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Abstract

This paper deals with a monotone weighted average iterative method for solving semi-

linear singularly perturbed parabolic problems. Monotone sequences, based on the ac-

celerated monotone iterative method, are constructed for a nonlinear difference scheme

which approximates the semilinear parabolic problem. This monotone convergence leads

to the existence-uniqueness theorem. An analysis of uniform convergence of the monotone

weighted average iterative method to the solutions of the nonlinear difference scheme and

continuous problem is given. Numerical experiments are presented.
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1. Introduction

In this paper we give a numerical treatment for the semilinear singularly perturbed parabolic

problem in the form

ut − µ2(uxx + uyy) + f(x, y, t, u) = 0, (x, y, t) ∈ Q = ω × (0, T ], (1.1a)

u(x, y, t) = g(x, y, t), (x, y, t) ∈ ∂ω × (0, T ], (1.1b)

u(x, y, 0) = ψ(x, y), x ∈ ω, (1.1c)

where ω = {0 < x < 1}× {0 < y < 1} , µ is a small positive parameter, ∂ω is the boundary of

ω, the functions f , g and ψ are smooth in their respective domains, and f satisfies the constraint

fu ≥ 0, (x, y, t, u) ∈ Q× (−∞,∞), (fu = ∂f/∂u). (1.2)

This assumption can always be obtained by a change of variables. Indeed, introduce

z(x, y, t) = exp(−λt)u(x, y, t),

where λ is a constant. Now, z(x, y, t) satisfies (1.1) with

ϕ = λz + exp(−λt)f(x, y, t, exp(λt)z),

instead of f , and we have ϕz = λ + fu. Thus, if λ ≥ −min fu, where minimum is taking over

the domain from (1.2), we conclude ϕz ≥ 0.
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For µ ≪ 1, the problem is singularly perturbed and characterized by boundary layers

(regions with rapid change of solutions) near boundary ∂ω (see [1] for details).

We shall employ the weighted average scheme for approximating the semilinear problem

(1.1). This nonlinear ten-point difference scheme can be regarded as taking a weighted average

of the explicit and implicit schemes. In order to practically compute the nonlinear weighted

average scheme, one requires an efficient numerical method. A fruitful method for solving non-

linear difference schemes is the method of upper and lower solutions and its associated monotone

iterations. By using upper and lower solutions as two initial iterations, one can construct two

monotone sequences which converge monotonically from above and below, respectively, to a

solution of the problem. The above monotone iterative method is well known and has been

widely used for continuous and discrete elliptic and parabolic boundary value problems. Most

of publications on this topic involve monotone iterative schemes whose rate of convergence is of

linear rate (cf. [2–7]) Some accelerated monotone iterative schemes for solving discrete elliptic

boundary value problems are given in [8, 9]. An advantage of this accelerated approach is that

it leads to sequences which converge either quadratically or nearly quadratically. In [10], an

accelerated monotone iterative method for solving discrete parabolic boundary value problems

based on the implicit scheme is presented. In [11], a combination of the accelerated monotone

iterative method from [10] with monotone Picard iterates is constructed. In [10, 11], the two

important points in investigating the monotone iterative method concerning a stopping crite-

rion on each time level and estimates of convergence rates, in the case of solving linear discrete

systems on each time level inexactly, were omitted.

In this paper, we extend the accelerated monotone iterative method from [10] to the case

when on each time level a nonlinear difference scheme based on the weighted average of the

explicit and implicit schemes is solved inexactly, and give an analysis of a convergence rate of

this monotone iterative method. In [10], it is assumed that a pair of ordered upper and lower

solutions is given on each time level, and this pair is used as initial iterates in the accelerated

monotone iterative method. Our iterative method combines an explicit construction of initial

upper and lower solutions on each time level and the modified accelerated monotone iterative

method.

In [3], we investigate uniform convergence properties of the monotone weighted average iter-

ative method applied to solving the semilinear problem (1.1). This monotone method possesses

only linear convergence rate. In this paper, we investigate uniform convergence properties of

the monotone weighted average iterative method based of the extended accelerated monotone

iterative method from [10] . We show that the proposed monotone iterative method possesses

quadratic convergence rate.

The structure of the paper as follows. In Section 2, we introduce the nonlinear weighted

average scheme for the numerical solution of (1.1). The monotone weighted average iterative

method is presented in Section 3. The explicit construction of initial upper and lower solutions is

incorporated in the monotone weighted average iterative method. Section 4 deals with existence

and uniqueness of the solution to the nonlinear difference scheme. In Section 5, we show that

the monotone weighted average iterative method possesses uniform quadratic convergence rate.

An analysis of convergence rates of the monotone weighted average iterative method, based

of different stopping tests, is given in Section 6. Section 7 deals with uniform convergence

of the monotone weighted average iterative method to the continuous problem (1.1). The

final Section 8 presents results of numerical experiments where iteration counts are compared

between the proposed monotone weighted average iterative method and monotone weighted
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average iterative method from [3], whose convergence rate is linear.

2. The Weighted Average Scheme

On Q introduce a rectangular mesh ωh × ωτ , ωh = ωhx × ωhy:

ωhx = {xi, 0 ≤ i ≤ Nx; x0 = 0, xNx
= 1; hxi = xi+1 − xi} , (2.1a)

ωhy =
{

yj , 0 ≤ j ≤ Ny; y0 = 0, yNy
= 1; hyj = yj+1 − yj

}

, (2.1b)

ωτ = {tk, 0 ≤ k ≤ Nτ ; t0 = 0, tNτ
= T ; τk = tk − tk−1} . (2.1c)

For solving (1.1), consider the weighted average method (or θ-method)

τ−1
k [U(p, tk)− U(p, tk−1)] + θLhU(p, tk) + (1− θ)LhU(p, tk−1)

+θf(p, tk, U) + (1 − θ)f(p, tk−1, U) = 0, (p, tk) ∈ ωh × ωτ , (2.2)

with the boundary and initial conditions

U(p, tk) = g(p, tk), (p, tk) ∈ ∂ωh × ωτ ,

U(p, 0) = ψ(p), p ∈ ωh,

where θ = const and ∂ωh is the boundary of ωh. When no confusion arises, we will write

f(p, tk, U(p, tk)) = f(p, tk, U). LhU is defined by

LhU = −µ2
(

D2
xU +D2

yU
)

,

where D2
xU and D2

yU are the central difference approximations to the second derivatives

D2
xU

k
ij = (~xi)

−1
[

(

Uk
i+1,j − Uk

ij

)

(hxi)
−1

−
(

Uk
ij − Uk

i−1,j

)

(hx,i−1)
−1

]

,

D2
yU

k
ij = (~yj)

−1
[

(

Uk
i,j+1 − Uk

ij

)

(hyj)
−1

−
(

Uk
ij − Uk

i,j−1

)

(hy,j−1)
−1

]

,

where

~xi = 2−1 (hx,i−1 + hxi) , ~yj = 2−1 (hy,j−1 + hyj) , Uk
ij ≡ U (xi, yj , tk) .

This 10-point difference scheme can be regarded as taking a weighted average of the explicit

scheme (θ = 0) and the fully implicit scheme (θ = 1). We assume that we are using an average

with nonnegative weights, so that 0 ≤ θ ≤ 1.

On each time level tk, k ≥ 1, introduce the linear difference problem

(

θLh + τ−1
k + θc(p, tk)

)

W (p, tk) = Φ(p, tk), p ∈ ωh, (2.3a)

c(p, tk) ≥ 0, W (p, tk) = g(p, tk), p ∈ ∂ωh. (2.3b)

We now formulate the maximum principle and give an estimate to the solution of (2.3).

Lemma 2.1. (i) If a mesh function W (p, tk) satisfies the conditions

(

θLh + τ−1
k + θc(p, tk)

)

W (p, tk) ≥ 0 (≤ 0), p ∈ ωh,

W (p, tk) ≥ 0 (≤ 0), p ∈ ∂ωh,
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then W (p, tk) ≥ 0 (≤ 0) in ωh.

(ii) The following estimates of the solutions to (2.3) hold true

‖W (·, tk)‖ωh ≤ max

{

‖g(·, tk)‖∂ωh ,max
p∈ωh

∣

∣

∣

∣

Φ(p, tk)

θc(p, tk) + τ−1
k

∣

∣

∣

∣

}

, (2.4)

where

‖W (·, tk)‖ωh = max
p∈ωh

|W (p, tk)|, ‖g(·, tk)‖∂ωh = max
p∈∂ωh

|g(p, tk)|.

The proof of parts (i) and (ii) can be found in, respectively, [3] and [12].

3. The Monotone Iterative Method

We represent the difference equation from (2.2) in the equivalent form

G(U(p, tk), U(p, tk−1)) = 0, (p, t) ∈ ωh × ωτ , (3.1a)

G(U(p, tk), U(p, tk−1)) = Gθ (p, tk, U) + G1−θ (p, tk−1, U) , (3.1b)

Gθ(p, tk, U) =
(

θLh + τ−1
k

)

U(p, tk) + θf(p, tk, U), (3.1c)

G1−θ(p, tk−1, U) =
[

(1 − θ)Lh − τ−1
k

]

U(p, tk−1) + (1− θ)f(p, tk−1, U). (3.1d)

We say that on a time level tk, k ≥ 1, V1(p, tk) is an upper solution with respect to a given

function V (p, tk−1) , if it satisfies

G(V1(p, tk), V (p, tk−1) ≥ 0, p ∈ ωh,

V1(p, tk) ≥ g(p, tk), p ∈ ∂ωh.

Similarly, V−1(p, tk) is called a lower solution with respect to a given function V (p, tk−1), if it

satisfies the reversed inequalities.

3.1. Statement of the monotone iterative method

We now construct an iterative method for solving (3.1) in the following way. On each time

level tk, k ≥ 1, initial upper and lower solutions V
(0)
α (p, tk) (α = 1 and α = −1 correspond to,

respectively, the upper and lower cases) are calculated by solving the linear problems
(

θLh + τ−1
k

)

W (0)
α (p, tk) = α|G(S(p, tk), V1(p, tk−1))|, p ∈ ωh, (3.2a)

W (0)
α (p, tk) = 0, p ∈ ∂ωh, (3.2b)

V (0)
α (p, tk) = S(p, tk) +W (0)

α (p, tk), p ∈ ωh, α = 1,−1, (3.2c)

where S(p, tk) is defined on ωh and satisfies the boundary condition g(p, tk) on ∂ωh. We

calculate upper and lower sequences {V
(n)
α (p, tk)}, α = 1,−1, for n ≥ 1, by using the recurrence

formulae

L(n)(p, tk)Z
(n)
α (p, tk) = −G(V (n−1)

α (p, tk), V1(p, tk−1)), p ∈ ωh, (3.3a)

L(n)(p, tk) = θLh + τ−1
k + θc(n−1)(p, tk), (3.3b)

Z(n)
α (p, tk) = 0, p ∈ ∂ωh, (3.3c)

V (n)
α (p, tk) = V (n−1)

α (p, tk) + Z(n)
α (p, tk), p ∈ ωh, (3.3d)

Vα(p, tk) = V (nk)
α (p, tk), p ∈ ωh, (3.3e)

Vα(p, 0) = ψ(p), p ∈ ωh, (3.3f)
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where G(V
(n−1)
α (p, tk), V1(p, tk−1)) is the residual of the difference scheme (3.1) on V

(n−1)
α for

upper α = 1 and lower α = −1 sequences, respectively, and nk is a number of iterative steps

on time-level tk. The mesh function c(n−1)(p, tk) is given by

c(n−1)(p, tk) = max
V

{fu(p, tk, V ), V
(n−1)
−1 (p, tk) ≤ V ≤ V

(n−1)
1 (p, tk)}, (3.4)

where below in Theorem 3.1, we prove that

V
(n−1)
−1 (p, tk) ≤ V

(n−1)
1 (p, tk), p ∈ ωh.

3.2. Monotone convergence of method (3.2)–(3.4)

If U(p, tk) ≥ V (p, tk), p ∈ ωh, we define the following sector:

〈V (tk), U(tk)〉 = {V (p, tk) ≤W (p, tk) ≤ U(p, tk), p ∈ ωh}.

In the following theorem we prove the monotone property of the iterative method (3.2)–(3.4).

Theorem 3.1. The sequences {V
(n)
1 }, {V

(n)
−1 }, generated by (3.2)–(3.4), are, respectively, upper

and lower solutions and converge monotonically

V
(n−1)
−1 (p, tk) ≤ V

(n)
−1 (p, tk) ≤ V

(n)
1 (p, tk) ≤ V

(n−1)
1 (p, tk), p ∈ ωh, (3.5)

where k ≥ 1 and n ≥ 1.

Proof. We show that V
(0)
1 (p, tk) defined by (3.2) is an upper solution. From the maximum

principle in Lemma 2.1, it follows thatW
(0)
1 (p, tk) ≥ 0 on ωh. Now, using the difference equation

(3.2) for W
(0)
1 (p, tk) and the mean-value theorem, we have

G(S(p, tk) +W
(0)
1 (p, tk), V1(p, tk−1))

= G(S(p, tk), V (p, tk−1)) + |G(S(p, tk), V (p, tk−1))| + θfu(p, tk, E
(0))W

(0)
1 (p, tk),

where E(0)(tk) ∈ 〈S(tk), S(tk) + W
(0)
1 (tk)〉. Since fu, W

(0)
1 and θ are nonnegative, we con-

clude that V
(0)
1 (p, tk) = S(p, tk) +W

(0)
1 (p, tk) is an upper solution. Similarly, we can prove

that V
(0)
−1 (p, tk) = S(p, tk) +W

(0)
−1 (p, tk) is a lower solution, where W

(0)
−1 is nonpositive. Thus,

V
(0)
1 (p, tk) and V

(0)
−1 (p, tk) are, respectively, upper and lower solutions of (3.1) and satisfy (3.5).

Since V
(0)
1 is an upper solution, then from (3.3) we conclude that

L(1)(p, tk)Z
(1)
1 (p, tk) ≤ 0, p ∈ ωh, Z

(1)
1 (p, tk) = 0, p ∈ ∂ωh.

From Lemma 2.1, it follows that

Z
(1)
1 (p, tk) ≤ 0, p ∈ ωh. (3.6)

Similarly, for a lower solution V
(0)
−1 , we conclude that

Z
(1)
−1(p, tk) ≥ 0, p ∈ ωh. (3.7)

We now prove that

V
(1)
−1 (p, tk) ≤ V

(1)
1 (p, tk), p ∈ ωh. (3.8)
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Letting W (n) = V
(n)
1 − V

(n)
−1 , n ≥ 0, from (3.3), by the mean-value theorem, we have

L(1)(p, tk)W
(1)(p, tk) = θ

[

c(0)(p, tk)− fu(p, tk, Q
(0))

]

W (0)(p, tk), p ∈ ωh,

W (1)(p, tk) = 0, p ∈ ∂ωh,

where Q(0)(tk) ∈ 〈V
(0)
−1 (tk), V

(0)
1 (tk)〉. From here, taking into account V

(0)
1 (p, tk) ≥ V

(0)
−1 (p, tk)

and (3.4) with n = 1, we conclude that the right hand side in the difference equation is

nonnegative. The positivity property in Lemma 2.1 implies W (1)(p, tk) ≥ 0, and this leads to

(3.8).

We now prove that V
(1)
1 (p, tk) and V

(1)
−1 (p, tk) are upper and lower solutions, respectively.

Using the mean-value theorem, from (3.3) we obtain

G(V
(1)
1 (p, tk), V1(p, tk−1)) = −θ

[

c(0)(p, tk)− fu(p, tk, E
(1))

]

Z
(1)
1 (p, tk), (3.9)

where E(1)(tk) ∈ 〈V
(1)
1 (tk), V

(0)
1 (tk)〉. From here, (3.4), (3.6)–(3.8), it follows that

c(0)(p, tk) ≥ fu(p, tk, E
(1)), p ∈ ωh.

From here and (3.6), we conclude that

G(V
(1)
1 (p, tk), V1(p, tk−1)) ≥ 0, p ∈ ωh, V

(1)
1 (p, tk) = g(p, tk), p ∈ ∂ωh.

Thus, V
(1)
1 (p, tk) is an upper solution. Similarly, we can prove that V

(1)
−1 (p, tk) is a lower solution,

that is,

G(V
(1)
−1 (p, tk), V1(p, tk−1)) ≤ 0, p ∈ ωh, V

(1)
−1 (p, tk) = g(p, tk), p ∈ ∂ωh.

By induction on n, we can prove that {V
(n)
1 (p, tk)} is a monotonically decreasing sequence

of upper solutions and {V
(n)
−1 (p, tk)} is a monotonically increasing sequence of lower solutions,

which satisfy (3.5). Thus, we prove the theorem. �

4. Existence and Uniqueness of a Solution to the Nonlinear

Difference Scheme

Applying Theorem 3.1, we investigate existence and uniqueness of a solution to the nonlinear

difference scheme (3.1).

Theorem 4.1. The nonlinear difference scheme (3.1) has a unique solution.

Proof. From (3.5), it follows that limV
(n)
1 (p, t1) = U1(p, t1), p ∈ ωh as n→ ∞ exists, and

U1(p, t1) ≤ V
(n)
1 (p, t1), lim

n→∞
Z

(n)
1 (p, t1) = 0, p ∈ ωh. (4.1)

Similar to (3.9), we can prove that

G(V
(n)
1 (p, t1), ψ(p)) = −θ

[

c(0)(p, t1)− fu(p, t1, E
(n))

]

Z
(n)
1 (p, t1), n ≥ 1,
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where E(n)(t1) ∈ 〈V
(n)
1 (t1), V

(n−1)
1 (t1)〉, and ψ is the initial function from (1.1). From here and

(4.1), it follows that U1(p, t1) solves (3.1) at t1. At time level t2, we consider (3.2)–(3.4) with

V1(p, t1) = U1(p, t1). Using a similar argument, we can prove that the following limit

lim
n→∞

V
(n)
1 (p, t2) = U1(p, t2), p ∈ ωh,

exists and solves (3.1) at t2, where according to Theorem 3.1, {V
(n)
1 (p, t2)} is a sequence of

upper solutions with respect to U1(p, t1).

By induction on k, k ≥ 1, we can prove that

U1(p, tk) = lim
n→∞

V
(n)
1 (p, tk), p ∈ ωh, k ≥ 1,

is a solution of the nonlinear difference scheme (3.1). Similarly, we can prove that the mesh

function U−1(p, tk) defined by

U−1(p, tk) = lim
n→∞

V
(n)
−1 (p, tk), p ∈ ωh, k ≥ 1,

is a solution of the nonlinear difference scheme (3.1). We now show that

U1(p, tk) = U−1(p, tk), p ∈ ωh, k ≥ 1, (4.2)

where U1(p, tk) and U−1(p, tk) are solutions to the difference scheme (3.1), which are defined

above. From the definition of U1(p, t1) and U−1(p, t1), we conclude that

G(U1(p, t1), ψ(p)) = 0, G(U−1(p, t1), ψ(p)) = 0, p ∈ ωh.

Letting W (p, t1) = U1(p, t1)− U−1(p, t1), from here and (3.1), we have

(θLh + τ−1
1 )W (p, t1) + θ[f(p, t1, U1)− f(p, t1, U−1)] = 0, p ∈ ωh,

W (p, t1) = 0, p ∈ ∂ωh.

Using the mean-value theorem, we obtain

(θLh + τ−1
1 + θfu(p, t1, Q))W (p, t1) = 0, p ∈ ωh,

W (p, t1) = 0, p ∈ ∂ωh,

where Q(t1) ∈ 〈U−1(t1), U1(t1)〉. Since fu and θ are nonnegative, by Lemma 2.1, we conclude

that W (p, t1) = 0, p ∈ ωh. By induction on k, k ≥ 1, we can prove (4.2). Thus, the theorem

holds true. �

5. Uniform Quadratic Convergence

Introduce the notation

rk = max
p∈ωh

(

max
V

{

|fuu(p, tk, V )|, V
(0)
−1 (p, tk) ≤ V ≤ V

(0)
1 (p, tk)

}

)

. (5.1)

The following theorem gives the quadratic convergence of the monotone iterative method (3.2)–

(3.4).
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Theorem 5.1. On each time level, for the sequences {V
(n)
α }, α = 1,−1, generated by (3.2)–

(3.4), the following estimate holds:

‖W (n+1)(·, tk)‖ωh ≤ τk(θrk)‖W
(n)(·, tk)‖

2
ωh , (5.2)

where W (n)(p, tk) = V
(n)
1 (p, tk)− V

(n)
−1 (p, tk).

Proof. From (3.3), we have

L(n+1)(p, tk)W
(n+1)(p, tk) = H(n)(p, tk), p ∈ ωh, (5.3a)

H(n)(p, tk) = θc(n)(p, tk)W
(n)(p, tk)− θ[f(p, tk, V

(n)
1 )− f(p, tk, V

(n)
−1 )], (5.3b)

W (n+1)(p, tk) = 0, p ∈ ∂ωh. (5.3c)

By the mean-value theorem,

f(p, tk, V
(n)
1 )− f(p, tk, V

(n)
−1 ) = fu(p, tk, Q

(n))W (n)(p, tk),

where Q(n)(tk) ∈ 〈V
(n)
−1 (tk), V

(n)
1 (tk)〉. From (3.4), it follows that

c(n)(p, tk) = fu(p, tk, G
(n)), G(n)(tk) ∈ 〈V

(n)
−1 (tk), V

(n)
1 (tk)〉.

Thus, we represent the right hand side H(n) from (5.3) in the form

θ[fu(p, tk, G
(n))− fu(p, tk, Q

(n))]W (n)(p, tk).

Applying again the mean-value theorem, we get

fu(p, tk, G
(n))− fu(p, tk, Q

(n)) = fuu(p, tk, R
(n))(G(n)(p, tk)−Q(n)(p, tk)),

where R(n) lies between G(n) and Q(n). Taking into account that

|G(n)(p, tk)−Q(n)(p, tk)| ≤ V
(n)
1 (p, tk)− V

(n)
−1 (p, tk),

in the notation (5.1), we estimate H(n) from (5.3) as follows

‖H(n)(·, tk)‖ωh ≤ θrk‖W
(n)(·, tk)‖

2
ωh .

From here and fu ≥ 0, using (2.4), we prove the estimate (5.2). �

Remark 5.1. If on each time level tk, k ≥ 1, the nonlinear function f satisfies the constraint

min
p∈ωh

(

min
V

{

fuu(p, tk, V ), V
(0)
−1 (p, tk) ≤ V ≤ V

(0)
1 (p, tk)

}

)

≥ 0, (5.4)

then for the upper sequence {V
(n)
1 } in Theorem 5.1, we have the estimate

‖V
(n+1)
1 (·, tk)− U∗(·, tk)‖ωh ≤ τk(θrk)‖V

(n)
1 (·, tk)− U∗(·, tk)‖

2
ωh ,

where U∗(p, tk) is the exact solution of the nonlinear difference scheme (3.1). From the assump-

tion (5.4) on fuu and (3.4), it follows that

c(n)(p, tk) = fu(p, tk, V
(n)
1 ). (5.5)
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If we take into account that W (n) = V
(n)
1 −U∗ and U∗ ≤ E(n) ≤ V

(n)
1 , the proof of the estimate

repeats the proof of Theorem 5.1.

If on each time level tk, k ≥ 1, the nonlinear function f satisfies the constrain

max
p∈ωh

(

max
V

{

fuu(p, tk, V ), V
(0)
−1 (p, tk) ≤ V ≤ V

(0)
1 (p, tk)

}

)

≤ 0,

then for the lower sequence {V
(n)
−1 } in Theorem 5.1, we have the estimate

‖V
(n+1)
−1 (·, tk)− U∗(·, tk)‖ωh ≤ τk(θrk)‖V

(n)
−1 (·, tk)− U∗(·, tk)‖

2
ωh .

From the assumption (5.4) on fuu and (3.4), it follows that

c(n)(p, tk) = fu(p, tk, V
(n)
−1 ).

If we take into account that W (n) = V
(n)
−1 −U∗ and V

(n)
−1 ≤ E(n) ≤ U∗, the proof of the estimate

repeats the proof of Theorem 5.1.

Without loss of generality, we assume that the boundary condition is zero, that is, g(x, y, t) =

0 in (1.1). This assumption can always be satisfied by a change of variables. On each time

level, from (3.2), we have

(

θLh + τ−1
k

)

V (0)
α (p, tk) = α|G(0, V1(p, tk−1))|, p ∈ ωh, (5.6a)

V (0)
α (p, tk) = 0, p ∈ ∂ωh, α = 1,−1, (5.6b)

where S(p, tk) = 0.

Lemma 5.1. On each time level k ≥ 1, upper and lower solutions V
(n)
α (p, tk), α = 1,−1,

n ≥ 0, obtained by (5.6), (3.3) and (3.4), are bounded independently of µ, Nx, Ny and τk.

Proof. We prove this result by induction. From (3.1) and (5.6), it follows that

(

θLh + τ−1
1

)

V (0)
α (p, t1) = α|θf(p, t1, 0) + G1−θ(p, 0, ψ)|, p ∈ ωh,

V (0)
α (p, t1) = 0, p ∈ ∂ωh,

G1−θ(p, 0, ψ) =
[

(1 − θ)Lh − τ−1
1

]

ψ(p) + (1− θ)f(p, 0, ψ).

From here by (2.4), we have

‖V (0)
α (·, t1)‖ωh ≤ τ1 [‖θf(·, t1, 0)‖ωh + ‖G1−θ(·, t1, ψ)‖ωh ] . (5.7)

In [13], we proved the following estimates:

‖µ2D2
x(ψ)‖ωh ≤ ‖µ2ψxx‖ω, ‖µ2D2

y(ψ)‖ωh ≤ ‖µ2ψyy‖ω.

It means that ‖Lhψ‖ωh is µ-uniformly bounded. Thus,

τ1‖G1−θ(·, 0, ψ)‖ωh ≤ C, (5.8)

where here and throughout a positive generic constant C is independent of µ, Nx, Ny and τk.

From here and (5.7), it follows that

‖V (0)
α (·, t1)‖ωh ≤ C, α = 1,−1. (5.9)
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From (3.3), for α = 1,−1, we have

L(1)(p, t1)V
(1)
α (p, t1)

= θc(0)(p, t1)V
(0)
α (p, t1)− θf(p, t1, V

(0)
α ) + G1−θ(p, 0, ψ), p ∈ ωh. (5.10)

By (2.4),

‖V (1)
α (·, t1)‖ωh

≤ τ1[θ‖c
(0)(·, t1)‖ωh‖V (0)

α (·, t1)‖ωh + θ‖f(·, t1, V
(0)
α )‖ωh + ‖G1−θ(·, 0, ψ)‖ωh ].

From here, (3.4), (5.8)–(5.10), we conclude that

‖V (1)
α (·, t1)‖ωh ≤ C, τ1‖L

hV (1)
α (·, t1‖ωh ≤ C, α = 1,−1.

Now, by induction on n, we prove that Vα(p, t1) = V
(n1)
α (p, t1) satisfies the estimates

‖Vα(·, t1)‖ωh ≤ C, τ1‖L
hVα(·, t1)‖ωh ≤ C, α = 1,−1.

Using these estimates, we conclude that

τ2G1−θ(p, t1, V1) = τ2
[

(1 − θ)Lh − τ−1
2

]

V1(p, t1) + τ2(1 − θ)f(p, t1, V1).

is bounded independently of µ, Nx, Ny and τ2 (compare with (5.8)). Now, by induction on k,

we prove the lemma. �

We now prove that on each time level the sequences {V
(n)
α }, α = 1,−1, obtained by (5.6),

(3.3) and (3.4) converge uniformly in the perturbation parameter µ. Introduce the notation

qn(tk) = ‖V
(n)
1 (·, tk)− V

(n)
−1 (·, tk)‖ωh . (5.11)

Theorem 5.2. On each time level k, k ≥ 1, the sequences {V
(n)
α }, α = 1,−1, generated by

(5.6), (3.3) and (3.4) converge µ-uniformly. There exists nk, such that τkrkqnk
< 1, and the

following estimate holds:

qn(tk) ≤
1

θτkrk
[θτkrkqnk

(tk)]
2n−nk

, n ≥ nk, (5.12)

where rk is defined in (5.1).

Proof. From (3.5) and Lemma 5.1, we conclude that the upper and lower solutions converge

µ-uniformly. Let κn(tk) = θτkrkqn(tk). Multiplying (5.2) by θτkrk, we have

κn+1(tk) ≤ [κn(tk)]
2
, n ≥ 0.

Since the sequences {V
(n)
α (p, tk)}, α = 1,−1, converge to the solution U∗(p, tk) of the nonlinear

scheme (3.1), then for some nk the inequality κnk
< 1 holds. By induction, we show that

κn(tk) ≤ [κnk
(tk)]

2n−nk

, n ≥ nk. (5.13)

It is true for n = nk. Assuming that it holds true for n = l, we have

κl+1(tk) ≤ [κl(tk)]
2
≤

(

[κnk
(tk)]

2l−nk
)2

= [κnk
(tk)]

2l+1−nk

,

and prove (5.13). From (5.13) and κn(tk) = θτkrkqn(tk), we conclude (5.12). �
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6. Convergence Analysis of the Monotone Iterative Method

In Theorems 3.1, 5.1 and 5.2, we have investigated convergence properties of method (3.2)–

(3.4) on each time-level tk, k ≥ 1. In this section, we investigate convergence properties of the

monotone iterative method (3.2)–(3.4) on the whole interval of integration [0, T ]. In (3.3), we

assume that on each time-level tk, k ≥ 1, V (p, tk) = V1(p, tk), where V1(p, tk) = V
(nk)
1 (p, tk).

Thus, on the whole interval of integration, we now estimate maxtk∈ωτ ‖V1(·, tk)− U∗(·, tk)‖ωh ,

where U∗ is the exact solution to the nonlinear difference scheme (3.1). In the final remark to

this section, we formulate convergence results for the case when on each time-level tk, k ≥ 1,

V (p, tk) = V−1(p, tk), where V−1(p, tk) = V
(nk)
−1 (p, tk).

6.1. Stopping criterion based on residual

We now choose the stopping criterion of the iterative method (3.2)–(3.4) in the form

‖G(V
(n)
1 (·, tk), V1(·, tk−1))‖ωh ≤ δ, (6.1)

where δ is a prescribed accuracy, and set up V1(p, tk) = V
(nk)
1 (p, tk), p ∈ ωh, such that nk is

minimal subject to (6.1).

Introduce the notation

vi = vx,i−1 + vxi, vx,i−1 = (~xi)
−1

(hx,i−1)
−1
, vxi = (~xi)

−1
(hxi)

−1
, (6.2a)

wj = wy,j−1 + wyj , wy,j−1 = (~yj)
−1 (hy,j−1)

−1 , wyj = (~yj)
−1 (hyj)

−1 , (6.2b)

v = max
1≤i≤Nx−1

vi, w = max
1≤j≤Ny−1

wj . (6.2c)

We suppose that the time mesh spacing τk, k ≥ 1 satisfies the constraint

(1− θ)τk ≤
1

µ2 (v + w) + ck−1
, (6.3a)

ck−1 = max
p∈ωh

(

max
V

{

fu(p, tk−1, V ), V
(0)
−1 (p, tk−1) ≤ V ≤ V

(0)
1 (p, tk−1)

}

)

, k ≥ 1. (6.3b)

The condition (6.3), known as the CFL condition, guarantees the discrete maximum principle

on the computational domain ωh × ωτ (see in [3] for details). This imposes no time step

restriction on the implicit scheme, for which θ = 1. A more interesting question is the stability

of the Crank-Nicolson scheme [14], for which θ = 0.5. For a linear problem (1.1) with constant

coefficients, Fourier analysis places no stability restriction on the Crank-Nicolson scheme, in

contrast to condition (6.3). One can see that the CFL condition (6.3) is sharp by considering

the one-dimensional linear problem −µ2uxx + ut = 0 with initial data u0(x) = {2x, 0 ≤ x ≤

0.5; 2(1 − x), 0.5 ≤ x ≤ 1}, boundary conditions g(0, t) = g(1, t) = 0 and Nx = 2 mesh

intervals [1].

Thus the maximum principle analysis can be viewed as an alternative means of obtaining

stability conditions. It has the advantage over Fourier analysis that it is easily extended to

problems with variable coefficients and to nonlinear problems. We mention that, in general, the

maximum principle analysis gives only sufficient conditions for stability of difference schemes.

We prove the following convergence result for the monotone iterative method (3.2)–(3.4),

(6.1).
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Theorem 6.1. Let (6.3) hold true. For the sequence {V
(n)
1 }, generated by (3.2)–(3.4), (6.1),

the following estimate holds:

max
tk∈ωτ

‖V1(·, tk)− U∗(·, tk)‖ωh ≤ Tδ, (6.4)

where U∗(p, tk) is the unique solution to (3.1). Furthermore, on each time level the sequences

converge monotonically (3.5).

Proof. The monotone convergence of the sequence {V
(n)
1 (p, tk)} follows from Theorem 3.1.

The existence and uniqueness of the solution to (3.1) have been proved in Theorem 4.1.

From (3.1), we have

Gθ(p, tk, V1) + G1−θ(p, tk−1, V1) = G(V1(p, tk), V1(p, tk−1)),

Gθ(p, tk, U
∗) + G1−θ(p, tk−1, U

∗) = 0.

From here and using the mean-value theorem, we get the difference problem for W (p, tk) =

V1(p, tk)− U∗(p, tk) in the form
(

θLh
f (p, tk) + τ−1

k

)

W (p, tk)

= −
[

(1 − θ)Lh
f (p, tk−1)− τ−1

k

]

W (p, tk−1) + G(V1(p, tk), V1(p, tk−1)), p ∈ ωh,

W (p, tk) = 0, p ∈ ∂ωh, Lh
f (p, tk) = Lh + fu(p, tk, E),

where E(tk) ∈ 〈U∗(tk), V1(tk)〉. In the notation of (6.2), we can write the difference equation

in the form

(1 + θτkρ
k
ij)W

k
ij

= θτk
[

Mx(W
k
ij) +My(W

k
ij)

]

+ (1− θ)τk
[

Mx(W
k−1
ij ) +My(W

k−1
ij )

]

+
[

1− (1− θ)τkρ
k−1
ij

]

W k−1
ij + τkG(V1(xi, yj, tk), V1(xi, yj , tk−1)), (6.5a)

ρkij = µ2(vi + wj) + fk
u,ij , Mx(W

k
ij) = µ2

(

vxiW
k
i+1,j + vx,i−1W

k
i−1,j

)

, (6.5b)

My(W
k
ij) = µ2

(

wyjW
k
i,j+1 + wy,j−1W

k
i,j−1

)

. (6.5c)

Under the assumptions of the theorem, all the coefficients on the right hand side are nonnegative.

From here and taking into account that according to Theorem 3.1 the stopping criterion (6.1)

can always be satisfied, we have

‖W (·, tk)‖ωh ≤ δτk + ‖W (·, tk−1)‖ωh .

Taking into account that ‖W (·, t0)‖ωh=0, by induction on k, we conclude that

‖W (·, tk)‖ωh ≤ δ

k
∑

l=1

τl ≤ Tδ, k ≥ 1.

Thus, we prove the theorem. �

6.2. Stopping criterion with fixed number of iterates on each time level

For the iterative method (3.2)–(3.4), we now choose the stopping criterion with the fixed

number of iterative steps n∗ on each time level (that is, n∗ is independent of k) and assume

that time step τk satisfies the inequality

τk <
1

θck
, k ≥ 1, (6.6)
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where ck is defined in (6.3).

Lemma 6.1. Let (6.6) hold. Then for the sequences {Z
(n)
1 }, generated by (3.2)–(3.4), the

following estimate holds:

‖Z
(n)
1 (·, tk)‖ωh ≤ qn−1

k ‖Z
(1)
1 (·, tk)‖ωh , qk = (θck)τk < 1. (6.7)

Proof. Similar to (3.9), using the mean-value theorem, from (3.3) we obtain

G(V
(n)
1 (p, tk), V1(p, tk−1)) = −θ[c(n−1)(p, tk)− fu(p, tk, E

(n))]Z
(n)
1 (p, tk), (6.8)

where E(n)(tk) ∈ 〈V
(n)
1 (tk), V

(n−1)
1 (tk)〉. Using (2.4), from (3.3) we have

‖Z
(n)
1 (·, tk)‖ωh ≤ τk‖G(V

(n−1)
1 (·, tk), V1(·, tk−1))‖ωh .

From (3.4), fu ≥ 0 and (6.8), we conclude that

‖G(V
(n−1)
1 (·, tk), V1(·, tk−1))‖ωh ≤ θck‖Z

(n−1)
1 (·, tk)‖ωh .

Thus,

‖Z
(n)
1 (·, tk)‖ωh ≤ (θck)τk‖Z

(n−1)
1 (·, tk)‖ωh ,

and, by induction on n, we prove (6.7). �

Theorem 6.2. Let the assumptions (6.3) and (6.6) be satisfied. Then for the sequence {V
(n)
1 }

generated by (5.6), (3.3) and (3.4) and n∗ = fixed, the following estimate holds:

max
tk∈ωτ

‖V1(·, tk)− U∗(·, tk)‖ωh ≤ Cqn∗−1, q = max
k≥1

qk < 1, (6.9)

where U∗(p, tk) is the unique solution to (3.1), qk is defined in (6.7), constant C is independent

of µ, Nx, Ny and τk, and the number of iterative steps on each time level n∗ ≥ 2. Furthermore,

on each time level the sequences converge monotonically (3.5).

Proof. From (6.5) and (6.8), we get the estimate for W (p, tk) = V1(p, tk) − U∗(p, tk),

V1(p, tk) = V
(n∗)
1 (p, tk),

‖W (·, tk)‖ωh ≤ (θck)τk‖Z
(n∗)
1 (·, tk)‖ωh + ‖W (·, tk−1)‖ωh , (6.10)

where ck is defined in (6.3). From here and taking into account that W (p, t0) = 0, we have

‖W (·, t1)‖ωh ≤ (θc1)τ1‖Z
(n∗)
1 (·, t1)‖ωh .

From here and (6.7), we obtain the estimate

‖W (·, t1)‖ωh ≤ qn∗

1 ‖Z
(1)
1 (·, t1)‖ωh .

By Lemma 5.1, ‖Z
(1)
1 (·, t1)‖ωh and |c1| are bounded independently of µ, Nx, Ny and τ1. Thus,

we obtain the estimate

‖W (·, t1)‖ωh ≤ B1τ1q
n∗−1
1 , (6.11)

where here and throughout constants Bk, k ≥ 1, are independent of µ, Nx, Ny and τk.
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From (6.7) and (6.10), we obtain the estimate

‖W (·, t2)‖ωh ≤ qn∗

2 ‖Z
(1)
1 (·, t2)‖ωh + ‖W (·, t1)‖ωh . (6.12)

By Lemma 5.1, ‖Z
(2)
1 (·, t2)‖ωh and |c2| are bounded independently of µ, Nx, Ny and τ1. Thus,

from (6.11) and (6.12), we obtain the estimate

‖W (·, t2)‖ωh ≤ B1τ1q
n∗−1
1 +B2τ2q

n∗−1
2 .

By induction on k, we can prove

‖W (·, tk)‖ωh =

k
∑

s=1

Bsτsq
n∗−1
s .

Denoting

B = max
k≥1

Bk,

and taking into account that
∑k

s=1 τs ≤ T , we prove (6.9) with C = BT . �

Remark 6.1. We now assume that in (3.3), on each time-level tk, k ≥ 1, V (p, tk) = V−1(p, tk),

where V−1(p, tk) = V
(nk)
−1 (p, tk). In this case, Theorems 6.1 and 6.2 hold true for

max
tk∈ωτ

‖V−1(·, tk)− U∗(·, tk)‖ωh ,

where U∗(p, tk) is the exact solution to the nonlinear difference scheme (3.1).

7. Uniform Convergence to the Solution of Problem (1.1)

We employ a layer-adapted mesh of a piecewise uniform type [15]. The piecewise uniform

meshes ωhx and ωhy are defined in the manner of [15] and are referred to as Shishkin meshes.

The boundary layer thicknesses ςx and ςy are chosen as

ςx = min {0.25,m1µ lnNx} , ςy = min {0.25,m2µ lnNy} , (7.1)

where m1 and m2 are positive constants. Mesh spacings hxµ, hx, hyµ and hy are defined by

hxµ =
4ςx
Nx

, hx =
2(1− 2ςx)

Nx

, hyµ =
4ςy
Ny

, hy =
2(1− 2ςy)

Ny

. (7.2)

The mesh ωhx is constructed thus: in each of the subintervals [0, ςx] and [1 − ςx, 1] the fine

mesh spacing is hxµ while in the interval [ςx, 1 − ςx] the coarse mesh spacing is hx. The mesh

ωhy is defined similarly. The difference scheme (3.1) on the piecewise uniform mesh (7.1), (7.2)

converges µ-uniformly to the solution of the continuous problem (1.1):

max
tk∈ωτ

‖U(·, tk)− u(·, tk)‖ωh ≤ C
(

N−1 lnN + |θ − 0.5|τ + τ2
)

, (7.3)

where N = min {Nx, Ny}, τ = maxk≥1 τk, and constant C is independent of µ, N and τ (see [1]

for details).

In the following theorems, we prove uniform convergence of the sequences, generated by the

proposed monotone iterative methods, to the solution of problem (1.1).
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Theorem 7.1. Let (6.3) hold true. For the sequence {V
(n)
1 }, generated by (3.2)–(3.4), (6.1),

the following estimate holds:

max
tk∈ωτ

‖V1(·, tk)− u(·, tk)‖ωh ≤ C
(

δ +N−1 lnN + |θ − 0.5|τ + τ2
)

,

N = min {Nx, Ny} , τ = max
k≥1

τk,

where u(x, y, tk) is the solution to (1.1) and constant C is independent of µ, N and τ .

Proof. The proof follows from Theorem 6.1 and (7.3). �

Theorem 7.2. Let the assumptions (6.3) and (6.6) be satisfied. Then for the sequence {V
(n)
1 }

generated by (5.6), (3.3) and (3.4) and n∗ = fixed, the following estimate holds:

max
tk∈ωτ

‖V1(·, tk)− u(·, tk)‖ωh ] ≤ C(qn∗−1 +N−1 lnN + |θ − 0.5|τ + τ2),

N = min {Nx, Ny} , τ = max
k≥1

τk,

where u(x, y, tk) is the solution to (1.1), q is defined in (6.9), constant C is independent of µ,

N and τ , and the number of iterative steps on each time level n∗ ≥ 2.

Proof. The proof follows from Theorem 6.2 and (7.3). �

8. Numerical Experiments

In this section, we compare convergence properties of the monotone iterative method (3.2)–

(3.4) and the monotone iterative method from [3]. The monotone iterative method from [3] is

constructed in the assumption that

0 ≤ fu ≤ c∗, c∗ = const > 0. (8.1)

This method utilizes c∗ instead of c(n)(p, tk) in (3.3).

It is found that in all the numerical experiments the basic feature of monotone convergence

of upper and lower sequences is observed. In fact, the monotone property of the sequences

holds at every mesh point in the domain. This is, of course, to be expected from our theoretical

analysis in Theorem 3.1.

As a test problem for (1.1), we consider the reaction-diffusion problem

ut − µ2(uxx + uyy) +
u− 4

5− u
= 0, (x, y, t) ∈ ω × (0, T ], (8.2a)

u(x, y, t) = 1, (x, y, t) ∈ ∂ω × (0, T ], (8.2b)

u(x, y, 0) = 0, (x, y) ∈ ω, (8.2c)

where ω = {0 < x < 1}×{0 < y < 1}. The steady state solution to the reduced problem (µ = 0)

is ur = 4. For µ≪ 1 the problem is singularly perturbed and characterized by boundary layers

of width O(µ| lnµ|) near ∂ω. The steady state solution increases sharply from u = 1 on ∂ω to

u = 4 on the interior, and the solution to the parabolic problem approaches this steady state

with time (see [1] for details). Since fu = 1/(5− u)2 > 0, condition (1.2) is satisfied.
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For the model problem (8.2), we solve the nonlinear difference scheme (3.1) with the mono-

tone iterative method (3.2)–(3.4), (6.1). The mesh function V
(0)
1 (p, t1) defined by

V
(0)
1 (ωh, t1) = 4, V

(0)
1 (∂ωh, t1) = 1, (8.3)

is an upper solution with respect to the initial condition g(ωh, 0) = 0, g(∂ωh, 0) = 1. We

initiate the iterative method with V
(0)
1 (p, t1) and thus generate a sequence of upper solutions.

At the next time level, tk+1 k ≥ 1, we require an initial iterate that is an upper solution with

respect to V1(p, tk). Since the boundary condition and function f(u) = (u − 4)/(5 − u) are

independent of time, we may choose V
(0)
1 (p, tk+1) = V1(p, tk), p ∈ ωh. Now, from Theorem 3.1,

it follows by induction on k that the mesh function V−1(p, tk+1) defined by V−1(ω
h, tk+1) = 0,

V−1(∂ω
h, tk+1) = 1 is a lower solution with respect to V1(p, tk) and thus our computed mesh

functions satisfy

0 ≤ V
(n)
1 (p, tk) ≤ 4, p ∈ ωh, 0 ≤ n ≤ n∗, 0 ≤ k ≤ Nτ . (8.4)

From here and fuu = 2/(5− u)3, we conclude (5.4), and, hence, c(n)(p, tk) is defined by (5.5).

From (8.4), we can also conclude that fu = 1/(5 − u)2 is bounded below and above by

c∗ = 1/25 and c∗ = 1, respectively. Thus, in the monotone iterative method from [3], c∗ = 1 is

in use.

We take as our convergence tolerance δ = 10−5 in (6.1). All the discrete linear systems are

solved by the ICCG-solver [16]. In our numerical experiments, we use Nx = Ny = N , τk = τ ,

k ≥ 1.

Table 8.1: Average convergence iteration counts for problem (8.2). The results, corresponding to the

monotone iterative method (3.2)–(3.4), (6.1) and monotone iterative method from [3], are given above

and below the line, respectively.

N 16 32 64 128 256

µ τ = 0.5

1 4.0

7.2

4.0

7.2

4.0

7.2

4.0

7.2

4.0

7.2

10−1 4.1

8.0

4.1

8.0

4.1

8.0

4.1

8.0

4.1

8.0

≤ 10−2 4.1

7.7

4.1

7.7

4.1

7.9

4.1

8

4.1

8

µ τ = 0.1

1 3.4

5.6

3.6

5.6

3.6

5.6

4.2

5.6

4.2

5.6

10−1 3.2

6.1

3.2

6.1

4.0

6.1

4.0

6.1

4.0

6.1

≤ 10−2 3.4

6.1

3.7

6.1

4.0

6.1

4.0

6.1

4.0

6.1

In Table 8.1, for τ = 0.5, 0.1 and for various values of µ and N , we give the average (over

ten time levels) convergence iteration counts in the case of the weighting parameter θ = 1/2

(the Crank-Nicolson scheme [14]). The results, corresponding to the monotone iterative method

(3.2)–(3.4), (6.1) and monotone iterative method from [3] with θ = 1/2 are given above and

below the line, respectively. From the numerical data, it follows that for all values of τ , N and

µ the monotone iterative method (3.2)–(3.4), (6.1) faster than the corresponding monotone

iterative method from [3]. For τ and N fixed and µ ≤ 10−2, the average convergence iteration

counts are uniform with respect to µ.

In Table 8.2, for τ = 0.1 and for various values of µ andN , we give the ratio qn+1(tk)/[qn(tk)]
2,

k ≥ 3, in the case of the weighting parameter θ = 1/2, where qn(tk) is defined in (5.11). From
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Table 8.2: The ratio qn+1(tk)/[qn(tk)]
2, k ≥ 3.

N 32 64 128 256

n µ = 10−1

1 2.14× 10−2 2.21 × 10−2 2.34 × 10−2 2.47× 10−2

2 1.97× 10−2 2.03 × 10−2 2.15 × 10−2 2.28× 10−2

3 na 2.01 × 10−2 2.13 × 10−2 2.23× 10−2

n µ ≤ 10−2

1 4.09× 10−2 4.51 × 10−2 4.78 × 10−2 5.23× 10−2

2 3.45× 10−2 3.60 × 10−2 4.21 × 10−2 4.55× 10−2

3 3.34× 10−2 3.57 × 10−2 3.80 × 10−2 4.41× 10−2

the numerical data, it follows that for all values of N and µ the monotone iterative method

(3.2)–(3.4), (6.1) converges quadratically and for N fixed, µ ≤ 10−2 converges uniformly in the

perturbation parameter µ. These numerical experiments confirm the theoretical results from

Theorems 5.1 and 5.2.

We draw the following conclusions from the numerical experiments:

• The monotone iterative method (3.2)–(3.4), (6.1) converges faster than the corresponding

monotone iterative method from [3].

• For τ and the diffusion coefficient µ fixed, the average convergence iteration counts increase

slightly with increasing N or independent of N .

• For µ ≤ 10−2, the average convergence iteration counts are uniform with respect to µ.

• On time levels, the monotone iterative method (3.2)–(3.4), (6.1) converges quadratically

and for µ ≤ 10−2 uniformly in µ.
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