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THE CONVERGENCE OF INFINITE ELEMENT
METHOD FOR THE NON-SIMILAR CASE”

YiNne LuNG-AN(F %)
{Department of Mathematics, Peking University)

We have consgidered the infinite element method for a class of elliplic systems
with congtant coeflicients in [1]. This class can be characierized as: they have the
invariance under similarity transformations of independent variables. For example,
the Laplace equation and the system of plane elastic equations have this property. We
have suggested a technigue to solve these problems by applying this property and a
gelf similar discretization, and proved the convergence. Not only the average conver-
gence of the solutions has been discussed, bul also the term~by-ferm convergence for
the expansions of the solutions. The second convergence manifests the advantage of
the infinite element method, that is, the local singularity of the selutions can be
oaloulated with high precigion.

We have generalized this method to the non-similar case in [2], and obtained
many resullis parallel to that of the similar case, which include the calculation of
the combined stiffness matrices and the discussion of the singnlarity of the solufions.
For conciseness, the Helmholiz equation

— du+Au=0 (1)
and the linear triangular elements will be considered in this paper, but this method
is good for more general equations.

We will prove the average convergence which shows the order of the convergence
of the infinite element method is higher than that of the finite element method if the

golutions possess singularities. At the same time, we will concentrate upon the proof

of the convergence for singular comlponents, which does not exist for the finite
element method.

y 1. Some General Statement

For conciseness we assume that the considered region D is a bounded polygon
region on the x, ¥ plane, one of the vertices of which is the origin, the inner angle
of which is §y>x. If we consider the boundary value problem of equation (1) on this
region, the solution will, generally, possess singularity at point 0. Now we devote
ourselves to the calculation of this singularity. It is no harm fo assume that one of
the neighboring sides of point O is on the positive z—axis and the interior angle is 0<
88,
" Let the neighbering sides of point O be I and I, we construct a neighborhood Q,
of point U in D, which is a polygon region and satisfies the star-shape condition with

* Received September 29, 1982.




No. 2 THE CONVERGENCE OF INFINITE ELEMENT METHOD 131

E = L

respect to point O, that is the line segment which connects any point on I, and
point O lies on 0, entirely. I and I are also two sides of £2,, the remaining part of
the boundary of £, is expressed by Io:r=R(8),
where 7, 6 are polar coordinates.

Some boundary conditions are assumed on the
boundary of D, for definiteness we assume that the

Iy

: O ’
homogeneous Neumann condifion -gf- =0 ig assumed J

on I"and!™", where v denotes the normal directoin,
the discussion is similar for other kind of homogeneous boundary conditions.

‘We make the infinite element discretization as usual: D\Q, is discretized into
a finite number of {riangular elements by the conventional way, while Q, is disoretized
into an infinite number of triangular elements as the following: a constant ¢ 0< &<
1, is taken, we construci similar carves of I'p with 0 as the center and £, £3, ..., €%, ...
ag the constants of proportionality, thus, £, is discretized into an infinite number of
“layers”, then we construct the line segments from point O to nodal points on I,
each layer is discrefized into finitfe mumber of quadrilaterals, finally, each quadrila-
teral is disoretfized into friangles, the mode of discretization for each layer is the same.
The inferpolation functions are linear on each element and is continuous on D.

One auxilary unbounded region is needed in the following proof, which is denoted
by Q= {(r, 8) :0<r< oo, 0<<H<0,}, hence 2,Q2. We also discretize region Q\ £,
into infinite number of layers by the constants of proportionality £72, ..., &% ...
then they are discretized into triangular elements by the same mode. The curves r=
§*R(6) (=0, %1, ---)are denoted by I,

The region €2, with its discretization is called a combined element, since squation.
(1) is given, if u is an approximate solution by the infinite element method™, then
the “strain energy’’associated with u; on Q,,

[ vy ] ey

would be determined by tbe values of u, at the nodes of I"y, where V is the gradient

33;;; ;y ) suppose there are m nodes on [',, the values of u, on

which form a m—dimensional vector according to a definite order, say the anti-clock-
wise order, which is denoted by 7. A technique in [2] is given to calculate the
combined stiff ness matrix K,(A), then for any boundary value 4,, the strain energy of

operator. V: (

the appro:z:imai;e solution w, associated with 4, on 2, is expressed by -;— Yo K+ (M) 9,

where T’ denotes transpose. £2, can be treated as one element by means of the matrix
K,.(A), we can solve this algebraic system as ordinary finite element method hy
assembling this combined element with conventional elements on D\£2,. We denote
the values of v, at the nodes of 7', by vectors ¢, (k=1, 2, --) just as 4. When we
consider the apprommatﬂ solutions on £, we also use the symbols 4, for negative
indices %,

We agsume that the above discretization is normal, that is, any itwo closed
triangular elements possess either a common vertex or a common side, or no common
point at all. We assume also all the inner angles of elements have an upper bound



132 JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 1

which ig less than #. We would not repeat these assumptions in the following. As
usual, % denotes the length of the greatest side of triangles for a definite discretiza-

tion.

§2. The Ave’.rage Convergence

For definiteness, we consider the following boundary condition abt this section:

Suppose condition g';——-(] is assumed- on the part of boundary I, I'"" of region D,

while the Dirichlet condition =7 is assumed on the rest of the boundary [ =aD\
(I'I'J" 1"” )

We take the usunal notations H*(D)for Sobolev spaces, Where 8 is a real number,
we denote H* (D) the subspace of H*(D), the element of which assumes value 0 on 1.
Hers it should be noticed that this notation is different from the usual one. The
norm in H*{D)is denoted by |+ p, as s=0, H®(D)=L* (D), the inner product is
denoted by (),

The subspace of H*(D)corresponding to the infinite element discretization in the
above gection is denoted by 8,(D), while the subspace of H1 (D)is denoted by S, (D).
Wo also define the weighted Sobolev spaces H¥>* (D), where M >-0 is an integer, which
ig the closure of the Spa,ce of infinite differentiable functions CU.(D) according to the

norm

fubnan={ 2, [ r¥0loulrdady+ [ult.of

| g =M
where r is the distance of each point of D to point O, a= (a1, @), |@|=as+ea, oy and
as are nonnegative integers, &*u= o™ “u/dx* oy™,

We introduce space H*(INon I' as usual, the norm of which is denoted by | - [, .
The subspace of H? (I") corresponding to the infinite element discretization is
denoted by S,(I"). It is easy to see there is a constant O, which depends on the
region D) only and is independent of the discretization, such that for any f &8, (1),
there is a u € 8, (D), satisfying . - |
j2el1,0< 0| f | 14,1, (2)

and

wu|p=f. _
This is the so called property of “conformance” in [3]. Since we are considering the
polygon region now, it is easy 1o verify that thig property always holds.
We consider a sesquilinear functional

Bu w)=[ 2‘; gz : g’; g;)da:dy (3)

on D, which cnrresponds to the Laplace operator. The variational formulation of our
problem is:

{ for given fEHJ:"H(F)}‘bO find - HI(D>,Sﬂﬂh that 'U:Ip’-——“_f,
B(u, v)+ (G, v)=0, Vo€ H(D).

Suppose fRr€S8,(IM) isan approxlma’ﬁe value of f, then the infinite element appro-
ximation of problem (4)is: |

(4)
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{ to find w4, € 5, (D), such that «, | r=f4, (5)

B(u, v)+ (Ms, ) =0, Yoc€8,(D).

Let Ao be the first eigenvalue of problem (4), then it ig easy 1o see
Lemma 1. There ezists unique solution u for problem (4) as|A| < |Ao|and

|4l 1, 0<C|Ffl1se.r,

where constant O depends on the regton 1) and A only.
Lemma 2. There exists a untque solution wuy for problem (5) as (A< | Ao | and

1,0C|fa|17e,r, | -
where constant O depends on the region D and A only and is independent of the discretiza-
tzon.

We always denote the constants by ¢ and do not digtinguish them throughout

this paper. The above two lemmas are the corollaries of the well known Lax—Milgram
theorem'™ if we notice that

| B(u, w) + (hut, ) | Zalu)2 o, VuC HY(D), (8)

for|A| < [Ao]|, where >0 is a constant depending on A. We estimate the error « —u; as
follows:

Theorem11. 7 f u, wy are the solutions of problems (4) and (5) respectively, and
uc H31(D), then

||

[t tala, p < O ARl 1.0+ [ — fil a2

where R i3 the distance between Iy and point O, C depends on D and ) only.
Proof. By the Lemma 8 of [1] ;

|~ o1, p<CRR|ufs,4,p, (7)

where [Ty is the interpolation funection of 1. Denote by f; the value of ITu on I', then
f}ES},(F),&ﬂd

\f =il 112,P‘§OAR_1HHH 2,1,D, | (8)
Uonsider problem (4)and (5) with boundary value f;, let the solutions . of them be
and u; respectively, if we set w=1u' — II U, wy=uy—Lu, then they satisfy

B(w, v) +(w, v)=—B(Ilu, v)— Ay, v), Vo€ H(D),
B(wﬁj 1?)"" (}"wﬁu 'v) s _EB(HIH’: QJ) i (}"Hﬂ: @): V‘U ES;,,(D)‘
respectively and € 'ﬁi'(D) , wi €8, (D), owing to [5]and(6),

Hw“wh[|1,ﬂ“<0 inf (lw—w”i,p,
CVENH(IN

L ]

wo take =0 partiauiarly and obtain | -
lw—wals,p<Cw]s,0= O — Huly, p<O{|w —e] 1, p+ Ju~ Hul 4 o},
Therefore | | '
19" —%l2,p= o~ wa]s, p<O{[0' s, p+ [u—~ Tuily p} .
By Lemma 1, 2 | ,
lee—a'fs, o<C|f ~ Fill1a,r, |
b — w1, 0<C| fo—f1l1sa 1,

hence
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|1,ﬂ‘5§““““””1.ﬂ+ ll%"—uilx.w!]ui-uaih.n
<O{Ju—o'|1, o+ fw—Iu|s,p+ | fo—Frl1se.0}
<SO{|f —Frllrsa, v |u— D)1, 0+ | fa—Frlasa rt.

|v—ual s, p<C{AR™ el 3,2,0+ | f —fal 22,0}, Q. E. D.

[l —

By(7), (8)

&

§ 3. The Convergence of an Auxiliary Problem

In order to discuss the convergence of the singular components for the infinite
element approximate solution, we consider an auxiliary problem here, which is the
Poisson equation

M= f (9)
on region (= {(r, #):0<r<oco, 0< A<y} with Neumann condition
ou
v 0=0,0, =0, (10)

Here we assume that supp fCQ'C <, that is, f is a function with compact support
in 2. We also assume f€ L® If

[ fawdy=o,

then the solntions of problem(9), (10)exist, and is unique up to a constant differ-
ence. It i3 easy to see that the solution € H? on any bounded closed region which
excludes point O, and u is the solution of the Laplace equation as + is large emough,

hence the main part of u is a4 Br~*/% cos 9— ¢ for r—>+4co, where @ and 8 are con-
0
I |

stants and « is arbitrary, so the first order derivative hag the order O(r % )asr—>

"__"'a

+oo,and the second order derivative has the order O(r % ). The solution near point
+v', where «' € H?, by[6].

O is u=a'+ B'r™® cog
o

We introduce the following function space to disouss the infinite element appro-
ximation of the above problem: space H; (Q)is the closure of the space of infinite
differentiable and compactly snpported functions 0. (.Q) according o the norm

- g dw dyb
(oo, 1,0-1 J, e Iul*dwdy+ [ (| 5% Yo dy}
where 2<s<4. Similarly, define space H>'(£2)by norm

oy

L

1/8
||“”{=J,:3.-1;ﬂ={"“"%ﬂmﬂ'l‘ ﬁg a‘?‘ﬂ]%[ﬂdﬁvdy} .

By the above consideration the solution of Poisson equation « € H;(Q),
Denote by € the space of complex number, since CCHI*(Q2) CH;(2), we can

define the quotient space H=HI(Q)/C€, Denoto by # the element of H, then there is
an equivalent norm

\Lﬁi\ﬁ“ﬂ 5 E)dmdy }m, wE, (11)

We refer readers to [7]for the proof of (11), although bounded region was considered
there, the above result would be easy to obtain if we repeat the proof..
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Similarly, let B(u, ©)be the sesquilinear functional on H,
~ o~ {(Ou OV, u v ~ ~
B(u, a-jn(&v e T By aﬂ)dmdy, uCu, v,
A semilinear functional on space H may be formed associated with the funotion f as

f, B=| fodudy=(f,v), vED

Thus, the solution % of the above boundary value problem of the Poisson equalion is
also the solution of the variational problem

B(u, v)+<{f, v>=0, Vo€H, (12)
The solution of the variational problem (12) exisis and is unique, and we have
u€ H21(Q)for any v € u. It is easy to verify by the closed graph theorem that

Lemma 8. fi>u is a bounded Vinear operator from L?(Q2")to HY*(2)/C,

We have made an infinite element discretization for region @ in § 2, the corres-
ponding subspace of H!(Q)is denoted by S,(Q2), the quotient space is H,=5,(£2)/ <.
Let u € H21(Q), denote by ITu the interpolation funciien, then we can prove

Lemma 4, v— IIu€ H(Q2)for any v € HZ'(2)and

lu—Hul1,0 <KOAR™| 4] w,2,1,0,

where h i3 the length of the largest side of the elemenis between I'y and I'y, B ts the
distance between I’y and point U,
Proof. Denote any triangular element by 4, then we obtain as in[1]

ju—Hu|3,, <ORE max [0l o,

where 4 is the length of the largest side of 4,. But
max | o*u|§ 5, = max |3"‘*u| da dy <ri? r?| 9% |2 da dy,

(] =2 o] =2 '-'l-l_ Ay

where 7; is the distance between A, and point O. By the geometric similar relation
hury ' <<hR™*,

honce

fu—Iul3, 4 <CHR-*max [ 1°|0%|*dady,
&|= 4
summing them np with respect to £ we obtain the desired result. Q. E. D.

Now we consider the approximate problem of (12). to find u, € H,, such that
B(us, v) +<f, =0, Yo&H,, | (18)
Lemma 5 The solution of problem (13)ewxists and is unique, and
| —up) e <OAR™|u] 3,10, %E,

where E,_, 1y, are the solutions of problem(12), (18),

The existence and uniqueness in this lemma is the corollary of the Lax-Milgram
theorem, the error eshmatlon can he obtaaned by Lemma 4 and [6]. (The proof of
The orem 1 is referred. » 3

§ 4. The Convergence of the Singular Components
'We consider the local property of the solutions mear point O, the considered
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region ig {2y, the space is H*(,). Like the definition in § 2, H? (£25)is the subspace of
(2, the elements of which assume the value 0 on I'y. We also have subspace
8, (£2)and 8, (Q,)corresponding to the infinite element discretization..

First of all, let us recall ihe results in [1]for the Laplace equation.,

If v and u, are the solutions of the fol]owing:ﬂ

{B(u_, v) =0, VwEHl(Qn)., (14)
Ltuc HY(Qo), w|p=Ff, |
{B (‘U@; v)=0, Voc é’n (£o), (15)
€8 (), wln=rf
then v can be expanded into a series near point O ag
u=a+ﬁf#{rﬁf cuﬂgi t? {.'}_ﬂr‘ﬂa.rfﬂ- CO8 gf& } :'_", | -.. _(16)
Ui, the_vdlues of v, at the nodes of Z";,, can boe eﬁprasséd as
e ' =g+ BN O, R ity

where a, 8, v, as, B, are consta;;tﬁ_. M(=1), Aa, =+, A, are the eigonvalues of X ,™
arranged by the decreasing norm, g(”(= 1, 1, e, YT, g9 2o g™ are the corres-
ponding eigenvectors. | & L | | o .

- Each term in{17)corresponds 1o a function in S3(82), whioh is the solution of
problem (15)under some boundary condition. For instance, the first term corresponds
to the constant a;, which is the solution of (15) with f s=cn, The function corres-
ponding to the second term is denoted by s, the value of uf on Iy is denoted by i,
then «, iy the solution of problem (15)as f,=fr. |

We define operators @, and @, such that

Quu=a, Q=" cos 7,
0

regarding them as the functions on [, .;;.‘,'we ha.ifa the dperators £y, -Pg ag

Pif=a, Pif=8r"%cos % g

0

Just the same, let Q1 3ty =0, Qg =y, and Py, fr=ay, Pas fa=f4 on I'y. Here @y,
Q1,5, ++-are operators in space H(Q,), Py, P;,,, -+ are operators in space HV2(I,).
And i} is easy to see that the range of definition for operators P, P, is the entire
space HY2(Iy), N S

| The first order derivatives of Quu and Qa,3%; 18 uhbounded near point O, therefore
we call them the singular components of u and 4, respectively. We have proved in [1]
that the operators Py,,, Pa,, can be extended to operators on space H1/2(I'y)such that

”P,—P‘,—,,,J]*’\\','Gh, jzl; &, |
applying this result we can prove ' |

”Qﬂi—Qmﬂnu1,n.<0{”“‘”h"1;n.+h”ﬁ”1;n.}; .?'=_1; 2, s,

Now we consider j=1, 2 only.
We consider the following two soluiions % and wu, for the Helmholtz equation:

{B(u, v) + (w, ) =0, Vo HY(Q,),

- 18
u€ HY(Qy), - e e VD
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{ B(‘H:h,, "U) 4 ,(}uuh; TJ) P 0: . Yo G SYTI' (Qﬂ) y (19)
HI;ES]’L<QD); uhlfn'___fl-
There are similar expansiong:
' u=a+ Bre/* cos T 0+ (20)
| 0
V= g™+ BrAkg® £ oo (21)

where A, ¢, ¢® are the same ag that in (17)™!, the difference is that each term in
the expansion is no longer the solution of the problem, thus only the residue in(20),
(21)ig an infinitesimal with higher order as r—0. Nevertheless, we also define operators
Q:, Qa, Qr,5, Q2.5 as previously and we will prove the same convergence for the
gingular components in this section.

(21)may be rewritten as

Y=g+ Baf gV o, (22)
where ag=10g Aa/log &, r has the same order with £* as r—>0, comparing (20)and(22) we
know the index ay corresponds to a/0,. We have proved in[1]that

Theorem 2. |og— /8, | <O,

We are now in a position to consider the convergence of the singnlar ocom-
ponents. For this purpose we consider some aunxiliary solutions a} first.
Bocause £—1 ag A—>0, we may assume £>>0.5. Take a constant  such that n=£'€
4’ 2
42, .-)as the constants of proportionality, which are denoted by Z%. £’ denote the
region between Iy, and 1%, 2 denote the region{(r, #): O<r<R(8), 000},
these notations denote the regions themselves and their areas as well, Let

Cpa1= Q-1 Im Ay, di ay,

Ay OIFJ ﬂﬂﬁ):
fk= - G?G-—i; erl):
0} ﬂ\ (ﬂm} U Q~1) ) 5

], construct the gimilar curves of I'y with O as the center, and oy"(k=0, +1,

for k=1, 2, - then
L frdody=0,

Besides, since

1 .
) jmt— | Cy-1 |5dwdy— -1 Hﬂ: huhdm{f/y‘

| IQm 1)[ dmd‘y[ |lﬁhlﬂdmdy‘"§;ojn |uh|ﬂdw@:

wa ha."::"e | | -
| frllo.o<O|ta 0,0, . T . (23)

uniformly for %. For v€ H, ¥ €, set

o = fivdwd,
then by Lemma 8, the solufion of problem
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B(uy, v) +<{ fr, ©0=0, VoCH
exists and is unique. If 4, Cuy, lot wy= (I —Q;—Qu)w, w= i Wy, where I is the
k=1

identity operator. Then, if and only if this series converges in H* (Q,), w is the
solution of problem

B(‘Eﬂ, Jv) + (B‘uﬁ: 'IJ) e 0: V"u E -E‘II (Qﬂ) a (24)
Lemma, 6. ” w I[liﬂtga ”uﬁ- ”ﬂ;ﬂ”

where C i3 independent of the discretization, and w=o0(r™*) near peint 0.
Proof. We deﬁne a similar transformation of the mdependent variables, oz oz,
Pytsy, let flofi. uw->u; under this transformation, then u, satisfies

B(ux, ©) +{™fz, 2>=0, VvE€H, (26)

We know from (23)

“f*“n,ﬂ‘QOﬂ_kHﬂﬁun,ﬂu
by Lemma 3 (taking @ _,as Q") we obfain

|22] aacere <O 7™ fr 0,0 <O |tts] o, .,
that is, there exisis uj € %}, such that

142 | 9, 2,2,0 <07 [ ]| o, . (26)

We notice that v is the solution of the Laplace equation on s, lob wp=(I —¢)1—
Qa)uz, then since Q;, @y are bounded operators:

| Quei | 1,0,+ | @t | 1,0, <O |1 o, 2,
soi
Qi = o5, Qutty=Br™® cos E— g,

then
laz| + | Be| <CrFlualo, a,. (27)

Under the inverse transformation s>y, y>n*y, we have wir>w,, url>vu,, by the
definition of space H21(Q)

B (26) uuk " (3}, n:l.ﬂqoﬂ_k (E_i) “u";” (2):Q351,0, (28)
L
” Uy ” {3112:1:ﬂ€0??k (ﬂ_f) "uh HD 2y, (29)
Bocause o> af, Sir™/™ cos ;r b > By m ~*w/bp®/% oo -Q— ¢ under this inverse trans-
0 0

formation, by (27)and (29)

Tanls,0<0" 8 4 4y ) [y,
noticing that s<(4 and ¢y>m, we sum them up with respect to % and obtain
|20]1,2.<O) ]l 0, .,
Now we discuss ‘the property of w as r—0. Consider the following auxiliary

problem: if f &€ L~ (Q’ ), jﬁ fdady=0, v is a bounded solution of

do=7F,

ov

— ={)
31’ =0 »d¢
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on £, then thanks to the discussion in § 3, v exists and is unique np to a constant
difference. Let 2'=QCV J I, UQ? o satisfies the Laplace equation on £2,, we have
the expansion (16). Besides, v € W, on any compact subset which excludes point O, so
? 18 & continuous function. The solution » —@Qyo, which equals to zero ab point Q, is
determined by the problem uniquely, therefore fi>v— Qv determines a closed opera-
tor from L=(Q2)to O(Q), we have
|2 — Qv | <Crup jf]|
on 2 by the closed graph theorem.
Next, we consider /% (y— Qv —Quw), which is bounded and determined by the

problem uniquely by the expansion (16). In the same way,

|2 % (0 — Qv — Q) | <Csup | f|
on & by the closed graph theorem, that is

|2~ Qv —Qav | <Or**™sup | f|,

Then we consider Quv= Br/% cos —g— 0, since v—Q,v satisfies the Laplace equation
a

in £2,, taking the value of v— Q.2 on Iy as the boundary value, we get a well-posed
problem, it is easy 1o see
i8] Qﬂmfx v —@Q|,

hence |B|=<<Csup |f],
Applying the above result to problem(25), we obtain
|z — Q| <O sup | 7*Fr],

wy | <COr**®sup |7"f;],

Br| <Osup |7%f |,

But| fi| <0, where 0, is a constant which depends on the discrefization generally,
80 we gel’

|z — Quuz | <Ohr™,
w; gghnﬂkﬁ#;ﬂ‘;

B I: g Oh"?ﬂk;

returning to functions 2, we get

= 2T/ Pe
O5) ™ r<eRO),

f

Iwk I gi E‘F.ﬂ' #
o)™ r>7RE).

Summing them up with respect to % for a fixed point(r, &), we get

21:(1— X (2,_.?5_

bl
wl< 3 ™) gee ()
Lo (r/E(E)) log(r/B(8))
k<™ logn k> " log 7

if we write down the sum of the above two series, then
l"w ‘ gchq,ﬂ‘w;’ﬂu

is obvious, which ﬁompl;ates the proof of this lemma. Q. E. D,

Now we consider the infinite element approximation of w, construct %, € H As
which satisfies
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B, ) +<{ fu, 5>=0, VoCH,,.
Let WEEEEM Win= (I —Qy,s—Qa,3) U, Ws— il i, then if and only if this series
k= 2

converges in 8,(Ly) , w, is the solution of the following problem:
B(un, v)+ (v, 9) =0, Vo ES (). (30)
Lemma 7. |20~ ws| 1,0, <OC% | w0, a0,
where C is independent of the discretization, and for sufficient small k, w, is an
wnfinitesimal with the order Migher than the first two terms of (21),
Proof. Qorresponding t0(25), we have uy, € H, which satisfies
B(uz, v)+<{™fs, v>=0, Vo€ H,, (31)
By Lemma b |4 — i | e <Ch|i | 0),0,1,0, U E U,
where the factor B~ has been absorbed into the constant O, by (26)
4% — tzn | e < OFft s o, a,
henoce there exists uy, € %5, such that
1w — a0y, 1,0 < ChrF| ety | 0, 0,. - (32)
By the frace theorem | 2
| ot — en H 1/2; n“gahﬂk ”'Hﬁ. |J 0, s, | (33)
By (26)and (32) o 3
||| 03, 1,0< O | tta o, 0.
In virtue of the proof of theorem 5 in [1] |
|P;— Py <Ch, j=1, 2,

hence | Pty — Py sten 172, 0 <O |un | 0,0, 7=1, 2,
By the Thenrem 4 of [1] , -
H Qﬂl;ﬂ_ Qi:l h‘u;k "1;&‘%057}3 ”'u'h ” 038 .?-"_"_ 1; 2.. ' (34)

Under the transformation of independent variables zt— 2, y > ¥y, we have u >,
ﬁﬂ;hl“"‘u]m ? QJU;I_:" quk, Qj; J’lﬂ;hl_"’Qj, alyn , but we kﬂﬁw f.T.'DIﬂ the Spﬂﬂiﬂl pa.ttern of thess
functions

QIH;E Qi%.l
AN ’ AUy, = Q1 AUn

_h!BnQﬂuk "'Qﬂu’k:

7N %, shen = Qs nUsa. |
Now W= Wy = ,g ( Uy — Ugn ) + ?:—ul Q12 — Qo ) + g (Qowtr, — Qa;n%kn) .
By (28)and (82)
o — a0 | oy, 2,2,0<C" C8) ey,
By (26)and (84) s .

l| QJ.%: — Q4,5 " 1,0, 'ch’b’f?k " Up " 03045

” Qﬂuk Q.‘JJ ?lukh H 1Jﬂ.<0}b??k ( I~ &y ) ” Un “ 0, ﬂ.+ I 7 —Rux/ls __
but by Theorem 2

'Onk”“hnﬂrﬂu



No. 2 THE CONVERGENCE OF INFINITE ELEMENT METHOD 141

| oo 6 gy |

—kx/ O f
J "o log ndt <Olh /%,

—Kits

Therefore fw—wn| 1,0, <Ch|t] 0, 0.

The proof of the second conclugion of this lemma is the same as that of Theorem
4.8 at [2], we omit it here. One conditiorn is needed: A is a single root and |Aa| >£2,
but by Theorem 2 this condition always holds as & small enough. Q. E. D.

Finally we prove the convergence of singular components.

Theorem 3.

|Que— @y nta| 1,6 <C{|u—wal 1,0, +P|uf1,0}, J=1, 2.
Proof. We get w, € H*(Q)like w with « instead of u,, which satisfies
B(uo, ¥)+ Qu, v) =0, Vo&H(Q,),
Making use of the inequality of Lemma 6 we obtain

“ Wy H 1, ﬂngo ” '?.LH 0s0s) (35)
and
Jwo — 21,0, <C |t — ] 0, 0. (36)
By Lemma 7
[0 — | 1,0 <O{|u—s] 0,0, % [tin]0,0.) . (37)

u—wy and u,—w, are the solutions of problems (14) and (15) with respect to some
suitable boundary values, by the Theorem 5 of [1]

| Qs —0) — @y, n(2tn—wy) | 1,8, <0 {[|e—wo —1wp+wnl 1,0, + Aljts — wy | 1,00} 5
j=1, 2,
By (86)and (37)
| Qs (v—wp) — Qg n (1a—wy) 11,0, <O{|u—t| 1:9.'1‘}5“‘“" L), J=1, 2, (38)
By Lemma 7
Q.f.rh k%h_ wh) = Qﬁ; ﬁu?u j= 1: 2- (39)
By Lemma 6
Qrvo=Q;(wo—w), =1, 2, (40)
wo — w satisfies equation and bondary value
A{wo—w) “A(ﬁ—ﬂn):
O (wo— w)

31’ 8=0;,8,

=)

on £2,. Thanks to the estimation on singular components in[6]
| Qs (wo—w) 1,0, <C{|v~wr] 0,0+ |wo—w]s5,r}, F=1, 2,
by (86)and the frace theorem
| Qs (wo—w) | 1,0 <Clu—wfo,0, J=1, 2, (41)
The conclusion of this theorem follows from (38)—(41). Q. E. D.
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