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Abstract

In this note the exact non-Jocal radiation condition and its local approximations at finite artificial
boundary for the exterior boundary value problem of the reduced wave equation in 2 and 3 dimengjons
are discussed. Based on the asymptotic expansion of Hankel functions for large arguments, an
approach for the construction of local approxzimations is suggested and gives expression of the normal
derivative at spherical artificial bonundary in terms of linear combination of Laplace-Beltrami
operator and its iterates, i.e. tangential derivatives of even order exclusively. The resalting formalism
is compatible with the usual variational principle and the finite element methodology and thus scoms
to be convenient in practpeal implementation.

Boundary value problems of P. D. K. involving infinite domain occur in many
areas of applications, e. g., fluid flow around obstacles, coupling of structures with
foundation and environment, scattering and radiation of waves and so on. For the
numerical solution of this class of problems, the natural approach is to cut off an
infinite part of the domain and to set up, at the computational boundary of the
remaining finite domain, appropriate artificial boundary conditions. In the usual
treatment, the lafler is carried out, however, "in an oversimplified way without
sufficiont justification. Along this line of approach, there is recent interest and progress
leading to a latter understanding of the nature of the problem and several sequences
of improved artificial boundary conditions. In the following we shall discuss briefly,
for the reduced wave equation with spherical computfational boundary, the exact
integral boundary condition at the gpherical computational boundary, and suggest,
using asymptotic expansions of Hankel functions, a method for derwmg a sequence of
approximations of the non-local boundary operator by means of tangential
differential operators on the boundary, in a form which is compatible with the
variational form and the finite element method for the original problem.

[
The general solution of the 2-D reduced wave '(Helmhbltz) equation

o , 32'_1 34‘3,‘1' bl
ox® oy r or or  r? 6%’
in the exterior ,={r>a} to the circle I'y={r=a} of radius « -s&tisfying the
radiation condition at infinity

dgu+wu=0, A= (L)
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wu=0{r"1),
4 . (1.2)
Ur +tou=o0(r %) as r—>oo
can be represented as a Fourier series
u(r, 9) —i AH® (wr)ems, (1.3)
where H{” is the Hankel function of the 2nd kind of order n, a.nd in pa.r'bmular
u(a, 8) = 2 A HP (wa) e, (1.4)
So (1.8) can be written as : |
_ sy HP (o) (2) (7 0
u(r, 0) =3Y 3 (o VAnH P (wa) e,
(1.4) and (1.5) together give the Poisson integral formula
=Py (1.5)

expresging the solution w=wu(r, §) in domain 0, in terms of its Dirichlet data
=w(a, #) on boundary I';, or explicitly

u(r, ) ~P @) u(a, ) =| " PO-0)ua, 0)dl, 0<O<2r,r>a, (1.6)
» .

where

- HE:EJ (mf?‘) ing |
ol < 2;11: e ( H®(wa) )" | ety

+ denotes the circmlar convolution |
| aw - e R
F @90 = | FO-009@)d0.
Differentiation of (1.3) gives

w(r, 0) =3 Ay HE (or) e (1.8)
and | _
| 2 e _ H? (wa) (2 W
u,(a, §) = 2 A,&JH (wa)e =33 (w57 o )A,.;I,, (wa)e".  (1.9)
(1.4) and (1.9) 'liogﬂther glve the mtegral 1'913131011

Uy = _Ki | (1.10)

expressing the solution’s normal derlva;twe Uy = — sy =y (@, 6) (v is directed to the
exterior of the domain £,), i.e. the N eumann data on I, of ‘ﬁhe solution % in termg
of the corresponding Dirichlet date #, or explicitly | |

Il‘-

—u. (@, 9) -K (9) A 6*') = 'K (ﬁ—-ﬁ’)-z;(a, E’)dﬂ}; (1.11)
where 1 | | ' -
(2"
0-EH-o B am

The integral in (1.11) is highly singular caf non-integrable type, it is to be
understood in the sense of regularization of divergent integrals in the theory of
digiributions. K is in fact a pseudo-differential operator of order 1 on the boundary
maniford I’y and defines a linear continuous map |
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K: H*(I')~> H"*(T,). (1.13)

Thus the differential operator 4;+w? in the domain £, induces an operator K, called
the canonical infegral operator, on the boundary I°;. The canonical integral
operator induced by elliptic operator preserves all the essential properties of the
latter, and plays a crucial role in the reduction of elliptio problems to boundary
integral equationg™#.

Parallel to the association of the operator 4;-+«® in domain Q, with the bilinear
functional

D(u, ) =.[n., (Vu-VE+mﬂﬁ@da;=J‘

L]

2%

r dr J (o + -}ﬁ- oo+ mﬂua)cw, (1.14)

a 0

there id also an asgsociation of the operator K on boundary Iy with the linear
funetional |

Dig, w)=a | F(®a8 | K@-0)p(0)d, (1.15)

which is inherently related to .D(x, v) by the equality
D(u, ») =D(u, )
for every solutions w«, » satisfying (1.1), (1.2).

From the facis 8bove follows immediately the equivalence of [the exterior
boundary problem, the Neumann problem, say,

Q: Aut-0u=0; u=00), y,+ivu=0(r"%), r-—>oo, (1.16)
I't w,—f, (1.17)

where Q2 is the domain exterior 10 the bounded closed ourve I, » is the normal on I,
directed 10 the exterior of @, to the reduced boundary value problem

QL dei+wiu =0, (1.18)
P =¥, (1.19)
Iy w.=—Ku, (1.20)

where ) is the remaining bounded pari of the domain Q2 by deleting the infinite part
Q,= {r=a}=Q, I', is the thereby created computational boundary, which, together
with I", form the complete boundary of the reduced domain ), = 2\£,. The
variational formulations of (1.16)—(1.17) and (1.18)—(1.20) are

Bite. ») =L, ) (Wu-?5+mﬂu5)dm=jrf5dm

=ﬂ*’uuﬂ.

for every test function « in {2, and
DY {u, v) =I (Vs Vo+w? un)da+D (4, o) =L fods

for every test function « in Q) respectively.

Thus we see that, upon deletion of the infinite domain @,= {r>a}, (1.20) is the
exact radiation condition to be imposed on the computational boundary I’',, which,
on the one hand, accounts for the full interaction of the delefed and remaining parts,
and, on the other hand, hag a formalism compatible with the variational formulation
and the finite element method (FEM) for solving the original problem.

The boundary operator K is non—local, so, afier FEM digscretization, it becomes
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a full matrix with storage reqmremen‘h O(N?), N is the number of boundary degrees
of freedom. In the present case of oircular boundary due to the convolutional nature
of the operator, the resulting matrix-is circulant, requiring only O(N) storage.
However, due to the analytical complexity of the kernel, the computational effort is
always expensive. So it is disirable to approximate tho exact but non-loeal radiation
condition by looal, i.e., differential boundary conditions. Moreover, the approximate
boundary conditions, like the exact one, should be put in a form whioch is compatible
with the original variational formulation and the FEM, so, we look for the
approximations in the following form

E:
and correspondingly
Bl B~Bill, D —a j:" éﬂaq 2u(a, 0) 055 (a, 6)ds. (1.22)
g=

To this end, for the cagse of large wae, a heuristic approach, based on asymptotio
expansions of Hankel functions for large arguments, is as follows. We start from the
asymptotio series for large wa of the Fourier ooefficient of the kernel K (8),

p Hfﬂ)’(m)_ 1 !
“THP (wa) o Be ), T=gn o (128)

where ¢,(A) are polynomials in A, and
co(A) =c1(A) =1,
ca(A) =2, c¢3(A)=—4A,
es(A) = —20(A—6), cs(A) =16A(A—38), (1.24)
co(A) =4A(AT—28A+60), cr(A) — —16A (4A2 — BLA+ 90)

lllllllll

A discussion will be given in section III. Truncate the series at finite term

( Hj ((j{f)) ~ 0 gucq(ln)r‘f=:lf s(Mn), 7= 2@'1&' (1.25)

Note that 0 = A4; = Laplace—Beltrami operator on the unit cirecle and

A" = (n —-—-) gt -—(—- A — 4 o
Cq (M) €™ = ¢ (-— Ay _Tf) ge

K,,(},,)e*“H':K,(—— Ay ---‘1—'-)6‘“’,
we have then, from (1.4), (1.5)

—u(@, )= 3 (—o 8 ) 4, HO ()
~ 3 K02 4HP (06) =K, - 41— )ula, ).

Sc we obtain for large wa a family of approximate differential boundary conditions,
called the asymptotic radiation conditions, in the desired form of (1.21):



134 - .. JOURNAL OF COMPUTATIONAL MATHEMATICS Vol.. 2

I b= K4, 8. ~iila, 9 :K,,(— A —%-)u(n:, 9), (1.26)
p=0,1, 2,

In partionlar,
(Ku) —HrEKu‘M 3‘?:&)‘!45,

(K]_) %‘Hr=.K-1H=<$ﬁJ+2:I;I
| i ] | 1 | 'i’
(K5) —-fu,ﬂKgu—(@m o] 8@@9>u' 53 A,
. e w L oy & 1 , 2 1
(K's) e _( T o T Bwa® | 8wtad )u ' ( 2wa?  2wia® )Aiu’

(Ky) ~—u=Ku=Kzu ( 285 % 131'11'14—1—2/1%%),

168w3a*

1
32w%a®

We may compare thig family of asympiotic radiation conditions with the family
of absorbing boundary donditions of Engqulst and Majda'® based on the factorization

of pseudo-differential operators,

(Hy) - ( % -+ -—-)

(B —u— (im—i— ) ( s ’2mm )a

lllllllll

and with the family of Bayliss and Turkel™, baged on the a‘-symptmjlos of the solution
of the wave equation Sl

(B, Blu=u,.+(@m+%u 0,

(B,) Bgu=u,.,.+(——2fim+£’—)u, 1 (3’:" W+ Ju=o,

(B,) Bku—(; o 4k;3)3;_1u=0, k=2, 3,

Note that K is simply the formal Sommerfeld condition, K, B,, B, are the same.
For 2>2, the three sequences K;, H;, B, diverge. For i>>3, H; and B; are nof
expressible in the required form. From the table of the polynomials ¢,(A) we see that
the differential operator K ,,, 1 hag the same order as that of K gp DUt with furm&lly |
higher acouracy, o it is more preferable. |
A remark on the integral boundary ocondition (1,20) w,=— —Ku and its loocal
approximation of the form (1.21) is in order. The former represents the complete
coupling of the system based on 2 with its environment acoross the interface I"=aQ,
it is a generalization of the conventional boundary condition of the third kind w, =
—ag%. The latter always expresses, in ocerfain sense and in ocertain degres, the
coupling of the system and its environment, for example, elastic coupling in
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olastioity, impedance coupling in electromagnetism, law of cooling, efc.; it is,
however, merely the crudest approximation in the form (1.21). The next approxi-
mation u, = — ao+ 1051, which represents the coupling much better and involves
hardly and more additional effort in the FEM implementation, deserves attention.
The coefficients ¢;, in addition to ¢p, should be theoretically prediotable as well as
experimentally determinable. This kind of improved apProximation is expeoted to
have potentially wide applications.

Bl

The treatment of 3-D case is analogous to that of 2-D, so it will be only briefly
indicated. The general solution of reduced wave equation

A+ =0, 2.1)
a g
> B 1 & ad T oy

Aa_@m""yﬂ 92 r® 9r  or 1o
L a*
g Eme a&(ﬁ"‘ﬂﬁ sm? 0 0p°
satisfying the radjation condition
' u=0(r"", ut+iou=0(r"1) (2.2)

in the exterior domain ,— {r>a} of the sphere I';= {r =a} oan be represented as a
geries in gpherical functions - -

w(r, 0, 9) =3} 3 Aunl® (@)Y (8, 9), (2.8)
where

(31 0) = Z B, @), Van(6, ) =P (cos0)e™,

" (2.4)
- B l—mﬂ 3 dn*l'm .
P;:t (m) ( 2"?1-!) - Q™ (xa_j‘) »
Then follows . | :
(@, 8, 9) =3 3 Al (@) Ym0, ¢) =4, (2.5)
o e i L E) . |
w{r, 8, p) = nZ_ m“E_n( ;;u;?( ) )Amzfi_%(mm)fnm(ﬂ, @) = Pu, (2.6)

—'u'r(ﬂ: 9: I;D) =§ 2

: &:3;:@ CORN ' )
. > - i |
C[:i (Cﬂﬂ’j— nmg n+.-]§- (&1{3) Yﬂ‘m (91 (P) K’M. (2 ’ 7)
We want to approximate the canonical integral operator K by tangential differential
operators, analogous to the form (1.20). Sinoce
2 (@) _ _HY ()
ey 2:1: - HP(w)

lot

g (3.) = €, (?h) g+1, (W) =1+ei(d)=2,
¢,(A) are the sa,me polynomiald in B given by (1.24), seo also section IIL. So we have
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Co (}') =1 C1 G\') =2, G; (?") = Cq,
(23"

(— 5 g RAIE) )= i [T43) 0 (ns2 )7 | =i 3 6} (Ar )75,
g =0 g =0

{2)
C,, +1 (wa)

- .
& Dicod ’ }“ﬂ+— 7+ 2) ﬂ'(n']"l)' (2 .8)

Take finite truncation on the L. H. 8., we get the approximations

Cfil(m”) 4 1
T |~io B el )7 =K (il), 7=
q=u

L (wa) 2iea

p=0, 11 2: ™ (29)
Using the eigenvalue property of the Laplace-Belirami operator 4, on the unit sphere
Mptl Yan(0, @) =nn+1)Y 4u(f, @) = — A:Y 1 (0, @),

K;(Rn+1)ynm(9 ‘F‘) E( Aﬂ)Ymn(g ‘F')

ciﬂ)ﬁ(mﬁ) e .
— Zfi_lﬂ_(mm) anH_F%(mﬂ) nm( :,;p)

we gol

_uf(ﬂ‘: 91 4;’):20 i
R

""‘"2 2 K;(?L,,_,_I) Apm {2} 1 (f’-’m) Y un (4, ‘F")

=K (—d)u(a, 8, p),
which leads 10 a family of asymptotie radiation conditions
—u(a, 8, p) = Kju=K;(—A)ula, 6, ¢), p=0,1,2, -, (2.10)

K, are differential operators as linear combinations of the Laplace—Beltrami operator
dg and its iterates A% exclusively. In particular,

K} —u,—iou,

(K —u,=(im+%)u,

(K3) ﬂu,#(@ml)u ooy Ay

T

KD —ur= o+ u (2m T )Aﬂ s R
(K5) _("”“’"" )’”* +( 2&1&} 2&11 . A )A*"“‘

+( Saa® 2m*::i5 )Ag%
1
Hankel funotion H{? () of the 2nd kind of complex order » has an a.syinptotiﬂ
expangion, for large real argument #, written formally as (gee, e.g., [5])
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H® ~/____ —-i(m-.._—E) % . a1 - !
(x) = 8 E by(M)T*, 7T 5 ?L p? 4,Rev} 5>
(3.1)
bx(A) iz a polynomial of degree % in A defined as
bo(A) =1, by(A) ——H(h—y(y 1)), k=1,2, ., (3.2)
so that
s JANE
bo(h) =1, Bu(h) == LI~ (i~ %) ) k=12, e
! og=1 2
From this we deduoce the asympt{)tm expansion
HE]'(:E) - i - 1 .9 1
IS 'I-E} ce(A)%®, T S Ay = S (3.8)
where ¢, (A) are polynomials in A fo be determined, we need only the cases » = +n and
y=n-}- %, n=0, 1, 2, - in seﬁtions I and II respeotively.
Using the relation H{® (z) == [H®;(z) — H((x)], and assuming Re p}é—, we
obtain from (3.1) the asymptotic expa,nswn
4 E e
» (2) g o i-him—”“' s a(h,) 75,
HE (@) b ( 2 k(M) (3.4)
where
1 1, £=0,
@) =5 [Bulho-) +BuCr)1 = 3.5
Wiy el d VoaldentlT =1 b in b Ol aa, g, 0

(3.4) and (3.8) are valid too for » =0 and ,;:_21_ by direot verification.

Setting now
H® (::::) _ ? @y (}*u) ¥
2

TP () % By (0s) 7

- i?ck(}u,,) *,

we have
ﬁk‘:buﬂk'l“blﬂk_i-i—"“‘l—bkﬂu, IG=0, 1_, 2, ey

From which ¢, =¢;(A) =cx(A,) can be determined recursively
Co— 1,
Cq1—=a1— b]_: bu=1,
Cx =@, — b — by 11— by_aCg— <o —byCx_4
= (2k—1)by_1—by_161—by_s6a— -+ —bicy 4, k=2, 8,

2
Thug far we have determined the asymptotio expansion of gm} ((;;)) for all y=n and

y=mn- ?j, n=0, 1, «--. Since

A (3) _ HP (2)
H2@) @

s0 the expansgions are determined for all »=n=0, 31, X2, «- and y=n- 5
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0,1, 2, -+-. cz=0e, (1) for k<6 are given in (1.24). For k=2, all ¢; (1) are polynomialg
in ) without constant term. Computational evidenoces suggest the conjecture that both
cap(A) and cap 1 (A) are polynomials of degree p in A. Thig ig so for all the practical
useful (in sections I and II) cases, it has not yel been proved, however, for the
general case. Estimates of the remainder O, for the expansion (8.3)

Hogy = Fatro)

can be obtained indirectly from those of the remainder B, for the expansion (3.1)

H® (2) = \/*—6 (a-2p-3 {Ebk(h )T*+Bﬂ},

for whioh one ig referred o [5].
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