs, =, Bu), define
dsﬂ(m)’:ﬁ_llm"mtlﬂ':

where |+| is the Euclidean norm in R2,

Lot 8-+4—2=(Bi+j—2, ¢+, Bu+4j—2) and likewise Bj=(Bij, ***, Buj).
. For two veotors Ba(ﬂh iy BH): 7=(711 dis 'J"H)r
we gay B>, if B>y, for all j, 1<j<M. If, for
instance, - ig real, then B>y is understood as B>,
for all 4, 1<\j<M.
Let HZ(Q) be the complement of 0=() under the
norm: |

Ly-1

”u“ml-ﬂrﬂﬂ “ﬁ"Ll{ﬂJ_I_ |u|m'ﬂfp-"
Fig, 1 | where

1/3
Dl = 3} |28, (ulmso=(], Dhins| D7ul?dz) .

oz Owgt
If B<1, then by uging Lemma 4.9 of [3], we have
. H (QGHMW G H(Q).

This important property will be used in proving Theorem 1.

§ 3. Interpolation Theory

Denote by dp the diameter of a triangle T'. For y=(yi, ***, Yx), 28 in (1], we
define a triangulation 4 to be of (&, 6y, ¥)-type, if

(1) 4 satisfies the conventional requirements on triangulations (see, e.g. [21,
p. bl).

(2) (Zlamal’s condition) For any 7€ 4, if # is an interior angle of T, then
G=0y>>0.

(8) If TNV =@, then Ue(fo) D, (@) h<dr<<O0:1(6o)P,(2)h, Yz €T

(4) I3 N V?‘-@, thﬂﬂ Gn(eu) ig? GST (w)h%drﬁtl (90) EL%B @7 (m)h.

Here, Co(0), 01(8o) are constants depending only on 6.
If 4,>0, the triangulation is no longer guasi-uniform. If we use d; to denote
the diameter of an element near the corner w;, then

d"N hlf{l-?j}‘

To define the interpolation, we need the following result, whick ean be easily
proved by using the corresponding result of [1] and Lemma 4.9 of [3].

Lemma 1. If0<B8<1, m>2, then HF (Q)GC(2).

Denote by @m-1(4) (m>2) the gpace of continuous functions which are piecewige
polynomials of degree m—1 or less on 4. Because of Lemma 1, the Lagrangiam
interpolation operator
: U iUy
is well defined on HF(2): HF{(Q)—~>pu_1(4).

To estimate the interpolation error, we need the following theorem.
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Theorem 1. If B<1, then there ewisls a constant O, such that, for any
ﬂEH?(G):

(3.1)

« inf ""TJ"I"‘}D“miH:ﬂgOl@

@E Py 1 (L)

where P, _1(0) s the space of polynomials of degree m —1 or less.
Proof. Let N=dim P,_1(2) and f; (1<\3<<N) be a basis of the dual space of

P,_1(Q2). By the Hahn-Banach exfengion theorem, there exigt continuous linear
functionals on P,_;(£2), again denoted by f, (1<i< N ), such that for any

@EPm—1<Q):

my B2y

fi(@) =0, for every 1<i<N iff p=0.
We show that there exists a constant O, such that for any v € HF (Q2),

|”"mrﬂ.n‘5€0{|ﬂ[mnﬂsn+g | £4(0) 1}. _ (3.2)

As a direct consequence of (8.2), we get (8.1).
Assume (3.2) fails, Then there exists a sequence {v}im; < H% (Q), such that

(3.3)

"'UI”m‘Bfn"]-;

N
h}_}f(‘ﬂ’ﬂm*ﬂfﬂ"‘gl:lf:(%) ])='0- | (8.4)
Because Bf”(l, H7?(Q)S HYQ), by the Rellich theorem we have

H3(@)GLAQ).
Thus, by (8.8), there exists a subsequence of {v}i=;, again denoted by {v}i,,
whioch converges in L7(£2) to o:
lv;— [ 220y—0, T—>o0.
From (3.4), we see that {v;} is a Qauchy sequence in HZ (). So it shounld

converge in HZ(Q) to a function v, and |v|m,.40=0. Because 2 is connected, this
implies that v € P,,_; (). Note further that f;(v) =me,(w;) =0 (1<<j<<N). Bo v=0,

a contradiction o (8.3). Henoce we have (8.2). This completes the proof of (3.1).
Theorem 2. _Assume the triangulation 4 is of (A, 8, v)—type, 0<B<1, ym>
B+m—2. Then thafre ew13ts a oonstant U, whiéch 48 independent of h, such that for any
uC HE (‘Q ):
H”—ﬂrnﬂm}ﬁﬂh’“lu[m.mn
Proof. Let T be an element of 4. If TN¥ =@, then we may use the
interpolation theory on (unweighted) Sobolev spaces (ef. [2])

|4~ trl by <O (G0)dF" |ul3. OB 1™ [ 07| D™l da

<O(8,) k™ L_ B2, 0o | D™u|? da. (3.5)

If TNV ={,}, wo use the scaling a.rgument
Let 7' be the reference element, and # denote the result of u (on T') transplanted

on .’f' Then we have
L2) 2y <O ter | o8y <O || m, 29,
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M — s |2ty <O "‘E | s 8, 2
Use i+ @ (9 € Pu_1(T)) instead of » on the above inequality,
ﬂﬁ-ﬁ;"y@,%ﬂ lnf "ﬂ"l"@l

€ Py (1)

'I‘H-lﬂ’ii"l

By Theorem 1,
"1‘3 o ‘ﬁf HL'(?‘J.{;O IE l " By ?'
So on the original element 7', we have
jw—u ﬂ 21y <O (00)d7° ™% || 5, 6,70

Becanuse
dr<Ch sup &, (2) <Ohdy,
we have |
: 1
dp<SOhI-7s, | |
|6 — vz | 23y -5;0(90).?;1—7; 2% | w0 8, 2O (80) A™ | ) 1, 5, - (8.8)

Combining (3.8) with (3.6), we complefe the proof of the theorem.

Theorem 3. Assume the iriangulation A ds of (h, 0y, y)-type, 0<B<1,
(m—1D)y=B+m—2.Then there exists @ constont C, which is independent of h, such
that for any uc HF (Q2),

fe— 2] 1,0<C(00) 4™ | 1] im0 502
Proof. We proceed in a similar way as in the proof of Theorem 2. Let T be an
element of 4. If TNV =@, then

| —ur] 1, e <<O(bo)dz™ ™ |w}in,r <O (Go) A2 L QLD | DMy |? de

<O (0) ™D L ®2,,._o| D™u| da.

If "NV = {x}, by using a guitable affine mapping with the origin ag the image-
of »,, we may first consider the reference element 7. Using the same nofation as
above, we have

i1 2,20 &) m, 5,

Because HZ(Q)G H'(Q),

| Hﬁh,ﬁﬁﬁﬂﬁim,m,
Il'ﬁ_'ﬁf s ?QO ]ﬁ [‘M:ﬂ!?.l

A, i A

I]'z;_fu’f Iirﬁgo U m!ﬂi?'

Bo on 7', we have

1—£y |
1!T<Gd1*ﬂi I U I Wis B T‘QO&’W Iu I i 2 Hrfﬂgahm-l [ U I mi B T
and Theorem 3 is proved by combining these inequalities.

o — ]

§ 4. Error Estimates in H! and L2 Norms
Define a bilinear form B(., «): H}(Q) x H}(Q)—>R'
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By, v) ==J; VuVods, u, v€E H} ().

Denote by the finite element approximation of » in the Space @u_1 (D).

Theorem 4. If the triamgulation 4 és of (h, 6, v)-typs, 0<B<1, (1—-8)/
(I—p)=m—1 (1<é<M), then there ewists @ constant O which is imdependent of h,
suoh that

)1, 0 OA™ el 0.

Proof. This ig a direet consequence of the Céa lemma and Theorem 3.

The above theorem indicates that, even if the solution of the differential
equation has some singularities, by suitably refining the mesh, the finite element
approximation can still achieve the best possible convergence rate.

1t is proved in [1] that if 0<<y<C1, then dim @m-1(d) =N (4) <Oh~?, where O is
independent of 4. So we have

Corollary. Assume the conditions of Theorem 4. Then there is = congtant O
which is independent of h, such that | |

—1

1,0 ON (4) _T"uﬂm.mn

, du—w
for any u€ HZ?(Q).
»

Theorem*4 does not consider the under-refinement case min i_f ‘<m—1. To
: ' ' l<ix e

compensate for this, we introduce the following Besov spaces. .

If 0<8<1, lot X (1, m, B, 0)=[H(RQ), HiNHP(Q)),... Here T Loy v
denotes the interpolation space using K-interpolation method. To be more precise,
let

E(u, )= inf {|o|ume+tiw]n.sc},

=yt
v e HJ},
weTpnHi

"u’ﬂ A(1rms 840) =%E{?{£_HK (1.6_, t)}"

The following lemma helpg us o get an insight on how large the space X (1, ms,
B, 8) is. Its proof is much the same as that of Lemma 2.1in [1], We omit it here.
Lemma 2. Ifp, ¢ are smooth functions, 0<a<l1—g8, §=min "iﬂ.é_’ then the
: ' ] : - A
H3 () function u=r'p(@p(r) € X (1, m, B, 8). Hers the polar coordinagte system i3
svivated at some verter x, of Q. Ses Fig. 1, o |
Theorem §. If the iriangulation 4 is of (k, 6y, ¥ )-tyve and B satisfies

min 1_'3‘;-*:7;— 1, then there ewists & constant O which is independent of k, such that

latcM 1 — Y

_fWWﬂGX(L m, B, 9) - -
nu — m" 1,9@0}&#{“-1} ” w " X({1vms 8, #)x

Proof. Define the operator F, as Eyt=u—wu, Then F, ss an operator from
H5(2) 1o H}(2) has its norm bounded by 1, and as an operator on H? (L) N HE(Q)
has its norm bounded by O&™-1, So using the interpolation inequality, we have that
- &) a8 an operator from X (i, m, B, 8) to H}(2) has its norm bounded by Oafm-1
This is what the theorem asserts,
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Combining Theorems 4 and b, with Lemma 2, we have arrived af the following.
Theorem 8. If ihe mesh A isof (h, Oy, ¥)—type, the function u=r’*p{d)p(r) &

HY(Q), B satisfies :ll_ﬁ‘ =m—1 (1<i<H), then for any positive number 8, there

ewisis & constant O, which doss not depend on h, but may depend on 8, such that
"““%"hngah"-

Heora

3 iof s<m—1,
p=<sm—1—8 ¢f s=m—1,
m—1 3f s>m—1,
s==miin 1;“7‘ .
The above theorem reveals the dependence of the convergence rate on the
gsingularities of the solution, the order of the finite element space, and the degree of
refinement.

A result on L*-norm estimates has been given in [1]. We quote it here,
Define

»

. 1/4
nwn.,,_ﬂm{ 4 @;%w} :

Theorem 7. If min lfi ~ >1, and 4 is of (h, Go, y)~type, then there exists a
constant O, which is independent of b, such that

“u' uﬁﬂﬂ- -TQO}&"
The theory we developed above was exfended to the cage with general p>>1; see

[7], where results on - inverse esfimates and maximum norm estimafes were also

given. The inverse theorem is much the same as the one given in [1], and indicates
that our results on error estimates here are optimal.
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