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Abstract

This paper deals with a monotone weighted average iterative method for solving semi-
linear singularly perturbed parabolic problems. Monotone sequences, based on the ac-
celerated monotone iterative method, are constructed for a nonlinear difference scheme
which approximates the semilinear parabolic problem. This monotone convergence leads
to the existence-uniqueness theorem. An analysis of uniform convergence of the monotone
weighted average iterative method to the solutions of the nonlinear difference scheme and
continuous problem is given. Numerical experiments are presented.
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1. Introduction

In this paper we give a numerical treatment for the semilinear singularly perturbed parabolic
problem in the form

Ut7ﬂ2(uzz+uyy)+f(x7yatvu) :Oa (l‘,y,t) € Q:w X (OvT]a (11&)
u(x) y7 t) = g(x7y’ t)7 (l‘) y7 t) E aw X (07 T]’ (1'1b)
u(x,y,0) =v(z,y), €W, (1.1c)

where w = {0 <z <1} x {0 <y <1}, pisasmall positive parameter, dw is the boundary of
w, the functions f, g and ¥ are smooth in their respective domains, and f satisfies the constraint

fu>0, (z,y,t,u) € Q x (—00,00), (fu=0f/0u). (1.2)
This assumption can always be obtained by a change of variables. Indeed, introduce
z(, y,t) = exp(=At)u(z, y, t),
where X is a constant. Now, z(z,y,t) satisfies (1.1) with
© = Az + exp(=At) f(z,y,t, exp(At)z),

instead of f, and we have ¢, = A+ f,. Thus, if A > —min f,,, where minimum is taking over
the domain from (1.2), we conclude ¢, > 0.
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For u <« 1, the problem is singularly perturbed and characterized by boundary layers
(regions with rapid change of solutions) near boundary dw (see [1] for details).

We shall employ the weighted average scheme for approximating the semilinear problem
(1.1). This nonlinear ten-point difference scheme can be regarded as taking a weighted average
of the explicit and implicit schemes. In order to practically compute the nonlinear weighted
average scheme, one requires an efficient numerical method. A fruitful method for solving non-
linear difference schemes is the method of upper and lower solutions and its associated monotone
iterations. By using upper and lower solutions as two initial iterations, one can construct two
monotone sequences which converge monotonically from above and below, respectively, to a
solution of the problem. The above monotone iterative method is well known and has been
widely used for continuous and discrete elliptic and parabolic boundary value problems. Most
of publications on this topic involve monotone iterative schemes whose rate of convergence is of
linear rate (cf. [2-7]) Some accelerated monotone iterative schemes for solving discrete elliptic
boundary value problems are given in [8,9]. An advantage of this accelerated approach is that
it leads to sequences which converge either quadratically or nearly quadratically. In [10], an
accelerated monotone iterative method for solving discrete parabolic boundary value problems
based on the implicit scheme is presented. In [11], a combination of the accelerated monotone
iterative method from [10] with monotone Picard iterates is constructed. In [10,11], the two
important points in investigating the monotone iterative method concerning a stopping crite-
rion on each time level and estimates of convergence rates, in the case of solving linear discrete
systems on each time level inexactly, were omitted.

In this paper, we extend the accelerated monotone iterative method from [10] to the case
when on each time level a nonlinear difference scheme based on the weighted average of the
explicit and implicit schemes is solved inexactly, and give an analysis of a convergence rate of
this monotone iterative method. In [10], it is assumed that a pair of ordered upper and lower
solutions is given on each time level, and this pair is used as initial iterates in the accelerated
monotone iterative method. Our iterative method combines an explicit construction of initial
upper and lower solutions on each time level and the modified accelerated monotone iterative
method.

In [3], we investigate uniform convergence properties of the monotone weighted average iter-
ative method applied to solving the semilinear problem (1.1). This monotone method possesses
only linear convergence rate. In this paper, we investigate uniform convergence properties of
the monotone weighted average iterative method based of the extended accelerated monotone
iterative method from [10] . We show that the proposed monotone iterative method possesses
quadratic convergence rate.

The structure of the paper as follows. In Section 2, we introduce the nonlinear weighted
average scheme for the numerical solution of (1.1). The monotone weighted average iterative
method is presented in Section 3. The explicit construction of initial upper and lower solutions is
incorporated in the monotone weighted average iterative method. Section 4 deals with existence
and uniqueness of the solution to the nonlinear difference scheme. In Section 5, we show that
the monotone weighted average iterative method possesses uniform quadratic convergence rate.
An analysis of convergence rates of the monotone weighted average iterative method, based
of different stopping tests, is given in Section 6. Section 7 deals with uniform convergence
of the monotone weighted average iterative method to the continuous problem (1.1). The
final Section 8 presents results of numerical experiments where iteration counts are compared
between the proposed monotone weighted average iterative method and monotone weighted
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average iterative method from [3], whose convergence rate is linear.

2. The Weighted Average Scheme

On @ introduce a rectangular mesh @" x @™, @" = @"* x W":
wh”” = {Zi; 0 § ) § Nm, To = 0, TN, = ]., h:m = Ti+1 — QL'Z'}, (213,)
W ={y;, 0<j <Ny yo=0, yn, =1; hyj =yj11—¥5}, (2.1b)
@ = {tr, 0S k< Ny tg=0, ty, =T; 7k =t — tp_1} . (2.1¢)

For solving (1.1), consider the weighted average method (or §-method)

7 [U(p.te) = Ulp,te—1)] + 0L"U(p, t) + (1 — 0)L"U (p, tr—1)
+9f(p7 tka U) + (1 - G)f(pa tk*la U) = 07 (pa tk) € wh X wTv (22)

with the boundary and initial conditions

Ulp,tr) = g(p,ti),  (pyty) € 0wl x W,
U(p,0) = ¢(p), pea”,

where § = const and dw” is the boundary of @". When no confusion arises, we will write
f(patka U(patk)) - f(pa tk, U) LMU is defined by

LU = —p? (DU + D2U) ,

where D2U and DiU are the central difference approximations to the second derivatives

x 1]

DQUk = (hiﬁi)_l |:(Uik+1,j - UZE) (hxi)_l - (Uzlz - Uikfl,j) (hxai—l)_1:| ’

DiUi];’ = (hyjrl [(Ui]fjJrl - UZ) (hyj)il - (Ui]; - Uz']qu) (hy,jfl)il} )
where
hpi = 21 (hz,ifl + hm) s hyj =921 (hyyjfl + hyj) , UZIE =U (1'1'; yj,tk) .

This 10-point difference scheme can be regarded as taking a weighted average of the explicit
scheme (6 = 0) and the fully implicit scheme (0 = 1). We assume that we are using an average
with nonnegative weights, so that 0 < 6 < 1.

On each time level t, k > 1, introduce the linear difference problem

(9‘Ch + Tl;l + oc(pa tk)) W(pa tk) = (I)(patk)a pe wha (233’)
C(patk) > 07 W(patk) = g(patk)a pe awh. (23b)

We now formulate the maximum principle and give an estimate to the solution of (2.3).
Lemma 2.1. (i) If a mesh function W (p,t)) satisfies the conditions

(G‘Ch + Tl;l + ec(patk)) W(patk) > 0 (S 0); pe wha
W(p,tr) 20 (< 0), p € ow",
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then W (p,ty) > 0 (< 0) in T".
(ii) The following estimates of the solutions to (2.3) hold true

MH, (2.4)

W (. t:)|l=n < max t LA
I )l < ma ), | )

wh

where
W te)llon = max [W(p,te)l,  llg(,tr)llowr = max |g(p,tr)].
pewh pEIWh

The proof of parts (i) and (ii) can be found in, respectively, [3] and [12].

3. The Monotone Iterative Method

We represent the difference equation from (2.2) in the equivalent form

GU,tr), U(p,te—1)) =0, (p,t) € W x T, (3.1a)
GU P, tk), U(p,tk—1)) = Go (0, tr, U) + Gi—0 (D, ti—1,U), (3.1b)
Go(p,ti, U) = (0L" + 7.1 ) U(p, i) + 0f (p, tr, U), (3.1¢)
Gio(p,tr—1,U) = [(1 = O)L" =77 [ U (p,te—1) + (1 = ) f (p, tre—1, V). (3.1d)

We say that on a time level t;, k > 1, Vi(p,tx) is an upper solution with respect to a given
function V(p,tx_1) , if it satisfies

SWVilp,tr), V(p,tr—1) >0, pewh,
Vi(p,tr) > g(p, tr), p € ol

Similarly, V_1(p, tx) is called a lower solution with respect to a given function V(p,tx_1), if it
satisfies the reversed inequalities.

3.1. Statement of the monotone iterative method

We now construct an iterative method for solving (3.1) in the following way. On each time

level tg, k > 1, initial upper and lower solutions v (p,tr) (=1 and @ = —1 correspond to,

respectively, the upper and lower cases) are calculated by solving the linear problems
(9£h+T_1) W(O)(p,tk) _Oé|g( (p)tk)7‘/1(patk—l))|a pewh7 (323')
W( )(p,tk) =0, peoiwh, (3.2b)
VO p,tr) = Sp.tr) + W (p,tr), pead’, a=1,-1, (3.2¢)

where S(p,t;) is defined on @" and satisfies the boundary condition g(p,t;) on dw". We
calculate upper and lower sequences {VOE”> (p,tr)}, @« =1, —1, for n > 1, by using the recurrence

formulae
LM (p, 1) 257 (p, t) = =GV D (p, 1), Vi(p, te1)),  p e, (3.3a)
LM (p,ty) = 0L" + 7,71+ 0" (p, 1), (3.3b)
Z{ (p,tx) =0, pe o, (3.3¢)
VO (p,ty) = VD (pte) + 28 (0, tr), peT, (3.3d)
Va(p ti) = VI (p ty), ped’, (3.3¢)
Va(p,0) = 4(p), pew (3.3f)



624 I. BOGLAEV

where g(Vé"*”(p, tr), Vi(p,tk—1)) is the residual of the difference scheme (3.1) on Va(nfl) for
upper a = 1 and lower a = —1 sequences, respectively, and ny is a number of iterative steps
on time-level t;. The mesh function ¢(»~1)(p, t;) is given by

c(nil) (pa tk) = m‘ax{fu(pa tka V)7 Vf(rll_l)(p; tk) S \% § V1(n_1)(pa tk)}a (34)
where below in Theorem 3.1, we prove that

VOV ) <V ty), pea

3.2. Monotone convergence of method (3.2)—(3.4)
If U(p,tr) > V(p,tx), p € @", we define the following sector:
(V(te), Ute)) = {V(p,tx) < W(p,tx) <Ulp,tx), pe@'}.
In the following theorem we prove the monotone property of the iterative method (3.2)—(3.4).

Theorem 3.1. The sequences {Vl(n)}, {Vfrf)}, generated by (3.2)—(3.4), are, respectively, upper
and lower solutions and converge monotonically

VO, t) <V o, tr) <V (potn) <V V(psty), ped”, (3.5)
where k >1 and n > 1.

Proof. We show that Vl(o) (p, tx) defined by (3.2) is an upper solution. From the maximum
principle in Lemma 2.1, it follows that Wl(o) (p,tx) > 0 on@". Now, using the difference equation
(3.2) for Wl(o) (p,t) and the mean-value theorem, we have

G(S(p, te) + W (b, ta), Vi (p, tr-1))
= g(S(patk)ﬂ V(patkfl)) + |Q(S(p,tk), V(patkfl)” + ofu(pa tkaE(O))Wl(O)(patk)a

where E)(t3) € (S(tx), S(tx) + WI(O) (tg)). Since fu, Wl(o) and 0 are nonnegative, we con-
clude that VI(O) (p,tr) = S(p,tr) + Wl(o) (p,tr) is an upper solution. Similarly, we can prove
that Vfol) (p,tr) = S(p,tr) + Wfol) (p,tr) is a lower solution, where Wfol) is nonpositive. Thus,
VI(O) (p,tr) and Vfol) (p, tr) are, respectively, upper and lower solutions of (3.1) and satisfy (3.5).

Since Vl(o) is an upper solution, then from (3.3) we conclude that
E(l)(p,tk)Zfl)(p,tk) <0, pewh Zfl)(p7 tr) =0, pedwh
From Lemma 2.1, it follows that
Z8 ) <0, pewh (3.6)

Similarly, for a lower solution V((P, we conclude that

ZN(p,tx) 20, peat. (3.7)

We now prove that
VO 0. t) < VP (o th), ped (3.8)
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Letting W) = Vl(n) - V_(al), n > 0, from (3.3), by the mean-value theorem, we have

‘C(l) (pa tk)W(l) (pa tk) =0 |:C(O) (pa tk) - fu(pa tka Q(O)) W(O) (pa tk)a pe wha

WO (p,ty) =0, pe o

where Q) () € <V£01) (tk), Vl(o) (tr)). From here, taking into account Vl(o) (p,t) > Vfol) (p, tr)
and (3.4) with n = 1, we conclude that the right hand side in the difference equation is
nonnegative. The positivity property in Lemma 2.1 implies W) (p, t;) > 0, and this leads to
(3.8).

We now prove that Vl(l)(p, tx) and Vfll) (p,tr) are upper and lower solutions, respectively.
Using the mean-value theorem, from (3.3) we obtain

G (pta) Vi, o)) = =0 [V pita) = Fulp i, V)] 200 (1), (39)
where EM (t) € <V1(1)(tk), Vl(o) (tr)). From here, (3.4), (3.6)—(3.8), it follows that
O (p,t) > fulp,te, BD), pew.
From here and (3.6), we conclude that

GV (pt), Vilp, tr1)) > 0, pew”, Vi (ptr) =glp.te), pe o

Thus, Vl(l) (p, t) is an upper solution. Similarly, we can prove that Vfll) (p, t) is a lower solution,
that is,

g(vf(ll)(patk)a Vl(pa tkfl)) § 07 p € whv Vf(ll)(pa tk) = g(pa tk)a p S awh.

By induction on n, we can prove that {Vl(n) (p,tr)} is a monotonically decreasing sequence
of upper solutions and {V_7’(p, )} is a monotonically increasing sequence of lower solutions,
which satisfy (3.5). Thus, we prove the theorem. ]

4. Existence and Uniqueness of a Solution to the Nonlinear
Difference Scheme

Applying Theorem 3.1, we investigate existence and uniqueness of a solution to the nonlinear
difference scheme (3.1).

Theorem 4.1. The nonlinear difference scheme (3.1) has a unique solution.
Proof. From (3.5), it follows that lim Vl(n) (p,t1) = Ur(p,t1), p € @" as n — oo exists, and
Uilp.t) <V (p.ta), lim 2{(p,t1) =0, pew. (4.1)
Similar to (3.9), we can prove that

g(Vl(n)(patl)aw(p)) =-0 C(O)(p7t1) - fu(p7tlaE(n)) an)(p7t1)7 n Z 1)
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where EM (t,) € (Vl(n) (t1), 1(n71)(t1)>, and ¢ is the initial function from (1.1). From here and

(4.1), it follows that Uy (p,t1) solves (3.1) at t1. At time level to, we consider (3.2)—(3.4) with
Vi(p,t1) = Ui(p,t1). Using a similar argument, we can prove that the following limit

hm ‘/l(n)(pa t2) = Ul(pa t2)7 p S wha
n— o0

exists and solves (3.1) at ta, where according to Theorem 3.1, {Vl(n) (p,t2)} is a sequence of
upper solutions with respect to Uy (p, t1).
By induction on k, k > 1, we can prove that

Ui(p ) = lim V" (p,ta), pe@, k21,

is a solution of the nonlinear difference scheme (3.1). Similarly, we can prove that the mesh
function U_1(p, tx) defined by

Uoilp,te) = lim VP (p,ta), ped”, k=1,
n—oo
is a solution of the nonlinear difference scheme (3.1). We now show that
Ur(p,te) =U-a(ptr), pe@, k=1, (4.2)

where Uy (p,tr) and U_1(p,tr) are solutions to the difference scheme (3.1), which are defined
above. From the definition of Uy (p,¢1) and U_1(p, t1), we conclude that

g(Ul(pa tl)a l/f(p)) = 07 g(Ufl(pa tl)aw(p)) = 07 pE wh'
Letting W (p,t1) = Ur(p,t1) — U-1(p,t1), from here and (3.1), we have

(eﬁh + Tl_l)W(p7t1) + e[f(p7t1; Ul) - f(patla U—l)] = 07 P S wh7
W(p,t1) =0, pe€ "

Using the mean-value theorem, we obtain

OL" + 77 +0fu(p,t1,Q))W(p,t1) =0, pewh,

where Q(t1) € (U-1(t1),U1(t1)). Since f,, and 6 are nonnegative, by Lemma 2.1, we conclude
that W(p,t;) = 0, p € @". By induction on k, k > 1, we can prove (4.2). Thus, the theorem
holds true. (|

5. Uniform Quadratic Convergence

Introduce the notation

i = max <m3x{|fw<p,tk, VIV .t <V <, m}). (5.1)

pEW"

The following theorem gives the quadratic convergence of the monotone iterative method (3.2)—
(3.4).
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Theorem 5.1. On each time level, for the sequences {Va(n)}, a = 1,—1, generated by (3.2)-

(3.4), the following estimate holds:
WDt < (0 IV 1) (12
where W™ (p, ty,) = l(n)(p, ty) — V_(Tll)(p, tr).
Proof. From (3.3), we have

L:(nJrl)(p;tk)W(nJrl) (pa tk) = H(n) (pa tk)a pE wh’

H™ (p, t1,) = 0™ (p, t )W (p, 1) — O1f (p, tie, V™) = f(p,tr, VI,

W("H)(p7 ty) =0, peow

By the mean-value theorem,

Fote V) = £, ti, V) = Fulps tr, QYW (p, 1),

where Q™) (t),) € <V£711) (tr), Vl(n) (tx)). From (3.4), it follows that

¢ (k) = fulpy i, G, GO (1) € (VW (1), V™ (1))

Thus, we represent the right hand side H™ from (5.3) in the form

Applying again the mean-value theorem, we get

fu(p;tka G(n)) - fu(pa tka Q(n)) = fuu(pa tka R(n))(G(n) (pa tk) - Q(n)(pa tk))a

where R(™ lies between G(™ and Q™). Taking into account that

IG™ (p, 1) — QM (p,tx)| < Vi (p,ti) — VI (p, 1),

in the notation (5.1), we estimate H™ from (5.3) as follows
IH (i)l < Oral|WOD (1) |20

From here and f,, > 0, using (2.4), we prove the estimate (5.2).

(5.2)

O

Remark 5.1. If on each time level ¢, k > 1, the nonlinear function f satisfies the constraint

pEWh

then for the upper sequence {Vl(n)} in Theorem 5.1, we have the estimate

IV () = U ot < mi (@) [V (b)) — U (o) |2

min (m‘}n {fuu(patkav)7V£(i)(p;tk) < Vv < V1(0)(p7 tk)}) > 0;

(5.4)

where U*(p, ty,) is the exact solution of the nonlinear difference scheme (3.1). From the assump-

tion (5.4) on f,, and (3.4), it follows that

™ (1) = fulp, ti, V™).

(5.5)
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If we take into account that W) = Vl(n) —U*and U* < E™ < Vl(n), the proof of the estimate
repeats the proof of Theorem 5.1.
If on each time level tx, k > 1, the nonlinear function f satisfies the constrain

max (mvax {Fuups e, V), VD (0 10) <V <V p, tk)}) <0,

pewh
then for the lower sequence {V_(Tll)} in Theorem 5.1, we have the estimate
VD) = U ) lon < (@) VP () = U )2
From the assumption (5.4) on fy, and (3.4), it follows that
™ (p,t) = fulp tr, VY),

If we take into account that W (™) = VE?) —U* and VETIL) < E™ < U*, the proof of the estimate
repeats the proof of Theorem 5.1.

Without loss of generality, we assume that the boundary condition is zero, that is, g(z,y,t) =
0 in (1.1). This assumption can always be satisfied by a change of variables. On each time
level, from (3.2), we have

(0" + 7. ) VO (o, 1) = alG(0, Vi(p, ti-1))l, p € WP (5.6a)
VCSO)(pa tk) = 07 pE awh’ o = ]-7 717 (56b)

where S(p,tr) = 0.

Lemma 5.1. On each time level k > 1, upper and lower solutions Va(n)(p,tk), a=1,-1,
n > 0, obtained by (5.6), (3.3) and (3.4), are bounded independently of u, Ny, N, and 7.

Proof. We prove this result by induction. From (3.1) and (5.6), it follows that

(OL" + 77 VO p,t1) = al0f (p.11,0) + G1o(p. 0,0)|, p € wh,
V% (p,t1) =0, peaut,
Gio(p.0,9) = [(1 = )" =7 ] w(p) + (1= )£ (1.0, ).

From here by (2.4), we have
VAP Ct)llan < 70 (105 Cot1,0)llan + [1Gi—0 (-1, %) ] (5.7)
In [13], we proved the following estimates:
I DEW)ln < 12 Yaallos 2Dy (@) lon < ll1tyyle-
It means that ||£"%||,» is p-uniformly bounded. Thus,
71/1G1-6(-, 0,9)||r < C, (5.8)

where here and throughout a positive generic constant C' is independent of u, N, N, and 7.
From here and (5.7), it follows that

|‘V<§O)('7t1)||wh S Ca o = 17 —1. (59)
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From (3.3), for « = 1, —1, we have
£ (p, 1)V (p, 1)
=0 (p, t))V O p,t1) — 0f (p, 1, V.)) + Gi_o(p,0,%), pe€wh. (5.10)
By (2.4),
IVAD ¢ t)
< 0l ()l IVEY Ct)llgn + 01 Cota, VAl + 11Gr—6 (-, 0, 9) | .
From here, (3.4), (5.8)—(5.10), we conclude that
VO t)llgr <C ml|l LV tallon <C, a=1,-1.

Now, by induction on n, we prove that V(p,t1) = a(tm)(p, t1) satisfies the estimates

Vo t)llzn < C, mllL"Valt)]ler <O, a=1,-1.
Using these estimates, we conclude that
72Gi—o(p,t1, V1) =72 [(1 = 0)L" — 757 ] Vi(p, t1) + m2(1 — 0) f(p, t1, V2).

is bounded independently of p, Ny, N, and 7 (compare with (5.8)). Now, by induction on £,
we prove the lemma. O

We now prove that on each time level the sequences {VOS")}, a = 1,—1, obtained by (5.6),
(3.3) and (3.4) converge uniformly in the perturbation parameter y. Introduce the notation

an(te) = [V (o) = VD () - (5.11)

Theorem 5.2. On each time level k, k > 1, the sequences {VOS")}, a = 1,—1, generated by
(5.6), (3.3) and (3.4) converge p-uniformly. There exists ny, such that Triqn, < 1, and the
following estimate holds:

on—ng

1
n < — n ) > Ny, 12
an(te) < g 07Tk dn, ()] n > ny (5.12)
where 1y, is defined in (5.1).

Proof. From (3.5) and Lemma 5.1, we conclude that the upper and lower solutions converge
p-uniformly. Let k,,(tx) = 07krkgn (tr). Multiplying (5.2) by 677y, we have

fnpr(te) < [Fn(ti)]?, 1> 0.

Since the sequences {Va(n) (p,tr)}, @ = 1,—1, converge to the solution U*(p, t;) of the nonlinear
scheme (3.1), then for some ny the inequality x,, < 1 holds. By induction, we show that

on—ng

Fon(tr) < [y 8125, > . (5.13)

It is true for n = ng. Assuming that it holds true for n = [, we have

sea(te) < () < (Brne )7 ™) = oy ()27

and prove (5.13). From (5.13) and £y, (tx) = 0767%¢n (tr), we conclude (5.12). O
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6. Convergence Analysis of the Monotone Iterative Method

In Theorems 3.1, 5.1 and 5.2, we have investigated convergence properties of method (3.2)—
(3.4) on each time-level tx, k > 1. In this section, we investigate convergence properties of the
monotone iterative method (3.2)—(3.4) on the whole interval of integration [0,7]. In (3.3), we
assume that on each time-level ty, k > 1, V(p,tx) = Vi(p, tx), where Vi(p,ti) = Vl(n’“)(p,tk).
Thus, on the whole interval of integration, we now estimate maxy, ez~ ||V (-, tx) — U* (-, t&)|lzn
where U* is the exact solution to the nonlinear difference scheme (3.1). In the final remark to
this section, we formulate convergence results for the case when on each time-level t, k > 1,
V(p,tr) = Voi(p, tr), where V_y(p, tx) = V") (p, 1)

6.1. Stopping criterion based on residual

We now choose the stopping criterion of the iterative method (3.2)—(3.4) in the form
I9A™ ), VAt o <6, (6.1)

where 0 is a prescribed accuracy, and set up Vi (p, tx) = Vl(n’“)(p,tk), p € @", such that ny, is
minimal subject to (6.1).
Introduce the notation

Vi = Ugi—1 + Vai, Vg,im1 = (hai) ™ (hx,i—l)_l g = (hei) " (has) ™ (6.2a)
—1 —1 —1 —1
wj =wy -1+ wy;,  wyj-1=(My;) " (hyy-1) " wy = (M) (hy) (6.2b)
U= max vj, W= max wj. (6.2¢)
1<i<N,—1 1<j<Ny—1

We suppose that the time mesh spacing 7, k£ > 1 satisfies the constraint

1
w? (U4 W) + cpr1’

-1 = max <mvax{fu(p,tk1, V).V ti) <V <7, tkl)}), k=1 (6.3b)
peEW”

(1-0)1 < (6.3a)

The condition (6.3), known as the CFL condition, guarantees the discrete maximum principle
on the computational domain @" x @™ (see in [3] for details). This imposes no time step
restriction on the implicit scheme, for which § = 1. A more interesting question is the stability
of the Crank-Nicolson scheme [14], for which § = 0.5. For a linear problem (1.1) with constant
coeflicients, Fourier analysis places no stability restriction on the Crank-Nicolson scheme, in
contrast to condition (6.3). One can see that the CFL condition (6.3) is sharp by considering
the one-dimensional linear problem —p2u,, + u; = 0 with initial data v°(x) = {22,0 < z <
0.5;2(1 — 2),0.5 < a < 1}, boundary conditions ¢g(0,t) = ¢g(1,¢{) = 0 and N, = 2 mesh
intervals [1].

Thus the maximum principle analysis can be viewed as an alternative means of obtaining
stability conditions. It has the advantage over Fourier analysis that it is easily extended to
problems with variable coefficients and to nonlinear problems. We mention that, in general, the
maximum principle analysis gives only sufficient conditions for stability of difference schemes.

We prove the following convergence result for the monotone iterative method (3.2)—(3.4),
(6.1).
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Theorem 6.1. Let (6.3) hold true. For the sequence {Vl(n)}, generated by (3.2)—(3.4), (6.1),
the following estimate holds:

max [V, t) — U* (- ta) o < T, (6.4)

trEW
where U*(p, tx) is the unique solution to (3.1). Furthermore, on each time level the sequences

converge monotonically (3.5).

Proof. The monotone convergence of the sequence {Vl(") (p,tr)} follows from Theorem 3.1.
The existence and uniqueness of the solution to (3.1) have been proved in Theorem 4.1.
From (3.1), we have

g (p7tk‘7‘/1)+g1 9(p7tk‘ 1;V1) ( (patk Vl(p7tk‘—1))7
gG(patka )+g179(patk71aU ) 0.
From here and using the mean-value theorem, we get the difference problem for Wip,tx) =
Vi(p,tx) — U*(p,tx) in the form
(0L (p,tr) + 7 ") W(p, te)
= [(1 - e)ﬁ}}(patkfl) - Tl;l] W(patkfl) + g(vl (pa tk)a ‘/l(pﬂtk‘fl))’ pe wha
W(patk) :Oa peawha ‘C?(patk) :£h+fu(patk;E)7
where E(t;) € (U*(tr), Vi(tr)). In the notation of (6.2), we can write the difference equation
in the form
(1 + Orpl )W,
= 07 [Mo(W5) + My (Wi5)] + (1= )7 [Ma(W5) + My (W]

+ [1 - (1 - Q)Tkpfj_l] Wi];‘_l + Tkg(vl (miayjatk)a ‘/l(xiayjatkfl))a (653')
ok = 1P (v +wy) + fr i, Ma(WhE) = p® (0eiWiiy j + veica Wy ) (6.5b)
My(Wz];) = MQ (wijiITj+1 T Wy, j— 1W ij— 1) (6.5¢)

Under the assumptions of the theorem, all the coefficients on the right hand side are nonnegative.
From here and taking into account that according to Theorem 3.1 the stopping criterion (6.1)
can always be satisfied, we have

W ti)llon < 07k + (W (5 k1) [l

Taking into account that |W (-, #o)||z»=0, by induction on k, we conclude that
k
W te)llon <6 m<T6, k> 1.
=1

Thus, we prove the theorem. O

6.2. Stopping criterion with fixed number of iterates on each time level

For the iterative method (3.2)—(3.4), we now choose the stopping criterion with the fixed
number of iterative steps n. on each time level (that is, n, is independent of k) and assume
that time step 7 satisfies the inequality

1
—, k>1 6.6
TE < 96k = 4 ( )
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where ¢y, is defined in (6.3).

Lemma 6.1. Let (6.6) hold. Then for the sequences {Zf")}, generated by (3.2)—(3.4), the
following estimate holds:

127 ¢l < M2 Gt a = (Bex)me < 1. (6.7)
Proof. Similar to (3.9), using the mean-value theorem, from (3.3) we obtain
g(‘/l(n) (pa tk)a Vl (pa tkfl)) = 79[C(n71)(pa tk) - fu(pa tka E(n))]z{”) (pa tk)ﬂ (68)
where E(™)(t;,) € (Vl(n)(tk),Vl("fl)(tk)) Using (2.4), from (3.3) we have
1287 ¢l < PG (), Vi b))
From (3.4), f, > 0 and (6.8), we conclude that
(n—1) (n—1)
NGOV ta), ViCs ) llon < Ockl| 207 () lloon -

Thus,
1Z o)l < Ber)mill 20t s

and, by induction on n, we prove (6.7). O

Theorem 6.2. Let the assumptions (6.3) and (6.6) be satisfied. Then for the sequence {Vl(n)}
generated by (5.6), (3.3) and (3.4) and n,. = fized, the following estimate holds:

max [|Vi(-,t,) = U*(-, t)[[on < Cq™ ™', g =maxq <1, (6.9)
trEW™ k>1

where U*(p, ty) is the unique solution to (3.1), qi is defined in (6.7), constant C is independent
of u, Nz, Ny and 7, and the number of iterative steps on each time level n, > 2. Furthermore,
on each time level the sequences converge monotonically (3.5).

Proof. From (6.5) and (6.8), we get the estimate for W(p,tx) = Vi(p,tr) — U*(p, tx),
Vilp, ) = Vi (o, 1),

W G tillon < Bl 2 ot o + W (b1l (6.10)
where ¢y, is defined in (6.3). From here and taking into account that W(p,tp) = 0, we have

IW (-, t2) [l < (Be) ]| 28" (1) |on-

From here and (6.7), we obtain the estimate
L1
IWCt)lar < g 1217t o

By Lemma 5.1, ||Z§1)('7t1)||wh and |c1| are bounded independently of y, N, N, and 71. Thus,
we obtain the estimate
W (-, t1)lzn < Bimg ", (6.11)

where here and throughout constants By, k > 1, are independent of p, IV, N, and 7.
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From (6.7) and (6.10), we obtain the estimate

W (oto)llzn < a5 128 G to) e + I (1) (6.12)

By Lemma 5.1, ||Z§2)(',t2)”wh and |cz| are bounded independently of p, N, N, and 7. Thus,
from (6.11) and (6.12), we obtain the estimate

Nnyx—1 Ny —
K wh >
[W(,t2)llon < Bimig™ ™ + Bataqy

By induction on k, we can prove

W te)llon = ZB Tsql

Denoting
B = max By,
k>1
and taking into account that 2521 7s < T, we prove (6.9) with C = BT. O

Remark 6.1. We now assume that in (3.3), on each time-level ty, k > 1, V(p, tx) = V_1(p, tr),
where V_1(p,t;) = VET’“)(p, tr). In this case, Theorems 6.1 and 6.2 hold true for

max [[Voi(-, tx) = U (- tx) [,

tpEw

where U*(p, ti) is the exact solution to the nonlinear difference scheme (3.1).

7. Uniform Convergence to the Solution of Problem (1.1)

We employ a layer-adapted mesh of a piecewise uniform type [15]. The piecewise uniform
@'* and @'Y are defined in the manner of [15] and are referred to as Shishkin meshes.
The boundary layer thicknesses ¢, and g, are chosen as

meshes W

¢z =min{0.25,mipIn N}, ¢, = min {0.25, mopln Ny}, (7.1)
where m; and my are positive constants. Mesh spacings hy,, hz, hy, and hy are defined by

4& b 2(1 — 2¢,)
Nx, xr — Nx b

4g,

dgy 2(1 — 2¢,)
N,’ '

he w = Ny

oy, = h, = (7.2)
The mesh @"* is constructed thus: in each of the subintervals [0,¢,] and [I — ,,1] the fine
mesh spacing is hg, while in the interval [¢,,1 — ;] the coarse mesh spacing is h,. The mesh

"9 is defined similarly. The difference scheme (3.1) on the piecewise uniform mesh (7.1), (7.2)

converges p-uniformly to the solution of the continuous problem (1.1):

Jnax MU te) —ul,te)|lon < C’(N_1 InN + |0 — 05|+ 7'2>, (7.3)
where N = min {N,, Ny}, 7 = maxy>1 7%, and constant C' is independent of p, N and 7 (see [1]
for details).

In the following theorems, we prove uniform convergence of the sequences, generated by the
proposed monotone iterative methods, to the solution of problem (1.1).
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Theorem 7.1. Let (6.3) hold true. For the sequence {Vl(n)}, generated by (3.2)—(3.4), (6.1),
the following estimate holds:

max |V t) = (-, ) o < c(a + NI N 40— 0.5 + 72),
KkEWT

N =min{N,,N,}, 7= max Ty,

where u(x,y,ty) is the solution to (1.1) and constant C is independent of u, N and .

Proof. The proof follows from Theorem 6.1 and (7.3). O

Theorem 7.2. Let the assumptions (6.3) and (6.6) be satisfied. Then for the sequence {Vl(n)}
generated by (5.6), (3.3) and (3.4) and n,. = fized, the following estimate holds:

max Vi t) — u(- te)llzn] < Clg™ P+ N1 In N + |6 — 0.5|7 4 72),
LEWT
N =min{N,,N,}, 7= Il?zaink’

where u(x,y,ty) is the solution to (1.1), q is defined in (6.9), constant C is independent of p,
N and 7, and the number of iterative steps on each time level ny, > 2.

Proof. The proof follows from Theorem 6.2 and (7.3). O

8. Numerical Experiments

In this section, we compare convergence properties of the monotone iterative method (3.2)—
(3.4) and the monotone iterative method from [3]. The monotone iterative method from [3] is
constructed in the assumption that

0< fu<c", " =const>D0. (8.1)

This method utilizes ¢* instead of ¢ (p,t;) in (3.3).

It is found that in all the numerical experiments the basic feature of monotone convergence
of upper and lower sequences is observed. In fact, the monotone property of the sequences
holds at every mesh point in the domain. This is, of course, to be expected from our theoretical
analysis in Theorem 3.1.

As a test problem for (1.1), we consider the reaction-diffusion problem

u—4

U — 12 (U + Uyy) + s 0, (z,9,t) €w x(0,T], (8.2a)
u(z,y,t) =1, (x,y,t) € dw x (0,T], (8.2b)
u(zr,y,0) =0, (x,y)€w 8.2¢)

where w = {0 < 2 < 1} x{0 < y < 1}. The steady state solution to the reduced problem (x = 0)
is u, = 4. For u < 1 the problem is singularly perturbed and characterized by boundary layers
of width O(u|In p|) near dw. The steady state solution increases sharply from v =1 on dw to
u = 4 on the interior, and the solution to the parabolic problem approaches this steady state
with time (see [1] for details). Since f, = 1/(5 —u)? > 0, condition (1.2) is satisfied.
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For the model problem (8.2), we solve the nonlinear difference scheme (3.1) with the mono-
tone iterative method (3.2)—(3.4), (6.1). The mesh function Vl(o) (p,t1) defined by

Vl(o)(wh,tl) =4, VI(O) (aw}z7t1) -1, (8.3)

is an upper solution with respect to the initial condition g(w",0) = 0, g(0w",0) = 1. We
initiate the iterative method with Vl(o) (p,t1) and thus generate a sequence of upper solutions.
At the next time level, {541 k > 1, we require an initial iterate that is an upper solution with
respect to Vi(p, ). Since the boundary condition and function f(u) = (u —4)/(5 — u) are
independent of time, we may choose VI(O) (p,ter1) = Vi(p,tr), p € @". Now, from Theorem 3.1,
it follows by induction on k that the mesh function V_;(p,txy1) defined by V_q(w", tx 1) = 0,
V_1(0w" tiy1) = 1 is a lower solution with respect to Vi (p, ;) and thus our computed mesh
functions satisfy

0< V" (p,ty) <4, ped", 0<n<n, 0<k<N,. (8.4)

From here and f,,, = 2/(5 — u)3, we conclude (5.4), and, hence, c¢(™ (p, t;,) is defined by (5.5).
From (8.4), we can also conclude that f, = 1/(5 — u)? is bounded below and above by
¢ =1/25 and ¢* = 1, respectively. Thus, in the monotone iterative method from [3], ¢* =1 is
in use.
We take as our convergence tolerance § = 107 in (6.1). All the discrete linear systems are
solved by the ICCG-solver [16]. In our numerical experiments, we use N, = Ny = N, 7, = 7,
k>1.

Table 8.1: Average convergence iteration counts for problem (8.2). The results, corresponding to the
monotone iterative method (3.2)—(3.4), (6.1) and monotone iterative method from [3], are given above
and below the line, respectively.

N 16 32 64 128 256
m T=0.5
1 4.0 4.0 4.0 4.0 4.0
7.2 7.2 7.2 7.2 7.2
1071 4.1 4.1 4.1 4.1 4.1
8.0 8.0 8.0 8.0 8.0
<1072 4.1 4.1 4.1 4.1 4.1
- 7.7 7.7 7.9 8 8
o 7=0.1
1 3.4 3.6 3.6 4.2 4.2
5.6 5.6 5.6 5.6 5.6
101 3.2 3.2 4.0 4.0 4.0
6.1 6.1 6.1 6.1 6.1
<1072 3.4 3.7 4.0 4.0 4.0
- 6.1 6.1 6.1 6.1 6.1

In Table 8.1, for 7 = 0.5,0.1 and for various values of p and N, we give the average (over
ten time levels) convergence iteration counts in the case of the weighting parameter § = 1/2
(the Crank-Nicolson scheme [14]). The results, corresponding to the monotone iterative method
(3.2)—(3.4), (6.1) and monotone iterative method from [3] with § = 1/2 are given above and
below the line, respectively. From the numerical data, it follows that for all values of 7, N and
1 the monotone iterative method (3.2)—(3.4), (6.1) faster than the corresponding monotone
iterative method from [3]. For 7 and N fixed and u < 1072, the average convergence iteration
counts are uniform with respect to pu.

In Table 8.2, for 7 = 0.1 and for various values of y and N, we give the ratio ¢, 11 (tx)/[gn(tr)]?,
k > 3, in the case of the weighting parameter § = 1/2, where g, (tx) is defined in (5.11). From
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Table 8.2: The ratio gn+1(tx)/[gn(tr)]?, k > 3.

409 x 1072 451 x107% 478 x 1072 5.23x 1072
345 x 1072 360 x 1072 4.21 x1072 4.55x 1072
3.3 x 1072 357x1072 3.80x 1072 4.41x 1072

N 32 64 128 256

n pw=10""

1 |214x1072 221x1072 234x1072 247 x 1072
2 | 1.97x1072 2.03x1072 215x1072 228x 1072
3 na 201 x1072 213 x 1072 223 x 1072
n n<1072

1

2

3

the numerical data, it follows that for all values of N and p the monotone iterative method
(3.2)—(3.4), (6.1) converges quadratically and for N fixed, u < 1072 converges uniformly in the
perturbation parameter u. These numerical experiments confirm the theoretical results from
Theorems 5.1 and 5.2.

We draw the following conclusions from the numerical experiments:

e The monotone iterative method (3.2)—(3.4), (6.1) converges faster than the corresponding
monotone iterative method from [3].

e For 7 and the diffusion coefficient u fixed, the average convergence iteration counts increase
slightly with increasing N or independent of N.

e For ;1 < 1072, the average convergence iteration counts are uniform with respect to u.

e On time levels, the monotone iterative method (3.2)—(3.4), (6.1) converges quadratically
and for 4 < 10~2 uniformly in p.
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