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CALCULATION OF NUMERICAL INTEGRATION
OF MULTIPLE DIMENSIONS BY DISSECTION
- INTO SIMPLICES®

Wang ORENG-gHU (£ K IE)
(Computing Center, dcademia Sinica, Betjing, Ching)

In this paper, we introduce a method of numerical integration on a polytope of maultiple
dimensions. Iis basic idea is to cat a polytops into some aimplices and sum the integral values on the .
simplices. We give the integral formulas, the expressions t0 estimate the error and the method for

- culting a polytope into simplices. Bome examples are provided to explain the adaptability of the
method. : ;

L. Introduction

For numerical integration in ®higher dimensions with certain complicated
regions of integration and integrands it is too diffiouli to obtain a very precise
result, because that generally requires a very large amount of computation. Some
commonly used methods™ are the network method of number theory and the Monte
Carlo methods. The former has its advantage when the integrand belongs to the
E7(c) class of functions on a unit cube™, The Latter™ are relatively good when
high preocision is not required. Their computational formulae and programs are not
very complicated, but it is too difficult o obtain a precise result. In practice,
sometimes we could not irnprove the computational precigion even by one gignificant
digit, although astonishingly large amount of additional computation is done.

In this paper, we try to study the nuomerical integration for an n—-dimensional
polytope, whose boundary consists of (n—1)-dimensional byperplanes. For the
integral on this kind of region we give a numerical method with relatively high
preocision. Itg bagic ides is to separate the polytope into simplices. "We can adopt the
centroid method of numerical integration™ to compute the integrals on the simplices
end then sum the integrals to obtain the integral on the polytope. Compared with
the other methods, ite computational preecigion is relatively high and itg computational

amount relatively small. For some.ocases the advantage of the integration method of
digsection info simplices ig without comparison. .~ .

II. Numerical jntégrnﬁon on a Simplex
Deﬂn_itiOh 21. In R (n—defmem@bhalﬂmhdem space ) the conves, pan of r4+-1

(r<n) affinely independent poinis is an r—dimensional simples, denoied by r 5. Thess
7 Lindependent points are the vertices of r—8%%. « 5. |

Assume the é-th vertex is denoted by
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I{“‘{mﬂ, Zig, **, Dink.
Then, its -r+1 vertices define & matrix
' ' %1%‘%:
1 Zia *ot oy
. M_:I - Ti1 P12 . Wi1a
L 1 zy @pg e a:,.,. |
From the propertfies of the affinely independent,poiﬁm, we have
rank M=p+1 oy

1 F2 s
- :11- A i
1 Tt A .
d LS

Let 8, =8,(Xo, Xy, o, X))

be the closed region of a r—S Let | S, ] denote tha Enelidean measurement Volume

of f' SE'I;'-] ThEIl . | = .iq:r:l.- ’“I- =
18] ..;..._.  [det (Mm)]i By o 2.1)

If ¢ =mn,

Bl =2-dot My 2.2)

- The centroid point of & r—§ is denoted by X, - . ... . .-
: & r—l—lmzoxl’ LB R @ 5

which sa;t:ieﬁea

- Assume - -
I f(X)dX, - (2.4)

When f(X) has a continuous (p+1)-th derivative mth respecat fo X, we can use
the Taylor Bxpansmn then o e 2o -

PIL,[@ f)‘ ]f(m : j [x f)*' o) r@ax,

DT )e LA
where - | | i 3 T o el
,ai : i
.aai, == a'ﬁa : [1£ oo
< 3.- .-"..J iX "ﬁ ffﬂa % A

I=|S lf(-f)’l'%Ti i (2.5)

lu:hnlrl=-i ‘?ﬂ(l-') 3‘f(.x).f " :
i - ; v!  Oz{0x%--Omm l x=x"
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|'HI:=V1+1’2+"'+1’MF'I
l’! '—Pl'l-’g' !,
() = j (X=X (X — X )dX,
. . o
Boy1= LT s [(I"f)_ ﬂ*] f&dX,
Obviously, - £
| Ryua] <5 j1) j . E]"** B, ,,dX, (2.6)

where E denotes an identity vector, und B,+1 ig the upper bound of the norm of the
(p+1)-th derivative of f (I ) with respeot 10 X -

: I'RII'+-'1I'g ( +1)! [S IR’+IB!+1! | | - (2'7)
wherg
.R—-I;IH-BI II Il“- (2.8)
If I, denotes 'Ishe apprommahon of (p+ 1)—1:11 degree of I, we have |
- 18,1 F X+ Z T (@29
and , |7~ I,| = Byaa].

To caloulate I,, obtaining the values of m(:r) is a key gtep. There are some formulae
for it in [4]: .

i I(ir“":)"; {?(t’)axp [+ Wn_+-%w,+'._-.}}, L (2.10)

where | | P=|v],

o ﬁﬁ{g (@ —z5) 4}

and Z(T") {exp[— W,-.-+— Wa—l— ]} is the coefficient of the term £ in oXp [—;; Wat
1 Wa o s A ] |
When 1@9&3 we simplify (2 10) by
o IS l‘l"(P'—' )'S(ﬂ) - 2 11
) B ‘m(v) ol (2.11)
~ where 8 (#) ;J (Xa I)" E (rvu w:)"‘ (wn —%,)".
" When r=2, ‘there 5 & ‘simple result | o | -
m(y) = |8,[0,8(v), (2.12)
Grid ;-:;Uﬂ;:%;i |
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In the sbove we have given the sapproximation expression of numerical
infegration on a simplex (when £(X) has a continuous (p+1)-th derivaiive with
regpect to X) and the upper bound of the truncation error. In practice, according
to the properties of the function F(X) and our required precision, We 0an deoide on
the appropriate approximation degree P. Generally speaking, we choose l<p<3.

III. How to Cut a Polytope into Simplices

Tn R" the olosed region surrounded by (n—1) ~dimensional hyperplanes is a
n—dimensional polytope denoted by n- P. The conyex region which i3 a polytope is
oalled a convex polytope, which is the convex span of a get’ having a finite number
of points. For the problem of cutting a polytope into simplies we have the following
propositions™ %% S PR |

Proposition 1. An n-dimensional polytope oa: ‘be separated into the union of
digjoint n—dimengional convex polytopes. By “Disjoint” is meant that the common
pert consists of at most (n—1)-dimensional regions.®. | |

Proposition 2. Any convex polytope has interior points; in partiocular, the
centroid of all vertices is one of them. Sahl s Lt L
- Proposition 3. An n-dimensional eonvex: polytope can be goparated into the
anion of disjoint n simplices. |

[8, 9] have givefi and proved some methods for cutting a polytope. In the
following we will show the procedure of programming of the method introduced in{8].

1. From the boundary conditions of the convex -polytope n—P, the set of all
the vertices of n— P denoted by n— PV isfound. - . -

" o An interior point O, of n—P is chosen. (O, can be located in the boundary
of n—P and may be a vertex of n—P) O, will be the common vertex of all the
separation simplices. | |

9 A1l the vertices of set n—PV are divided into m subsets denoted by
(n—1) — PV, (n— 1) — PV, -+, (n—1) — PV 4. Each subsget corresponds to a surface
of n— P which isan (n—1)-dimensional convex polytope.: All:the members of a subset
(n—1) — PV, are the vertioces of the convex polytope (n—1)—F; corresponding to
(n—1) =PV, m equals to subtraction of the boundary number in which O, ig located
from that of n—P. W e % T

4. Subgtituting n by n—1, we repeat step 2 and 8 for all the n subsets.

B, Go on in this way until all the subsetd ‘have only two poinis. The procedure
will be stoped. Then, the convex polytope n—P divides into the gimplices whose
vertices are found. " B B g N g 2

L
v

disjoint n simplices.
{ Smvany

V. Errot" Estlzmat:lun of the Integration

Bince ﬁ polytope can be separated inlo dm]oglt _sinip]iﬁes, the integration on the
polytope is caleulated by the sum of ‘the integrations on each simplex. The error
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If we denote the radius of set A by d'(A),*

d(4) —lub{d(x Y) | X, YG A},
From (2.7), if f(X) € C™, the error Rgys of 111tegmt10n on & ﬂlmplex S, satisfies

|Rﬂ+1| < (P'l‘i) \ lSnI (ﬁd)ﬁ-iBﬁ-l: _ (41)

where d i8 the radius of §,.

As integration on & polytope n—P-oan be dissected into integrations on simplices
end the error of the integration on a mmplex satisfies (4.1), the error on the
polytope n— P satisfies

| R | —— (p—l—l)! |S'|(fcz’)ﬂ+13’ (4.2)

where |8’ is the volume of n—2P, a.nd B’ is the upper bound of the norm  of the
(p-+1)-th derivative of f(X) with’ reﬂlmt to X.

d, I!lﬂ.-E {di}

where d, is the radius of ¢-th smplex contaaned in n—-P

In (4.2) all the elements except &’ a;re independent of the dissection. If we do

not intend to improve the precigion of the mtegratmn by increasing p, the only

way is to deorease d'. Obvmusly, prowded d is amall enough we can make R’
arbitrarily smdll.

We can adopt the following way to reduce the va.lue of d’. The polytope n—P is
covered by a cube whose side is divided into ¥ identical parts to obtain 27 subcubes.
Each of them covers a pars of the polytope n— P denoted by s—P; (é=1, 2, -, ng) .

Woe divide n— P, into simplices. Then the ratio of the error R} 1o the urlgmal eTTor
R, is

[ Ba| o, 4.3
A - .5

V. Examples
tn the following we will give two examples—-calculation of the coefﬁment of
quantization of the lattice quantlzerﬂ“"’ to show the advantages of the method.
In the two examples incomparable results are obtained by dissection into gsimplices.
Weo do not want to show that the method of dissection into simplices is better than

the others for any cases, but it is & good method in some situations.
Eaample 1. Caloulate | -

_a‘_ j |xnﬂax/uu|”. (D)

where P; ig a symmetrm polytope mth ‘the ﬁenter at or1gm in R‘ that is, -
P.,-—{I|§_‘, | <2 {m| <1, i=1, 2, 3, 4} (5.2)
The Bymmatzrji‘ about each quedrant and axig is used to compute the' inbegration. By

the‘abovementioned method, the program automatically” dividés' the: i}blf’tﬁpﬁ Hfith::,

8 hnds of aimpliees whose corresponding mairices are the: followizig = <9877/ hiﬂm | |
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100 0 07
1100 0
My=| 1100 1]
11010
1110 0_
1 0 0 0 07
1 0.5 0.5 0.50.5 |.
M= 1 0 0 1
1 1 0 1 0
1 1 1 0 .0 |
1L 0 0 0 _ o0~
Myep=1 0 0 1 1 |
1 0 1 0 1 ,

The integral on the polytope is 64 times ag much as the sum of the mtegrals on 3
gimplices. Since the integrand is of gecond—order, we ‘need to oconsider the second-
order moments nnd#to obtain the truncation error 0. For the integration on a
simplex the followmg formulse are used. . we

[ 1xex - sX P+ AL g (@), (5.4

where § denotes a simplex, |&| is it volume, and f is the oenfrrmd of the simplex.
Then, we have

=0.0766032,

Since (5.4) is a correct integration formuls for the problem, the error of the above
result is due to the rounding off.
‘We {reat the problem using the Monte Carlo methods (IBM 4341, Fortran). The
result has only three significant digits and we could not improve it (ﬂee Table 1).
Emm_pk 2. Calonlate 2

_aa=-;:L | X[ dX/| Pt (5.5)
Py={X||a} <1, $=1, 2, -, 8; Elwul‘ﬁ‘ @“"1 2, -, 14}, -5

The mrrespondenﬁe between ¢j and % is given. by Tﬂ.ble 3 This 8-dimensional
polytope region is surrounded by 240 7-dimensional hyperplaneﬂ with symmeiric
center at the origin. We use the same may with ahoye example 1 and the methods

T"h-ul

mentmned in Sectmnﬂ 2 a.nd 8 10 obtam | .

For this problam iwe use the Monta Uarlo nethy apd the: network method of
number theory; (PDP:11/45, Fortran). Two. mgmﬁmnt digms aTe obtained and we
could not get maore: (00 Table 2). . T §
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Table1 Example 1

Method OPU time (seconds) Precision
dissection into simplices . 1.13 ~ 6 significant digits
. Monte Carlo thM_ e 5.44 or more - . within 3 significant digits

' g e e S T — “‘ .=, S — ¢ — -
Table 2 Example 2 -
M

Method OPU time (minutes) Precision
dissection into simplices | 3.53 6 significant digits
Monte Carle methods 6.75 or more within 2 significant digits
| number theory network 5.64 or morsa -
—-_____“-.._—-——-—-__——_
Table 8
__—______.———-———_'—_—__—-
i1 jom2 j=38 | jud
i 3
falt
- 1 1 2 6 b
2 2 3 4 6
8 3 4 5 7
g . 1 4 5 6
S5 1 2 % i
& & 5 6 7
o4 1 3 6 ff
B 4 6 7 8
g 1 5 7 8
10 1 2 6 8
11 2 3 7 3
12 3 5 7 g
| 18 i 3 4 8
14 : 2 e 5 8 |
—_____—__——*_——

V1. Conclusion

The method is suitable for calculating integration on a polytope, especially for
the integrand having small values for over 3rd or 4th derivative. Thereby we will
obtain an incomparable good result. Its drawback is that the dissection into

simplices causes ﬁomplmntwn in progra.mmmg
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